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Abstract. We investigate some pure implicational systems placed between
the implicational fragments TW! and RW! of the well-known relevance systems
TW and RW For one them, TRW!+RP, we prove (1) and (2):

(1) if both ` A! B and ` B ! A in TRW!+RP, then B can be obtained
from A by substitution of occurrences of formulas of the formD ! :C ! E for some
occurrences of subformulas of A of the form C ! :D! E (CONGR);

(2) CONGR is equivalent to NOASS: for any A and B,

6` A! :A! B ! B

in TRW!+RP.

CONGR is a generalization of the solution to the P{W problem, solved for
TW! in [6] (cf. also [1]{[4] for other solutions).

The equivalence of CONGR and NOASS is a generalization of the Dwyer-
Powers theorem for TW! to the e�ect that the P{W problem is equivalent to
NOID: there is no theorem of TW!-ID of the form AA.

The proof of the equivalence of CONGR and NOASS is obtained by double
induction applied jointly with a normal form theorem.

1. Introduction

The only connective in the propositional language investigated here is !.
We write (AB) for (A ! B); furthermore, ABC and A:BC stand for (AB)C and
A(BC), respectively.

For any A the set c(A) is the smallest set satisfying (1) and (2): (1) A 2 c(A);
(2) let B 2 c(A) be such that C:DE is a subformula of B, for some C, D and E,
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and let B� be obtained by substitution of D:CE for C:DE, at a single occurrence
of C:DE in B; then B� 2 c(A).

A and B are congruent (in symbols A � B) i� B 2 c(A). A 6� B means
B =2 c(A).

For any A by A� we denote any formula B such that A � B.

In the sequel several sub-systems of RW! are investigated. If S and T are
any two of them, we write (S � T), S � T, and S = T if the set of theorems of S
is a (proper) subset of or equal to the set of theorems of T, respectively.

Let U be either an axiom-scheme or a rule; if U is adjoined (deleted) to (from)
a system S, the result is denoted by S+U (S{U).

RW! can be de�ned by modus ponens (MP) and the following axiom-
schemata:

ID AA

ASU AB:BC:AC

APR BC:AB:AC

AP A(BC):B:AC:

An equivalent formulation of RW! is obtained by substitution of the axiom-
scheme A:ABB (axiom-scheme of assertion, ASS) for AP (axiom-scheme of permu-
tation). Sometimes it is important to distinguish between these two formulations;
on such occasions the �rst will be called RW!AP and the second RW!ASS.

RW! is closed under substitution of equivalents and, hence, under the rule
of permutation:

P If ` A, then ` A�

Also, RW! is closed under the rules

ASS1 If ` A, then ` ABB

ASS2 If ` A and ` B1: . . . :Bk: . . . :BnC, then ` B1: . . . :ABk: . . . :BnC:

The closure under ASS1 follows by ASS and MP, and the closure under ASS2
by P, ASS1 and TR. On the other hand, when we have ID, ASS1 is obtained by
ASS2.

TW! is de�ned by MP and the axiom-schemata ID, ASU and APR. It has
the Anderson-Belnap property (A-B): if both ` AB and ` BA in TW!, then A
and B denote the same formula.

A-B is equivalent to the Dwyer-Powers property (D-P): for any A, 6` AA in
TW!{ID.

TW! and TW!{ID have alternative formulations TRW! and TRW!{
ID, respectively, obtained by deleting MP and by adjoining the following rules
instead:

SU If ` AB, then ` BC:AC

PR If ` BC, then ` AB:AC

TR If ` AB and ` BC, then ` AC
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TW!+P is an equivalent formulation of RW!. On the other hand, adding
P to TRW! does not suÆce to produce RW! { we must add ASS1 as well.

Theorem 1.1. TW!+P = TRW!+P+ASS1.

Proof. It was proved in [5, Theorem 5] that TW!+P{ID = TRW!+P+
ASS1{ID. The inductive proof given there was to the e�ect thatTRW!+P+ASS1{
ID is closed under the following Ackermann's rule Æ (and hence under MP):

if
(a) ` Ai and (b) ` A1: . . . :Ai�1:Ai:Ai+1: . . . :Anp;

then
(c) ` A1: . . . :Ai�1:Ai+1: . . . :Anp:

The induction is on the weight of (b) and has to be extended here by consid-
ering ID. This is easy.

