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Abstract. We present nontrivial methods of constructing Kripke models
for the fragments of HA obtained by restricting the induction schema to instances
with IT;- and IT>-induction formulae respectively. The model construction for I7;-
induction was applied in [W96a] and [W97] to investigate the provably recursive
functions of this theory. The construction of ITa-induction models is a modification
of Smoryniski’s collection operation introduced in [S73].

1. Introduction

A Kripke structure K for a first-order language L is a pair

K= ((K, <), (Aa)aex)

such that (K, <) is a (nonempty) reflexive partial order (the frame of K) and for
each a € K, A, is a classical L-structure Ay = (Aa,=q, (Ra)rer, (fa)rer) (not
necessarily normal, i.e., =, need not be true equality on A, ), with the proviso that
the following ‘monotonicity conditions’ be fulfilled:

Whenever a < 3, then
1. A, is a subset of Ag;
2. for every relation symbol R of L (including equality =): Ry C Rg;
3. for every n-ary function symbol f of L: f, is the function fg restricted to
A"
The forcing relation Ik, IF for short, is defined as usual. K |= ¢ means that for
all « € K, a Ik ¢. We also use = for the classical satisfaction relation, sometimes
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writing « = ¢ instead of A, = ¢. We consider here the usual arithmetical language
L, given by 0,5, 4+, and <. i4y is the intuitionistic L,,-theory axiomatized by
the usual axioms for PA~ (cf. [K91]) together with the axiom schema of induction
for Ap-formulae. T4y is the classical version of i Ay, i.e., 1Ay augmented by classical
logic. X is the class of Ly,-formulae of the form 3y ¢(Z,y), II; the class of L,-
formulae Vg p(Z, ) with, in both cases, ¢ in Ag. Given a formula class I', il is iAg
plus induction over all formulae in I" (II" being the corresponding classical theory).
HA is iAg together with the axiom schema of induction for arbitrary formulae of
L,,, its classical counterpart is PA. Note that in 14y, Ag-formulae are decidable.

As a consequence, we have the following

1.1 LEMMA. Let K = ((K, <), (Aa)ack) be any Kripke structure for Lo.. The
following are equivalent:

1. K[ iAy, i.e., for each a € K, alFiA,.
2. For each a € K, A, is a classical model of IAg (i.e., a |= IAg) and whenever
a<pBin K, Ay <4, A3
Under these conditions, we have for each a € K, each Ag-formula ¢(T) and
each a € A, :
alk ¢(a) <= alE¢(@). O

For a proof, see [W96a]. If atomic formulae (and hence quantifier-free for-
mulae, cf. [M84]) are decidable in K (as will be the case for K |= i4,), we may
assume without loss of generality that every A, is a normal structure and that,
whenever o < 8 in K, A, is a substructure of Ag (such K will be called normal
Kripke structures):

1.2 LEMMA. Let K = ((K, <), (Aa)ack) be a Kripke structure for a language L
such that K |= YZ(PZ V —~PZ) for each atomic formula PZ of L. Then there is a
Kripke structure Kt = (K, <), (Ba)ack) for L such that every B, is a normal
structure and whenever a < 8 in K, B, is a substructure of Bg, and such that
KE ¢ <= K" |= ¢ for each L-sentence ¢. O

This fact was already pointed out by Smoryniski in [S73]; however, there are
two pitfalls in proving it. Smorynski notes that one cannot just divide out =,
locally, since the equivalence classes may grow when passing from «a to some 3 > a,
and so one will not obtain actual inclusion of domains. His proposal is to divide
out globally as follows (note that he does not consider function symbols):

Let D := U,ecx Aa- For ¢,d € D define c ~ d: <= 3Ja € K ¢ =, d.
Put B, = {[c] : ¢ € Ay}, where [¢] is the equivalence class of ¢ under ~, let
Rp, ([c1], ., [en]) : <= Ra_(dy,...,d,) for some elements dj,...,d, € A, such
that d; € [¢;].

But there is a problem here: ‘By accident’, one and the same object may exist
in worlds of incomparable nodes of the frame, and with incompatible properties in
the respective worlds. Thus, let «, 8 and 7 be nodes such that a < 8, a < 7, but
B £ ~vand vy £ 3. Assume that A, does not contain the object ¢, whereas a € A,.
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Then it is possible that a =3 ¢ and a#,c. Clearly, this makes it impossible to
identify a and c.

Instead, it is necessary to proceed as follows: In a first step, divide out the
equality relations =, locally. In a second step, for a < 3, identify two equivalence
classes [a]—, and [b]—, if [a]=, C [b]—,, then take the transitive closure. The easy
but tedious verification is left to the reader.

