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CONSTRUCTING KRIPKE MODELS OF

CERTAIN FRAGMENTS OF HEYTING'S ARITHMETIC

Kai F. Wehmeier

Communicated by �Zarko Mijajlovi�c

Abstract. We present nontrivial methods of constructing Kripke models
for the fragments of HA obtained by restricting the induction schema to instances
with �1- and �2-induction formulae respectively. The model construction for �1-
induction was applied in [W96a] and [W97] to investigate the provably recursive
functions of this theory. The construction of �2-induction models is a modi�cation
of Smory�nski's collection operation introduced in [S73].

1. Introduction

A Kripke structure K for a �rst-order language L is a pair

K = ((K;�); (A�)�2K)

such that (K;�) is a (nonempty) re
exive partial order (the frame of K) and for
each � 2 K, A� is a classical L-structure A� = (A�;=�; (R�)R2L; (f�)f2L) (not
necessarily normal, i.e., =� need not be true equality on A�), with the proviso that
the following `monotonicity conditions' be ful�lled:

Whenever � � �, then

1. A� is a subset of A� ;

2. for every relation symbol R of L (including equality =): R� � R�;

3. for every n-ary function symbol f of L: f� is the function f� restricted to
A�

n.

The forcing relation 
K, 
 for short, is de�ned as usual. K j= � means that for
all � 2 K, � 
 �. We also use j= for the classical satisfaction relation, sometimes
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writing � j= � instead of A� j= �. We consider here the usual arithmetical language
Lar given by 0; S;+; � and <. i�0 is the intuitionistic Lar-theory axiomatized by
the usual axioms for PA� (cf. [K91]) together with the axiom schema of induction
for�0-formulae. I�0 is the classical version of i�0, i.e., i�0 augmented by classical
logic. �1 is the class of Lar-formulae of the form 9�y '(�x; �y), �1 the class of Lar-
formulae 8�y '(�x; �y) with, in both cases, ' in �0. Given a formula class � , i� is i�0

plus induction over all formulae in � (I� being the corresponding classical theory).
HA is i�0 together with the axiom schema of induction for arbitrary formulae of
Lar, its classical counterpart is PA. Note that in i�0, �0-formulae are decidable.

As a consequence, we have the following

1.1 Lemma. Let K = ((K;�); (A�)�2K) be any Kripke structure for Lar. The
following are equivalent:

1: K j= i�0, i.e., for each � 2 K, � 
 i�0.

2: For each � 2 K, A� is a classical model of I�0 (i.e., � j= I�0) and whenever
� � � in K, A� ��0

A�.

Under these conditions, we have for each � 2 K, each �0-formula �(�x) and
each �a 2 A�:

� 
 �(�a) () � j= �(�a): �

For a proof, see [W96a]. If atomic formulae (and hence quanti�er-free for-
mulae, cf. [M84]) are decidable in K (as will be the case for K j= i�0), we may
assume without loss of generality that every A� is a normal structure and that,
whenever � � � in K, A� is a substructure of A� (such K will be called normal
Kripke structures):

1.2 Lemma. Let K = ((K;�); (A�)�2K) be a Kripke structure for a language L
such that K j= 8�x(P �x _ :P �x) for each atomic formula P �x of L. Then there is a
Kripke structure K+ = ((K;�); (B�)�2K) for L such that every B� is a normal
structure and whenever � � � in K, B� is a substructure of B�, and such that
K j= � () K+ j= � for each L-sentence �. �

This fact was already pointed out by Smory�nski in [S73]; however, there are
two pitfalls in proving it. Smory�nski notes that one cannot just divide out =�

locally, since the equivalence classes may grow when passing from � to some � � �,
and so one will not obtain actual inclusion of domains. His proposal is to divide
out globally as follows (note that he does not consider function symbols):

Let D :=
S
�2K A�. For c; d 2 D de�ne c � d : () 9� 2 K c =� d.

Put B� := f[c] : c 2 A�g, where [c] is the equivalence class of c under �, let
RB�

([c1]; :::; [cn]) : () RA�
(d1; :::; dn) for some elements d1; . . . ; dn 2 A� such

that di 2 [ci].

But there is a problem here: `By accident', one and the same object may exist
in worlds of incomparable nodes of the frame, and with incompatible properties in
the respective worlds. Thus, let �, � and 
 be nodes such that � < �, � < 
, but
� 6� 
 and 
 6� �. Assume that A� does not contain the object c, whereas a 2 A�.
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Then it is possible that a =� c and a6=
c. Clearly, this makes it impossible to
identify a and c.

Instead, it is necessary to proceed as follows: In a �rst step, divide out the
equality relations =� locally. In a second step, for � � �, identify two equivalence
classes [a]=�

and [b]=�
if [a]=�

� [b]=�
, then take the transitive closure. The easy

but tedious veri�cation is left to the reader.