Can we substitute the rules SU, PR and TR for MP inRW!AP andRW!ASS

such that the resulting systems are equivalent to the old ones and to each other?

The negative answer is a surprise. We shall show that these new systems
are not closed under MP. Moreover, they are not equivalent to each other. This
shows that between TW! and RW! there is more room for some interesting
intermediate systems than we believed to be. One of them is TRW!+RP; we
shall show that it enjoys CONGR { a property analogous to A-B: if both ` AB
and ` BA in TRW!+RP, then A � B. This property is not shared by all
systems between TW! and RW!; for example, ` AA:AAAA and ` AAAA:AA
in TRW!+P; obviously, AA 6� AAAA.

2. The intermediate systems

Let us de�ne the rule of restricted permutation:

RP If ` AB, then ` A�B�

Since TRW!+AP is closed under substitution of equivalents, it is easy to
prove

Theorem 2.1. TRW!+RP = TRW!+AP.

Theorem 2.2. TW!+RP = RW!.

Proof. It is clear that TW!+RP � RW!.

In TW!+RP ID and RP yield AP. Also, TW!+RP is closed under MP.
Hence, RW! = RW!AP � TW!+RP.

The main property of TRW!+RP is given in the next theorem.

Theorem 2.3. If A 6� B, then

` AB in TRW!+RP i� ` AB in TRW!+RP{ID:
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Proof. Suppose that A 6� B and proceed by induction on theorems of
TRW!+RP.

If AB is an axiom of TRW!+RP, then AB is an axiom of TRW!+RP{ID.

Let AB = CD:ED, ` CD:ED by ` EC and SU; since CD 6� ED, it follows
that E 6� C; by induction hypothesis, ` EC in TRW!+RP{ID, . Hence, by SU
` CD:ED in TRW!+RP{ID.

In the case of PR we proceed in a similar way.

If ` AB by ` AC, ` CB and TR, then either A 6� C or C 6� B. If
both A 6� C and C 6� B, then by induction hypothesis, ` AC and ` CB in
TRW!+RP{ID; hence, ` AB in TRW!+RP{ID by TR.

If A � C, by induction hypothesis ` CB in TRW!+RP{ID; we obtain
` AB by ` CB and RP. If C � B, by induction hypothesis ` AC in TRW!+RP{
ID; we obtain ` AB by ` AC and RP.

Let AB = C�D� and ` C�D� by ` CD and RP; since C� 6� D�, we have
C 6� D; by induction hypothesis, ` CD in TRW!+RP{ID, and ` C�D� by RP.

Since TRW!+RP{ID � TRW!+RP, the theorem is proved.

It was shown in [4] that TRW!+P+ASS1{ID (called thereK) has an equiv-
alent Genzten-style formulation J that contains no theorem of any of the forms AA,
A:ABB, ABBA or AABB. We shall state this fact in the form of a theorem, for
further reference.

Theorem 2.4. In TRW!+P+ASS1{ID:

(a) (No identity, NOID) There is no theorem of the form AA.

(b) (No assertion, NOASS1) There is no theorem of the form A:ABB.

(c) (NOASS2) There is no theorem of the form ABBA.

(d) (NOE1) ` (A1:A2: . . . :AnB)B i� ` A1; . . . ; ` An.

(e) (NOE2) There is no theorem of the form AABB.

NOASS1 and NOASS2 are equivalent whenever we have SU. In the sequel we
write NOASS both for NOASS1 and NOASS2.

Since TRW!+RP{ID � TRW!+P{ID � TRW!+P+ASS1{ID, NOID,
NOASS and NOE2 hold for TRW!+RP{ID as well.

Now we can prove CONGR.

Theorem 2.5. (CONGR) If both ` AB and ` BA in TRW!+RP, then
A � B.