Given some set of axioms T, a Kripke structure K = ((K, <), (Aq)ack) for
the language of T' is called T-normal or locally T if for each a € K, the structure
A, is a classical model of T', A, |= T. The interplay of sets of axioms being forced

at o and those being classically true in A4, is intriguing, see e.g. [W96].

2. Smorynski’s collection operation

In his [S73], Smoryriski introduced a powerful collection operation on Kripke
structures which he used to prove a large number of results on intuitionistic logic
and arithmetic. The idea behind his operation () )’ is this:

Let some family F = {K’ : i € I} of Kripke structures

K' = ((K', <%, (A})aek)
for some version L of the arithmetical language (containing a closed term for each
natural number n) be given. We may assume without loss of generality that for
i#jin I, KN KJ = .
We obtain a new Kripke structure by forming the disjoint union ¥F = K =
((K7 S): (ADé)DéEK) of ‘7:7 puttlng

° K:UieIKi;
o fora, € K,a<3:4+= forsomeicl, a<’p;
e fora € K, A, := A!,, where i € I is such that o € K.

Observing that for each a € K, K', = K,,, we see that if each K |= T for some
theory T', then K= XF = T. The operation of disjoint union becomes interesting
only in conjunction with a second operation K — K’ which consists in attaching a
(new) root to K:

Given a normal Kripke structure K, K’ is obtained from K by adding a new
node ap to K (i.e., K' := K W {ag}), stipulating that ag be minimal in K’ (i.e.,
<':=< U{(ap,B) : B € K'}) and letting A,, be the standard model of arithmetic
N.

Note that the restriction to normal models, or at least an assumption that
all worlds are normal in their ‘standard part’ given by the numerals, is important
here: The interpretations f, of function symbols f are actual functions, compatible
with =, but not multi-valued. Thus e.g. in the standard model A,,, we certainly
have S,(0) = 1 (true equality!), whereas at some node 8 from K, only Sg(0) =g 1
is required, and we may actually have S3(0) = ¢ for some ¢ € A such that ¢ # 1
(but of course ¢ = 1). This would collide with the requirement that S,, be the
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restriction of Sz to A,,. But this cannot happen if we exclude non-normal models
from the start (which, by Lemma 1.2, is no real restriction).

It is now easy to see that K’ is again a Kripke structure; more difficult is
the question which theories T are preserved under this operation, i.e., for which
theories T' is K' a model of T', provided that K |=T?

Smoryriski has shown that HA and some of its extensions are preserved under
the " operation. We briefly go through his proof, pointing out the punch line and
in fact showing that every fragment iI" of HA is preserved.

2.1 THEOREM (Smoryinski). Let K |=il'. Then K' =il too.

Proof. Clearly it is sufficient to show that g IF iI" (writing IF for Ik ).
The crucial axioms to check are the induction axioms. So let ¢(z,z) € I'; we must
show that

ap IF' VZ[p(0,2) AVz(p(z,2) = ¢(Sz, 2)) = VY o(z, 2)].
Assume the contrary. Then for some 3 >’ ag and b € Ag,
B (0,b) AVz(p(z,b) = ¢(Sz,b)) = Yz p(z,b).

The assumption that 3 > «p leads to a contradiction, since at such 8, I+ and IH
coincide, and so S8 IV iI.
Hence 3 = ag and b € A,, = N. We thus have (now suppressing parameters
from A,,):
ao ¥ ¢(0) AV (p(z) = ¢(S7)) = Vo p(),

i.e., for some 3 >' ap,

B ©(0) AVz(p(z) = 9(ST))

but S ¥ Vz p(z). Again 8 > «p is impossible since then 3 IF iI". So we have

(i) ao IF p(0) AVz(p(xz) — ¢(Sz)) and

(i) ap W' Yz p(z).

By (i) and the fact that for 8 > «y we have 3 I’ iI" we conclude that for all

B > ap, B IH VYxp(z). Hence we may infer from (ii) that for some n € 4,, = N,
ap W ¢(n). Here’s the punch line: Let m be the least number n such that ag ¥’
¢(n). Such a minimal counterexample exists since we are in the standard model
N. (If An, were nonstandard, we would have to know that the forcing relation at
ap is suitably definable in 4,,.) Now since ap IF ¢(0), we have m # 0, so m = Sk
for some k € N. By minimality of m, ag IF ¢(k), so by ag IF Vz(p(z) — ¢(Sz))
we obtain ag IF ¢(m), contradiction. O

2.2 COROLLARY. FEuvery theory of the form iI" has the explicit definability prop-
erty (ED) and the disjunction property (DP), i.e., whenever iI" proves a sentence
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Az p(x), then for somen € N, il" F @(n), and whenever il proves a sentence YV x,
then either il & or il F x.