Given some set of axioms T , a Kripke structure K = ((K;�); (A�)�2K) for
the language of T is called T -normal or locally T if for each � 2 K, the structure
A� is a classical model of T , A� j= T . The interplay of sets of axioms being forced
at � and those being classically true in A� is intriguing, see e.g. [W96].

2. Smorynski's collection operation

In his [S73], Smory�nski introduced a powerful collection operation on Kripke
structures which he used to prove a large number of results on intuitionistic logic
and arithmetic. The idea behind his operation (

P
)0 is this:

Let some family F = fKi : i 2 Ig of Kripke structures

Ki = ((Ki;�i); (Ai�)�2Ki)

for some version L of the arithmetical language (containing a closed term for each
natural number n) be given. We may assume without loss of generality that for
i 6= j in I , Ki \Kj = ;.

We obtain a new Kripke structure by forming the disjoint union �F = K =
((K;�); (A�)�2K) of F , putting

� K =
S
i2I K

i;

� for �; � 2 K, � � � :() for some i 2 I , � �i �;

� for � 2 K, A� := Ai�, where i 2 I is such that � 2 Ki.

Observing that for each � 2 Ki, Ki� = K�, we see that if each K
i j= T for some

theory T , then K = �F j= T . The operation of disjoint union becomes interesting
only in conjunction with a second operation K 7! K0 which consists in attaching a
(new) root to K:

Given a normal Kripke structure K, K0 is obtained from K by adding a new
node �0 to K (i.e., K 0 := K ] f�0g), stipulating that �0 be minimal in K 0 (i.e.,
�0:=� [f(�0; �) : � 2 K 0g) and letting A�0 be the standard model of arithmetic
N.

Note that the restriction to normal models, or at least an assumption that
all worlds are normal in their `standard part' given by the numerals, is important
here: The interpretations f� of function symbols f are actual functions, compatible
with =� but not multi-valued. Thus e.g. in the standard model A�0 , we certainly
have S�(0) = 1 (true equality!), whereas at some node � from K, only S�(0) =� 1
is required, and we may actually have S�(0) = c for some c 2 A� such that c 6= 1
(but of course c =� 1). This would collide with the requirement that S�0 be the
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restriction of S� to A�0 . But this cannot happen if we exclude non-normal models
from the start (which, by Lemma 1.2, is no real restriction).

It is now easy to see that K0 is again a Kripke structure; more diÆcult is
the question which theories T are preserved under this operation, i.e., for which
theories T is K0 a model of T , provided that K j= T ?

Smory�nski has shown that HA and some of its extensions are preserved under
the 0 operation. We brie
y go through his proof, pointing out the punch line and
in fact showing that every fragment i� of HA is preserved.

2.1 Theorem (Smory�nski). Let K j= i� . Then K0 j= i� too.

Proof . Clearly it is suÆcient to show that �0 

0 i� (writing 
0 for 
K0).

The crucial axioms to check are the induction axioms. So let '(x; �z) 2 � ; we must
show that

�0 

0 8�z['(0; �z) ^ 8x('(x; �z)! '(Sx; �z))! 8x'(x; �z)]:

Assume the contrary. Then for some � �0 �0 and �b 2 A� ,

� 10 '(0;�b) ^ 8x('(x;�b)! '(Sx;�b))! 8x'(x;�b):

The assumption that � > �0 leads to a contradiction, since at such �, 
 and 
0

coincide, and so � 
0 i� .

Hence � = �0 and �b 2 A�0 = N. We thus have (now suppressing parameters
from A�0):

�0 1
0 '(0) ^ 8x('(x)! '(Sx))! 8x'(x);

i.e., for some � �0 �0,

� 
0 '(0) ^ 8x('(x)! '(Sx))

but � 10 8x'(x). Again � > �0 is impossible since then � 
0 i� . So we have

(i) �0 

0 '(0) ^ 8x('(x)! '(Sx)) and

(ii) �0 1
0 8x'(x).

By (i) and the fact that for � > �0 we have � 

0 i� we conclude that for all

� > �0, � 

0 8x'(x). Hence we may infer from (ii) that for some n 2 A�0 = N,

�0 1 '(n). Here's the punch line: Let m be the least number n such that �0 1
0

'(n). Such a minimal counterexample exists since we are in the standard model
N. (If A�0 were nonstandard, we would have to know that the forcing relation at
�0 is suitably de�nable in A�0 .) Now since �0 


0 '(0), we have m 6= 0, so m = Sk

for some k 2 N. By minimality of m, �0 

0 '(k), so by �0 


0 8x('(x) ! '(Sx))
we obtain �0 


0 '(m), contradiction. �

2.2 Corollary. Every theory of the form i� has the explicit de�nability prop-
erty (ED) and the disjunction property (DP), i.e., whenever i� proves a sentence
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9x'(x), then for some n 2 N, i� ` '(n), and whenever i� proves a sentence  _�,
then either i� `  or i� ` �.