Proof. Suppose that both ` AB and ` BA in TRW!+RP, and that
A 6� B. By Theorem 2.3, ` AB and ` BA in TRW!+RP{ID. Hence, ` AA in
TRW!+RP{ID by TR, contrary to NOID.

The Anderson{Belnap property A-B is a special case of CONGR.

Another surprise is that NOASS holds for some systems having the axiom-
scheme ID.
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Theorem 2.6. For any A and any B, 6` A:ABB in TRW!+RP.

Proof. Suppose that there are A and B such that ` A:ABB in TRW!+RP;
by A 6� ABB and Theorem 2.3, ` A:ABB in TRW!+RP {ID, contrary to
NOASS.

Theorem 2.6 shows that TRW!+RP is closed neither under MP nor under
P; otherwise, from the axiom pp:pq:pq we would obtain pp:p:pqq by RP and then
p:pqq by pp and MP.

Theorem 2.7. In TRW!+RP CONGR implies NOASS.

Proof. Suppose that ` A:ABB in TRW!+RP, for some A and B. By SU
we obtain (a) ` ABB(CB):A:CB for any C. Also, (b) ` C(AB):ABB:CB by
ASU. Hence, (c) ` A(CB):ABB:CB by RP. Now by (a), (c) and CONGR we have
A(CB) � ABB:CB, which is impossible. Hence, in TRW!+RP CONGR implies
NOASS.

Let us compare TRW!+AP and TRW!+ASS.

Theorem 2.8. TRW!+AP � TRW!+ASS.

Proof. As in the proof of Theorem 2.7, we have (a) and (b). Hence, we have
` B(AC):A:BC in TRW!+ASS, by TR; thus TRW!+AP � TRW!+ASS. By
NOASS, TRW!+AP 6= TRW!+ASS.

Since TRW!+ASS is closed under substitution of equivalents, it is closed
under RP. Moreover, we have

Theorem 2.9. TRW!+ASS is closed under P.

Proof. By induction on theorems of TRW!+ASS.

Suppose that ` D:EF in TRW!+ASS. If it is an instance of ID, then
` E:DF by ASS, and conversely, if ` D:EF by ASS, then ` E:DF by ID.

If ` D:EF by ASU (APR), then ` E:DF by APR (ASU).

Suppose that ` D:EF by (a) ` ED1 and SU, where D = D1F . Now (b)
` D1:D1FF is an axiom; hence, ` E:DF by (a), (b) and TR.

Suppose that ` D:EF by (a) ` D1F and PR, where D = ED1. By (a) and
PR we have (b) ` ED1D1:ED1F . On the other hand, (c) ` E:ED1D1 by ASS.
Therefore, ` E:DF by (c), (b) and TR.

Suppose that ` D:EF by (a) ` DG, (b) ` G:EF and TR. By induction
hypothesis, (c) ` E:GF . On the other hand, (d) ` GF:DF by (a) and SU; hence,
` E:DF by (c), (d) and TR.

Therefore, if ` D:EF in TRW!+ASS, then ` E:DF in TRW!+ASS.
This, together with the closure under RP gives us the closure under P.

Corollary. TRW!+ASS = TRW!+P.
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Proof. Obviously, TRW!+ASS � TRW!+P, by ID and P. TRW!+ASS
is closed under P, by Theorem 2.9; hence, TRW!+P � TRW!+ASS.

It is interesting to notice that TRW!+ASS{ID 6= TRW!+P{ID. For,
NOASS holds in TRW!+P{ID, but in TRW!+ASS{ID we have the axiom-
scheme ASS. Hence, it is easy to prove AP in TRW!+ASS{ID (look at (a), (b)
and TR in the proof of Theorem 2.7). Thus, some instances of ID are theorems of
TRW!+ASS{ID. However, we can prove neither pp nor pq:pq nor pqr:pqr nor etc.

By induction on theorems one can prove that TRW!+ASS contains no the-
orem of the form ABp; hence, it contains no theorem of the form App. This shows
that TRW!+ASS is not closed under ASS1. It follows that TRW!+ASS is not
closed under MP (otherwise, by MP and ASS, it is closed under ASS1).

