PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 63 (77), 1998, 1-8

CONSTRUCTING KRIPKE MODELS OF CERTAIN FRAGMENTS OF HEYTING'S ARITHMETIC

Kai F. Wehmeier

Communicated by Žarko Mijajlović

Abstract. We present nontrivial methods of constructing Kripke models for the fragments of *HA* obtained by restricting the induction schema to instances with Π_1 - and Π_2 -induction formulae respectively. The model construction for Π_1 induction was applied in [W96a] and [W97] to investigate the provably recursive functions of this theory. The construction of Π_2 -induction models is a modification of Smoryński's collection operation introduced in [S73].

1. Introduction

A Kripke structure K for a first-order language L is a pair

$$\mathsf{K} = ((K, \leq), (A_{\alpha})_{\alpha \in K})$$

such that (K, \leq) is a (nonempty) reflexive partial order (the frame of K) and for each $\alpha \in K$, A_{α} is a classical *L*-structure $A_{\alpha} = (A_{\alpha}, =_{\alpha}, (R_{\alpha})_{R \in L}, (f_{\alpha})_{f \in L})$ (not necessarily normal, i.e., $=_{\alpha}$ need not be true equality on A_{α}), with the proviso that the following 'monotonicity conditions' be fulfilled:

Whenever $\alpha \leq \beta$, then

- 1. A_{α} is a subset of A_{β} ;
- 2. for every relation symbol R of L (including equality =): $R_{\alpha} \subseteq R_{\beta}$;
- 3. for every *n*-ary function symbol f of L: f_{α} is the function f_{β} restricted to $A_{\alpha}{}^{n}$.

The forcing relation $\Vdash_{\mathcal{K}}$, \Vdash for short, is defined as usual. $\mathcal{K} \models \phi$ means that for all $\alpha \in \mathcal{K}$, $\alpha \Vdash \phi$. We also use \models for the classical satisfaction relation, sometimes

AMS Subject Classification (1991): Primary 03F50, 03F55, 03F30

The contents of this article were part of a talk given in the Mathematical Logic Seminar of the Mathematical Institute in Belgrade on June 20, 1997. The present paper draws on results of my doctoral dissertation.

writing $\alpha \models \phi$ instead of $A_{\alpha} \models \phi$. We consider here the usual arithmetical language L_{ar} given by $0, S, +, \cdot$ and $\langle . i\Delta_0$ is the intuitionistic L_{ar} -theory axiomatized by the usual axioms for PA^- (cf. [K91]) together with the axiom schema of induction for Δ_0 -formulae. $I\Delta_0$ is the classical version of $i\Delta_0$, i.e., $i\Delta_0$ augmented by classical logic. Σ_1 is the class of L_{ar} -formulae of the form $\exists \bar{y} \varphi(\bar{x}, \bar{y})$, Π_1 the class of L_{ar} -formulae $\forall \bar{y} \varphi(\bar{x}, \bar{y})$ with, in both cases, φ in Δ_0 . Given a formula class Γ , $i\Gamma$ is $i\Delta_0$ plus induction over all formulae in Γ ($I\Gamma$ being the corresponding classical theory). HA is $i\Delta_0$ together with the axiom schema of induction for arbitrary formulae of L_{ar} , its classical counterpart is PA. Note that in $i\Delta_0$, Δ_0 -formulae are decidable.

As a consequence, we have the following

1.1 LEMMA. Let $K = ((K, \leq), (A_{\alpha})_{\alpha \in K})$ be any Kripke structure for L_{ar} . The following are equivalent:

- 1. $K \models i\Delta_0$, *i.e.*, for each $\alpha \in K$, $\alpha \Vdash i\Delta_0$.
- 2. For each $\alpha \in K$, A_{α} is a classical model of $I\Delta_0$ (i.e., $\alpha \models I\Delta_0$) and whenever $\alpha \leq \beta$ in K, $A_{\alpha} \prec_{\Delta_0} A_{\beta}$.

Under these conditions, we have for each $\alpha \in K$, each Δ_0 -formula $\phi(\bar{x})$ and each $\bar{a} \in A_{\alpha}$:

$$\alpha \Vdash \phi(\bar{a}) \iff \alpha \models \phi(\bar{a}). \quad \Box$$

For a proof, see [W96a]. If atomic formulae (and hence quantifier-free formulae, cf. [M84]) are decidable in K (as will be the case for $K \models i\Delta_0$), we may assume without loss of generality that every A_{α} is a normal structure and that, whenever $\alpha \leq \beta$ in K, A_{α} is a substructure of A_{β} (such K will be called normal Kripke structures):

1.2 LEMMA. Let $K = ((K, \leq), (A_{\alpha})_{\alpha \in K})$ be a Kripke structure for a language L such that $K \models \forall \bar{x} (P\bar{x} \lor \neg P\bar{x})$ for each atomic formula $P\bar{x}$ of L. Then there is a Kripke structure $K^+ = ((K, \leq), (B_{\alpha})_{\alpha \in K})$ for L such that every B_{α} is a normal structure and whenever $\alpha \leq \beta$ in K, B_{α} is a substructure of B_{β} , and such that $K \models \phi \iff K^+ \models \phi$ for each L-sentence ϕ . \Box

This fact was already pointed out by Smoryński in [S73]; however, there are two pitfalls in proving it. Smoryński notes that one cannot just divide out $=_{\alpha}$ locally, since the equivalence classes may grow when passing from α to some $\beta \geq \alpha$, and so one will not obtain actual inclusion of domains. His proposal is to divide out globally as follows (note that he does not consider function symbols):

Let $D := \bigcup_{\alpha \in K} A_{\alpha}$. For $c, d \in D$ define $c \sim d : \iff \exists \alpha \in K \ c =_{\alpha} d$. Put $B_{\alpha} := \{[c] : c \in A_{\alpha}\}$, where [c] is the equivalence class of c under \sim , let $R_{B_{\alpha}}([c_1], ..., [c_n]) : \iff R_{A_{\alpha}}(d_1, ..., d_n)$ for some elements $d_1, ..., d_n \in A_{\alpha}$ such that $d_i \in [c_i]$.