Proof. We consider only (ED). Suppose that i� 0 '(n) for each n 2 N. By the
completeness theorem, for each n there is a Kripke model Kn j= i� with Kn 6j= '(n).
Now consider (

P
n2NKn)

0 =: K0 which is a model of i� by theorem 2.1. Obviously,
�0 1

0 9x'(x), since this would imply �0 

0 '(n) for some n 2 A�0 = N, which is

impossible by Kn 6j= '(n). By the soundness theorem, i� 0 9x'(x). �

Smory�nski's idea obviously yields a construction method for Kripke models
that can be summarized as follows:

2.3 Theorem. Let (K;�) be any conversely wellfounded tree. Attach arbitrary
models of I� to terminal nodes of (K;�) and the standard model N of arithmetic
to each internal node of (K;�). The resulting Kripke structure is then a model of
i� .

3. Constructing models of �1-induction

Sam Buss has shown in [B93] that there is an easy way to construct Kripke
models of i�1 over arbitrary frames: Every I�1-normal Kripke structure is a Kripke
model of i�1. But he also illustrates, by way of counterexample, that it is not
as trivial to construct models of i�1. However, models of i�1 over conversely
wellfounded frames are not too diÆcult to build:

3.1 Lemma. Let K = ((K;�); (A�)�2K) be a Kripke structure such that for each
� 2 K there is a terminal node � � � in K (this is always the case when (K;�)
is conversely wellfounded). Suppose further that for all terminal nodes � 2 K,
A� j= I�1 and that for all internal nodes � 2 K, A� j= I�0. Assume that
whenever � � � in K, A� is a �0-elementary extension of A�. Then K j= i�1.

Proof. We proceed by brute force (see [W96a] for an alternative proof). Take
any � 2 K and let  (x; �y; �z) be a �0-formula. We have to prove that � forces

8�z(8�y  (0; �y; �z) ^ 8x(8�y  (x; �y; �z)! 8�y  (Sx; �y; �z))! 8x8�y  (x; �y; �z)):

So let � � �, �b 2 A� and suppose that

� 
 8�y  (0; �y;�b) ^ 8x(8�y  (x; �y;�b)! 8�y  (Sx; �y;�b)):

Thus every terminal node above � classically satis�es this last sentence. Since all
terminal nodes are classical models of I�1 (� I�1), every such node also satis-
�es 8x8�y  (x; �y;�b)). This sentence is �1 and thus downwards preserved in �0-
elementary extensions. In particular, it is classically true in every 
 � �. But we
want to show that � 
 8x8�y  (x; �y;�b). However, this just means that for all 
 � �

and all c; �d 2 A
 , 
 
  (c; �d;�b), i.e., by 1.1 that 
 j= 8x8�y  (x; �y;�b), which, as we
have just seen, is indeed the case. �
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3.2 Remark. This result shows that Buss' counterexample is not just accidental-
ly not conversely wellfounded: Every PA-normal Kripke structure on conversely
wellfounded frames validates i�1.

4. Some general Kripke model theory

In the next section, we will use a modi�cation of Smory�nski's (
P

)0 operation
to construct models of i�2 from arbitrary classical models of I�2. The present
section develops a little theorem in general Kripke model theory as a preparation
for that result.

4.1 De�nition. A formula ' of some language L is positive if it is built up from
atomic formulae using only ^, _ and 9.

4.2 Remark. For all Kripke structures K, � 2 K, �a 2 A� and every positive formula
'(�x) we have: � 
 '(�a) () � j= '(�a). (In fact this property characterizes the
positive formulae: If always � 
 '(�a) () � j= '(�a), then ' is intuitionistically
equivalent to a positive formula; cf. [M83].) If in the respective Kripke model
�0-formulae are decidable, we may, by 1.1, relax the de�nition of positivity by
replacing `atomic' with `�0', and the property will continue to hold.

4.3 De�nition. Let � be the smallest class of formulae containing the positive
formulae, closed under application of 8 and ^ and under the following rule: If ' is
positive and  2 � , then '!  is in � .

4.4 Remark. Under classical logic, � is the class of 89-formulae. This is also true
in intuitionistic theories within which atomic formulae are decidable.

4.5 Lemma. Let '(�z) 2 � , let K be a Kripke structure, � 2 K, �a 2 A� and suppose
that for all � > � we have � 
 '(�a). Then:

� 
 '(�a) () � j= '(�a):

Proof. We proceed by induction on the de�nition of ' 2 � .

If '(�z) is positive, then the claim follows from our remark above. Using the
induction hypothesis, the case of conjunction is trivial.