It was shown in [3] that TRW!+P{ID has an equivalent Genzten-style for-
mulation L that enjoys the properties NOID and NOASS and contains no theorem
of the form ABB. But we have more than that.

Theorem 2.10. (NOABB). For any A and any B, 6` ABB in TRW!+RP.

Proof. Suppose that ` ABB in TRW!+RP, for some A and B. Since
B 6� AB, by Theorem 2.3, ` ABB in TRW!+RP{ID � TRW!+P{ID, which
is impossible.

What happens when either ASS1 or MP is added to any of these systems?

TRW!+ASS1 and TRW!+ASS1{ID are closed under MP. This is proved
by induction on the weight of the major premiss of MP. In the �rst of these systems
we have the axiom-scheme AABB { the characteristic axiom-scheme of EW!; in
the latter we have NOE2.

It is easy to show thatTRW!+ASS+ASS1 andTRW!+ASS+ASS1{ID are
closed under MP. Since AP is a theorem of TRW!+ASS+ASS1{ID, the systems
TRW!+ASS+ASS1 and TRW!+ASS+ASS1{ID are closed under P. Therefore,
TRW!+ASS+ASS1 = TRW!+P+ASS1 = RW!.

However, in TRW!+P+ASS1{ID we have both NOID and NOASS, but
none of them in TRW!+ASS+ASS1{ID. Therefore, TRW!+P+ASS1{ID �

TRW!+ASS+ASS1{ID.

Adding ASS1 to TRW!+RP destroys CONGR. Since (a) ` AA(AA):AA
and (b) ` AA:AA:AA in TRW!+RP+ASS1, we see that CONGR does not
hold here. By (a) and SU we have (c) ` AA(AA):(AA:AA):AA; by (b), (c) and
TR we obtain ` AA:(AA:AA):AA { an instance of ASS. Therefore, NOASS does
not hold in TRW!+RP+ASS1. Since NOASS holds for TRW!+RP+ASS1{ID,
there are A and B such that ` AB in TRW!+RP+ASS1, A 6� B and 6` AB in
TRW!+RP+ASS1{ID.

Adding MP to TRW!+RP would collapse it to RW!. Adding MP to
TRW!+RP+ASS1{ID destroys NOABB. For example, let A = pp:pp:pp and B =
(pp:pp)p:ppp; then A and AB are instances of ASU. By RP and AB:BC:AC we get
(a) ` AB:A:BCC; hence, by (a) and MP, ` BCC.
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Let us summarize the comparison of the systems investigated here.

TW! = TRW! � TRW!+RP = TRW!+AP � TRW!+P = TRW!+ASS
� TRW!+P+ASS1 = TRW!+ASS+ASS1 = TW!+RP = TW!+P = RW!

= RW!AP = RW!ASS.

Also, TW!{ID = TRW!{ID � TRW!+RP {ID � TRW!+P{ID �

TRW!+P+ASS1{ID.

Only TRW!+RP has the property stated in CONGR; it is not shared by
stronger systems between TRW! and RW! investigated here.

The congruence relation � de�ned for formulas is determined here by logical
means only - by provability in TRW!+RP.

3. The equivalence of congr and noass

The �nal surprise is the fact that in TRW!+RP CONGR and NOASS are
equivalent. To prove it we need some other facts.

In the sequel ` A means ` A in TRW!+AP.

Theorem 3.1. If either ` Ap or ` pA, then A = p; if ` B:pp, then B = pp.

Proof. By induction on theorems.

Proofs in TRW!+AP can be written in a normal form.

Theorem 3.2. For any proof of a theorem containing n applications of TR
there is a proof of the same theorem containing n applications of TR such that no

application of TR precedes an application of another rule.

Proof. If ` AC by (a) ` AB, (b) ` BC and TR, and then ` CD:AD by
SU, then (c) ` BD:AD by (a) and SU, as well as (d) ` CD:BD by (b) and SU;
hence, ` CD:AD by (c), (d) and TR.

In a similar way we take care of PR.

If the old proof contains n applications of TR, so does the new one.

In the sequel we assume that in proofs of theorems no application of TR
precedes an application of another rule.