Proof. We consider only (ED). Suppose that iI" ¥ ¢(n) for each n € N. By the
completeness theorem, for each n there is a Kripke model K, |=iI" with K, £ ¢(n).
Now consider (. Kz)' =: K" which is a model of iI" by theorem 2.1. Obviously,
ap W' 3z p(x), since this would imply ap IF ¢(n) for some n € A,, = N, which is
impossible by K, = p(n). By the soundness theorem, iI" ¥ 3z p(z). O

Smoryriski’s idea obviously yields a construction method for Kripke models
that can be summarized as follows:

2.3 THEOREM. Let (K,<) be any conversely wellfounded tree. Attach arbitrary
models of IT to terminal nodes of (K, <) and the standard model N of arithmetic

to each internal node of (K, <). The resulting Kripke structure is then a model of
il

3. Constructing models of II;-induction

Sam Buss has shown in [B93] that there is an easy way to construct Kripke
models of Xy over arbitrary frames: Fvery I X;-normal Kripke structure is a Kripke
model of ¢X;. But he also illustrates, by way of counterexample, that it is not
as trivial to construct models of iII;. However, models of iIl; over conversely
wellfounded frames are not too difficult to build:

3.1 LEMMA. Let K = ((K, <), (Aa)ack) be a Kripke structure such that for each
B € K there is a terminal node a > (3 in K (this is always the case when (K, <)
is conversely wellfounded). Suppose further that for all terminal nodes a € K,
Ay |E IX1 and that for all internal nodes 8 € K, Ag = IAg. Assume that
whenever a < 8 in K, Ag is a Ag-elementary extension of Aq. Then K= iIl;.

Proof. We proceed by brute force (see [W96a] for an alternative proof). Take
any a € K and let ¢(x, 7, z) be a Ag-formula. We have to prove that « forces

VZ(Vg (0,9, 2) AV (Y (2,5,2) = VG (57,7, 2)) = Vavgy(e, 7, 2)).

So let B> a, b € Ap and suppose that

B - Vg (0,7,b) AVz(Vi(z,§,b) = Vg (Sz,7,b)).

Thus every terminal node above  classically satisfies this last sentence. Since all
terminal nodes are classical models of IX; (= III,), every such node also satis-
fies VaVg4(z,7,b)). This sentence is IT; and thus downwards preserved in Ao-
elementary extensions. In particular, it is classically true in every v > . But we
want to show that 3 I VaVg(z, 5, b). However, this just means that for all v > 3
and all ¢,d € A, v IF (c,d,b), ie., by 1.1 that v = VoV (z, ,b), which, as we
have just seen, is indeed the case. O
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3.2 Remark. This result shows that Buss’ counterexample is not just accidental-
ly not conversely wellfounded: Every PA-normal Kripke structure on conversely
wellfounded frames validates 711;.

4. Some general Kripke model theory

In the next section, we will use a modification of Smorynski’s (3 )’ operation
to construct models of Il from arbitrary classical models of IX;. The present
section develops a little theorem in general Kripke model theory as a preparation
for that result.

4.1 Definition. A formula ¢ of some language L is positive if it is built up from
atomic formulae using only A, V and 3.

4.2 Remark. For all Kripke structures K, a € K, a € A, and every positive formula
©(Z) we have: a lF p(a) <= a | ¢(a). (In fact this property characterizes the
positive formulae: If always a IF p(a) <= « |= ¢(a), then ¢ is intuitionistically
equivalent to a positive formula; cf. [M83].) If in the respective Kripke model
Ag-formulae are decidable, we may, by 1.1, relax the definition of positivity by
replacing ‘atomic’ with ‘Aq’, and the property will continue to hold.

4.3 Definition. Let I' be the smallest class of formulae containing the positive
formulae, closed under application of ¥ and A and under the following rule: If ¢ is
positive and ¢ € I', then ¢ — ¢ isin I'.

4.4 Remark. Under classical logic, I" is the class of V3-formulae. This is also true
in intuitionistic theories within which atomic formulae are decidable.

4.5 LEMMA. Let p(Z) € I, let K be a Kripke structure, « € K, a € A, and suppose
that for all 8 > a we have B IF p(a). Then:

alk p(a) <= al=e(a).

Proof. We proceed by induction on the definition of ¢ € I'.

If ©(%) is positive, then the claim follows from our remark above. Using the
induction hypothesis, the case of conjunction is trivial.