So suppose that '(�z) is of the form 8y  (y; �z) with  (y; �z) 2 � . By assump-
tion for all � > �, � 
 8y  (y; �a). (We will from now on suppress mention of the
parameters �a and just write 8y  (y).) First suppose that � 
 8y  (y). In particu-
lar, for all c 2 A�, � 
  (c), and so by persistence of forcing, for all c 2 A� and
all � � � � 
  (c). By the induction hypothesis then for all c 2 A� � j=  (c), i.e.,
� j= 8y  (y).

Now suppose that � 1 8y  (y). By de�nition, for some � � � and some
c 2 A� , � 1  (c). But since all � > � force 8y  (y), we must have � 1  (c) for
some c 2 A�. But for all � > � � 
  (c) and so by induction hypothesis � 6j=  (c)
and thus � 6j= 8y  (y).
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For the case of implication, suppose ' is of the form  ! �, where  is
positive and � 2 � . (We are again suppressing parameters from A�.) Assume that
for all � > �, � 
  ! �.

First let � 
  ! �. We consider two cases. For the �rst case, suppose that
� 
  . Then for all � � � � 
  and thus for all � � � � 
 �. By induction
hypothesis then � j= � and of course � j=  ! �. In the second case � 1  . Since
 is positive, we then have � 6j=  and so vacuously � j=  ! �.

For the other direction, assume that � 1  ! �. Then for some � � � � 
  

and � 1 �. Since by assumption for all � > � � 
  ! �, we must in fact have
� 
  and � 1 �. Since � 
  , for all � > � � 
 �. Hence by induction hypothesis
� 6j= �. � 
  and  is positive, so � j=  . Together we get � 6j=  ! �. �

4.6 Question. Does the property exhibited in Lemma 4.5 characterize the class � ?

4.7 Remark. If �0-formulae are decidable in the model under consideration, the
theorem remains true if we use the relaxed de�nition of positivity indicated in
remark 4.2 in the de�nition of � (cf. lemma 1.1), so that we are then talking about
�2-formulae.

5. Constructing models of �2-induction

In the variant indicated at the end of the previous section, we can use our
result 4.5 to construct certain models of the intuitionistic version i�2 of I�2:

5.1 Theorem. Let K be an I�2-normal Kripke structure over a conversely well-
founded frame. Then K is a model of i�2, i.e., for each � 2 K, �a 2 A� and every
�2-formula '(x; �y) we have

� 
 '(0; �a) ^ 8x('(x; �a)! '(Sx; �a))! 8x'(x; �a):

Proof. Note that in I�2-normal Kripke structures all extensions are �0-
elementary (since the MRDP theorem can be proved in I�2, cf. [HP93]), and so
K j= i�0 by 1.1.

We proceed by bar induction on �. For terminal � there is nothing to show
since I�2 � I�2.

So let � be an internal node and suppose that

� 1 '(0; �a) ^ 8x('(x; �a)! '(Sx; �a))! 8x'(x; �a):

Then for some � � � we have � 
 '(0; �a), � 
 8x('(x; �a) ! '(Sx; �a)) and
� 1 8x'(x; �a). But by induction hypothesis, we must have � = �, so � 
 '(0; �a),
� 
 8x('(x; �a)! '(Sx; �a)) and � 1 8x'(x; �a).

By persistence of 
 we obtain for each � > � that � 
 '(0; �a), � 


8x('(x; �a) ! '(Sx; �a)) and hence by induction hypothesis that � 
 8x'(x; �a).
So it follows from � 1 8x'(x; �a) that already for some b 2 A�, � 1 '(b; �a); how-
ever, for each � > � we have � 
 '(b; �a) and ' is �2, so by 4.5 � 6j= '(b; �a). Now
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let c be the least element e of A� such that � 6j= '(e; �a). (This is possible since
� j= I�2.)

Then the following obtain:

1. � 1 '(c; �a) (by 4.5, since � 6j= '(c; �a) and for all � > � we have � 
 '(c; �a));

2. for each d <� c, � 
 '(d; �a) (again by 4.5, since for d <� c � j= '(d; �a) and
for each � > � � 
 '(d; �a)).

But now c is not 0, since � 
 '(0; �a) and � 1 '(c; �a). Hence c = Sd for
some d 2 A�. But by 2. � 
 '(d; �a), so by � 
 8x('(x; �a) ! '(Sx; �a)) we get
� 
 '(Sd; �a), i.e., � 
 '(c; �a), contradicting 1. �

5.2 Remark. It is clear by Theorem 5.1 that every PA-normal Kripke structure over a
wellfounded frame is a model of i�2. This result is in some sense optimal: Zambella
and Visser show in a forthcoming paper that there are PA-normal Kripke structures
over two-element frames, the respective PA-models an end-extension, which are not
models of i�2.
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