The sequence of theorems

` AB:C1D1; ` C1D1:C2D2; . . . ; ` Cn�1Dn�1:CnDn;` CnDn:EF

is called a transitive chain (TR-chain) from AB to EF i� TR is not applied in the
proof of any member of the chain.

Theorem 3.3. If (a) ` AB and (b) ` BC such that (a) is obtained by an

application of SU (PR) in the last step and (b) is obtained by an application of PR
(of SU) in the last step, then there is a proof of ` AC by TR such that the left

premiss (a') in this application of TR is obtained by PR (SU) in the last step and

the right premiss (b') is obtained by SU (PR) in the last step.
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Proof. Suppose that (a) ` DE:FE by (a') ` FD and SU, and that (b)
` FE:FG by (b') ` EG and PR. We have (b') ` DE:DG by (b') and PR, and
` DG:FG by (a') and SU.

Suppose that (a) ` ED:EF by (a') ` DF and PR, and (b) ` EF:GF by
(b') ` GE and SU. We have ` ED:GD by (b') and SU, and ` GD:GF by (a')
and PR.

Theorem 3.4. If (a) ` AB and (b) ` BC such that (a) is obtained by an

application of SU in the last step and (b) is an instance of AP, then there is a

proof of ` AC by TR such that the left premiss (a') is an instance of AP and the

right premiss (b') is obtained by PR in the last step.

Proof. Suppose that (a) ` D(EG):F:EG by (a") ` FD and SU, and that (b)
` F (EG):E:FG by AP. We have (a') ` D(EG):E:DG by AP and (b") ` DG:FG
by (a") and SU, and then (b') ` E(DG):E:FG by (b") and PR.

Theorem 3.5. If (a) ` AB and (b) ` BC such that (a) is obtained by (a')
and PR in the last step, (b) is an instance of AP, and (a') is obtained from (a")
either by SU or by PR, then there is a proof of ` AC by TR such that the left
premiss (c) is an instance of AP and the right premiss (b') is obtained either by

SU or by PR in the last step, respectively .

Proof. Suppose that (a") ` ED, (a') ` DF:EF , (a) ` C(DF ):C:EF and
(b) ` C(EF ):E:CF . We have (c) ` C(DF ):D:CF by AP, and ` D(CF ):E:CF
by (a") and SU.

Suppose that (a") ` ED, (a') ` FE:FD, (a) ` C(FE):C:FD and (b)
` C(FD):F:CD. We have (c) ` C(FE):F:CE by AP, and ` F (CE):F:CD by
(a") and PR applied twice.

Theorem 3.6. Let

` AB:D1E1; ` D1E1:D2E2; . . . ; ` Dn�1En�1:DnEn; ` DnEn:CD

be a TR-chain from AB to CD; if no member of the chain is an axiom, then either

(a) ` CA and B = D;

if all members of the chain are obtained by SU in the last step, or

(b) ` BD and A = C;

if all members of the chain are obtained by PR in the last step, or

(c) ` CA and ` BD:

otherwise.
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Proof. If all members of the TR-chain from AB to CD are obtained by SU
(PR), then ` CA and B = D (A = C and ` BD); the proof is by induction on
the number of members of the chain.

Apply Theorem 3.3. Let every member in

` AB:D1E1; ` D1E1:D2E2; . . . ; ` Dk�1Ek�1:DkEk;

be obtained by SU, and let every member in

` DkEk:Dk+1Ek+1; . . . ; ` Dn�1En�1:DnEn;` DnEn:CD

be obtained by PR; then ` DkA, B = Ek, C = Dk, and ` EkD.

Corollary. Let

` AB:D1E1; ` D1E1:D2E2; . . . ; ` Dn�1En�1:DnEn; ` DnEn:CD

be a TR-chain from AB to CD; if no member of the chain is an instance of either

ASU or APR, then either ` CA and B � D (in case every member of the chain

is either an instance of AP or obtained by SU in the last step) or else ` BD and

A � C (in case every member of the chain is either an instance of AP or obtained

by PR in the last step) or ` CA and ` BD otherwise.