So suppose that ¢(2) is of the form Vy1)(y, z) with ¢ (y,2) € I'. By assump-
tion for all 8 > «, B IF Yy (y,a). (We will from now on suppress mention of the
parameters a and just write Yy (y).) First suppose that a IF Vy ¢ (y). In particu-
lar, for all ¢ € A,, a IF 9¥(c), and so by persistence of forcing, for all ¢ € A, and
all 8 > a B IF ¢(c). By the induction hypothesis then for all ¢ € A, a = ¢¥(c), i.e.,
a =Yy (y).

Now suppose that o ¥ Vyi(y). By definition, for some § > a and some
c € Ag, ¥ 9(c). But since all 8 > « force Vy1(y), we must have a ¥ ¢(c) for
some ¢ € A,. But for all 8 > a 8 IF ¢(c) and so by induction hypothesis a }= ¢(c)
and thus a & Yy ¢ (y).
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For the case of implication, suppose ¢ is of the form ¢ — x, where ¢ is
positive and x € I'. (We are again suppressing parameters from A,.) Assume that
forall 8 > a, BIF¢ — x.

First let a IF ¢ — x. We consider two cases. For the first case, suppose that
a Ik 4. Then for all B > a B IF ¢ and thus for all 3 > a § IF x. By induction
hypothesis then « = x and of course a =19 — x. In the second case a ¥ ¢. Since
1 is positive, we then have a }£ ¢ and so vacuously a = ¢ — .

For the other direction, assume that o ¥ ¢ — x. Then for some 8 > a 3 I+
and B ¥ x. Since by assumption for all 8 > a S IF ¥ — x, we must in fact have
a kY and a ¥ x. Since a IF 9, for all 8 > a B IF x. Hence by induction hypothesis
a & x. alk ¢ and 9 is positive, so a = 1. Together we get a £ — x. O

4.6 Question. Does the property exhibited in Lemma 4.5 characterize the class I'?

4.7 Remark. If Ag-formulae are decidable in the model under consideration, the
theorem remains true if we use the relaxed definition of positivity indicated in
remark 4.2 in the definition of I" (cf. lemma 1.1), so that we are then talking about
II>-formulae.

5. Constructing models of II>-induction

In the variant indicated at the end of the previous section, we can use our
result 4.5 to construct certain models of the intuitionistic version iIls of II15:

5.1 THEOREM. Let K be an IXs-normal Kripke structure over a conversely well-
founded frame. Then K is a model of ills, i.e., for each a € K, a € A, and every
II5>-formula ¢(x,y) we have

alk ¢(0,a) AVz(p(z,a) = ¢(Sz,a)) = Ve p(z,a).

Proof. Note that in IXs-normal Kripke structures all extensions are Ag-
elementary (since the MRDP theorem can be proved in IX,, cf. [HP93]), and so
KEi4p by 1.1.

We proceed by bar induction on «. For terminal « there is nothing to show
since IH2 = IZQ

So let & be an internal node and suppose that
al¥ ¢(0,a) AVz(p(z,a) = ¢(Sz,a)) = Ve p(z,a).

Then for some f > a we have 8 I+ ¢(0,a), 8 I+ VYz(p(z,a) — ¢(Sz,a)) and
B W Yz p(z,a). But by induction hypothesis, we must have § = a, so a IF ¢(0,a),
alkVe(p(z,a) = p(Sz,a)) and a ¥ Ve p(z,a).

By persistence of I we obtain for each 8 > « that 8 IF ¢(0,a
Va(p(z,a) — ¢(Sz,a)) and hence by induction hypothesis that 8 IF Va o(z,a).
So it follows from « W Vx ¢(x,a) that already for some b € A, a ¥ ¢(b,a
ever, for each 8 > a we have 8 |k p(b,a) and ¢ is ITs, so by 4.5 a £ ¢(b,a
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let ¢ be the least element e of A, such that a & ¢(e,a). (This is possible since
afE11L.)
Then the following obtain:
1. al¥ p(c,a) (by 4.5, since a [~ ¢(e,a) and for all § > a we have 8 IF ¢(c,a));
2. for each d <, ¢, a Ik p(d,a) (again by 4.5, since for d <, ¢ a |= ¢(d,a) and
for each 8 > a BIF p(d,a)).
But now c is not 0, since a IF ¢(0,@) and a ¥ ¢(c,a). Hence ¢ = Sd for
some d € A,. But by 2. a Ik ¢(d,a), so by a IF Vz(p(z,a) — ¢(Sz,a)) we get
alk p(Sd,a), i.e., alF ¢(c,a), contradicting 1. O

5.2 Remark. It is clear by Theorem 5.1 that every PA-normal Kripke structure over a
wellfounded frame is a model of iII,. This result is in some sense optimal: Zambella
and Visser show in a forthcoming paper that there are PA-normal Kripke structures
over two-element frames, the respective PA-models an end-extension, which are not
models of 1X5.
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