Proof. By Theorems 3.4 and 3.5, we may assume that all instances of AP in
the TR-chain from AB to CD precede the members obtained by either SU or PR.
Hence, apply Theorem 3.6.

Now we can prove that NOASS implies CONGR.

Theorem 3.7. If ` AB, ` BA, then A � B.

Proof. Assume NOASS in TRW!+AP (forgetting that it is already proved)
and ` AB and ` BA. If either A = p or B = p or A = pp or B = pp, then A = B,
by Theorem 3.1.

By Theorem 3.2, we have the TR-chain (�)

` AB1; ` B1B2; . . . ; ` Bk�1Bk;` BkBk+1; ` Bk+1Bk+2; . . . ` Bm�1Bm; ` BmA

Lemma 3.8 No member of (�) is an instance of either ASU or APR.

Proof of the lemma. Suppose that ` DE:EF:DF is a member of (�);
then we have (a) ` (EF:DF ):DE as well. But ` EF:DE:DF and (b)
` (DE:DF )(DF ):EF:DF by APR and SU; hence, ` (DE:DF )(DF ):DE by (a),
(b) and TR, contrary to NOASS.

Let ` EF:DE:DF be a member of (�); then (a) ` (DE:DF ):EF as well.
Now ` DE:EF:DF and (b) ` (EF:DF )(DF ):DE:DF by ASU and SU; hence,
` (EF:DF )(DF ):EF by (a), (b) and TR, contrary to NOASS.
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Lemma 3.9 No member of the chain (�) is obtained by PR in the last step
from either ASU or APR.

Proof of the lemma. Let (a') ` DE:EF:DF , (a) ` G(DE):G:EF:DF by
(a') and PR, and let (a) be a member of (�); then (b) ` G(EF:DF ):G:DE, for
there is a member ` HI of (�) such that H�I� � G(EF:DF ):G:DE. Now (c)
` EF:G(DE):G:DF by ` EF:DE:DF , ` DE(DF ):G(DE):G:DF and TR. Hence,
(d) ` (G(DE):G:DF )(DF ):EF:DF by (c) and SU, (e)

` G((G(DE):G:DF )(DF )):G:EF:DF

by (d) and PR, (f) ` ((G(DE):G:DF ):G:DF ):G:EF:DF by (e) and RP, and, even-
tually, ` ((G(DE):G:DF ):G:DF ):G:DE by (f), (b) and TR, contrary to NOASS.

Suppose that (a') ` EF:DE:DF , (a) ` G(EF ):G:DE:DF by (a') and PR,
and that (a) is a member of (�); then (b) ` G(DE:DF ):G:EF , for there is
a member ` HI of (�) such that H�I� � G(DE:DF ):G:EF . Now (c)
` DE:G(EF ):G:DF by ` DE:EF:DF , ` EF (DF ):G(EF ):G:DF and TR, (d)
` G(EF )(G:DF )(DF ):DE:DF by (c) and SU, (e)

` G((G(EF ):G:DF )(DF )):G:DE:DF

by (d) and PR, (f) ` ((G(EF ):G:DF ):G:DF ):G:DE:DF by (e) and RP,
and, eventually, ` ((G(EF ):G:DF ):G:DF ):G:EF by (f), (b) and TR, contrary
to NOASS.

Returning to the proof of the theorem, proceed by double induction: on the
degree of A and on the length l of the TR-chain (�). Suppose that the theorem
is true for any formula of degree smaller than the degree of A and any TR-chain
(Hyp 1), and for A and any TR-chain of length smaller than l (Hyp 2).

Let us analyze the TR-chain (�); by theorems 3.2-6 and lemmas 3.8-9, there is
a TR-chain (�) from A to A such that no member of (�) is an instance of either ASU
or APR. Moreover, we may assume that all instances of AP precede all instances
obtained by either SU or PR in the last step.

If the member ` BmA of (�) is an instance of AP, so are all members of (�)
and the theorem is proved.

Suppose that
` AB1; ` B1B2; . . . ; ` Bk�1Bk;

are instances of AP, and that

` BkBk+1; ` Bk+1Bk+2; . . . ; ` Bm�1Bm; ` BmA

are obtained either by SU or by PR in the last step. By Theorem 3.3 all applications
of SU in the last steps precede all applications of PR in the last step.

Let A = A1:A2A3 and let Bk = B1
k
:B2

k
B3
k
, . . . , Bm = B1

m
:B2

m
B3
m
.

Case I A = Bk.
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I.1 BmA is obtained by SU; hence, ` A1B
1
m and A2A3 = B2

mB
3
m. Also,

all members of ` Bk+1Bk+2; . . . ; ` Bm�1Bm are obtained by SU in the last step.
Hence, ` B1

k+1A1 and A2A3 = B2
k+1B

3
k+1. By Theorem 3.6 ` B1

mB
1
k+1. We have

` A1B
1
m
and ` B1

m
A1; by Hyp 1 A1 � B1

m
, A � Bm and there is a TR-chain from

A to A of length l � 1. By Hyp 2, A � B1 � . . . � Bm � A.

I.2 BmA is obtained by PR; hence A1 = B1
m

and ` B2
m
B3
m
:A2A3.

I.2.1 ` ABk+1 by PR; hence, A1 = B1
k+1, ` A2A3:B

2
k+1B

3
k+1 and all mem-

bers of ` Bk+1Bk+2; . . . ; ` Bm�1Bm are obtained by PR in the last step. Hence,
` A2A3:B

2
k+1B

3
k+1; . . . ` B2

m
B3
m
:A2A3. By Hyp 1, A2A3 � B2

k+1B
3
k+1 � � � � �

B2
m
B3
m

and A � B1 � . . . � Bm � A.

I.2.2 ` ABk+1 by SU; hence, ` B1
k+1A1 and A2A3 = B2

k+1B
3
k+1. By

Theorem 3.6, ` B1
m
B1
k+1 and ` B2

k+1B
3
k+1:B

2
m
B3
m
. We have ` A1B

1
k+1 and

` B1
k+1A1. By Hyp 1, A1 � B1

k+1, A � Bk+1 and there is a TR-chain from A to A
of length l � 1. By Hyp 2, A � B1 � . . . � Bm � A.

Case II A2:A1A3 = B1
k
:B2

k
B3
k
.

II.1 BmA is obtained by SU and so are all members of ` Bk+1Bk+2; . . . ,
` Bm�1Bm; hence, A1A3 = B2

k+1B
3
k+1 = . . . = B2

mB
3
m = A2A3. Therefore,

A1 = A2 and we may proceed as in Case I.

II.2 BmA is obtained by PR; hence A1 = B1
m and ` B2

mB
3
m:A2A3.

II.2.1 ` BkBk+1 by PR; hence, A2 = B1
k+1, ` A1A3:B

2
k+1B

3
k+1 and all

members of ` Bk+1Bk+2; . . . ; ` Bm�1Bm are obtained by PR in the last step.
Hence, ` A1A3:B

2
k+1B

3
k+1; . . . ; ` B2

mB
3
m:A2A3. By Theorem 3.6, A1 = A2 and

we may proceed as in Case I.

II.2.2 ` BkBk+1 by SU; hence, ` B1
k+1A2 and A1A3 = B2

k+1B
3
k+1. By

Theorem 3.6, ` B1
m
B1
k+1 and ` B2

k+1B
3
k+1:B

2
m
B3
m
. Hence, ` A1B

1
k+1 and

` B1
k+1A2. We get ` A1A2 and hence ` A2A3:A1A3 by SU. But we also have

` A1A3:A2A3. By Hyp 1, A1A3 � A2A3. Hence, A1 � A2 and we may proceed as
in Case I.

This completes the proof of the theorem.

4. A concluding remark

It is both logically and philosophicaly interesting that substitution of formulas
of the form B:CD for subformulas of the form C:BD in a formulaA can be identi�ed
with CONGR - with the derivability of certain formulas in the weak logical system
TRW!+RP.

Also, it is interesting that the same substitution can be identi�ed with NOASS
- with the non-derivability of certain formulas.
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