But there is a problem here: 'By accident', one and the same object may exist in worlds of incomparable nodes of the frame, and with incompatible properties in the respective worlds. Thus, let α , β and γ be nodes such that $\alpha < \beta$, $\alpha < \gamma$, but $\beta \not\leq \gamma$ and $\gamma \not\leq \beta$. Assume that A_{α} does not contain the object c, whereas $a \in A_{\alpha}$.

2

Then it is possible that $a =_{\beta} c$ and $a \neq_{\gamma} c$. Clearly, this makes it impossible to identify a and c.

Instead, it is necessary to proceed as follows: In a first step, divide out the equality relations $=_{\alpha}$ locally. In a second step, for $\alpha \leq \beta$, identify two equivalence classes $[a]_{=_{\alpha}}$ and $[b]_{=_{\beta}}$ if $[a]_{=_{\alpha}} \subseteq [b]_{=_{\beta}}$, then take the transitive closure. The easy but tedious verification is left to the reader.

Given some set of axioms T, a Kripke structure $\mathcal{K} = ((\mathcal{K}, \leq), (\mathcal{A}_{\alpha})_{\alpha \in \mathcal{K}})$ for the language of T is called T-normal or locally T if for each $\alpha \in \mathcal{K}$, the structure \mathcal{A}_{α} is a classical model of T, $\mathcal{A}_{\alpha} \models T$. The interplay of sets of axioms being forced at α and those being classically true in \mathcal{A}_{α} is intriguing, see e.g. [W96].

2. Smorynski's collection operation

In his [S73], Smoryński introduced a powerful *collection operation* on Kripke structures which he used to prove a large number of results on intuitionistic logic and arithmetic. The idea behind his operation $(\sum)'$ is this:

Let some family $\mathcal{F} = \{ \mathcal{K}^i : i \in I \}$ of Kripke structures

$$\mathsf{K}^{i} = ((K^{i}, \leq^{i}), (A^{i}_{\alpha})_{\alpha \in K^{i}})$$

for some version L of the arithmetical language (containing a closed term for each natural number n) be given. We may assume without loss of generality that for $i \neq j$ in $I, K^i \cap K^j = \emptyset$.

We obtain a new Kripke structure by forming the disjoint union $\Sigma \mathcal{F} = \mathcal{K} = ((K, \leq), (A_{\alpha})_{\alpha \in K})$ of \mathcal{F} , putting

- $K = \bigcup_{i \in I} K^i;$
- for $\alpha, \beta \in K$, $\alpha \leq \beta : \iff$ for some $i \in I$, $\alpha \leq^i \beta$;
- for $\alpha \in K$, $A_{\alpha} := A^i_{\alpha}$, where $i \in I$ is such that $\alpha \in K^i$.

Observing that for each $\alpha \in K^i$, $K^i_{\alpha} = K_{\alpha}$, we see that if each $K^i \models T$ for some theory T, then $K = \Sigma \mathcal{F} \models T$. The operation of disjoint union becomes interesting only in conjunction with a second operation $K \mapsto K'$ which consists in attaching a (new) root to K:

Given a normal Kripke structure K, K' is obtained from K by adding a new node α_0 to K (i.e., $K' := K \uplus \{\alpha_0\}$), stipulating that α_0 be minimal in K' (i.e., $\leq' := \leq \cup \{(\alpha_0, \beta) : \beta \in K'\}$) and letting A_{α_0} be the standard model of arithmetic \mathbb{N} .

Note that the restriction to normal models, or at least an assumption that all worlds are normal in their 'standard part' given by the numerals, is important here: The interpretations f_{α} of function symbols f are actual functions, compatible with $=_{\alpha}$ but not multi-valued. Thus e.g. in the standard model A_{α_0} , we certainly have $S_{\alpha}(0) = 1$ (true equality!), whereas at some node β from K, only $S_{\beta}(0) =_{\beta} 1$ is required, and we may actually have $S_{\beta}(0) = c$ for some $c \in A_{\beta}$ such that $c \neq 1$ (but of course $c =_{\beta} 1$). This would collide with the requirement that S_{α_0} be the

restriction of S_{β} to A_{α_0} . But this cannot happen if we exclude non-normal models from the start (which, by Lemma 1.2, is no real restriction).

It is now easy to see that K' is again a Kripke structure; more difficult is the question which theories T are preserved under this operation, i.e., for which theories T is K' a model of T, provided that $K \models T$?

Smoryński has shown that HA and some of its extensions are preserved under the ' operation. We briefly go through his proof, pointing out the punch line and in fact showing that *every* fragment $i\Gamma$ of HA is preserved.

2.1 THEOREM (Smoryński). Let $K \models i\Gamma$. Then $K' \models i\Gamma$ too.

Proof. Clearly it is sufficient to show that $\alpha_0 \Vdash' i\Gamma$ (writing \Vdash' for $\Vdash_{\mathcal{K}'}$). The crucial axioms to check are the induction axioms. So let $\varphi(x, \bar{z}) \in \Gamma$; we must show that

$$\alpha_0 \Vdash' \forall \bar{z}[\varphi(0,\bar{z}) \land \forall x(\varphi(x,\bar{z}) \to \varphi(Sx,\bar{z})) \to \forall x \varphi(x,\bar{z})].$$

Assume the contrary. Then for some $\beta \geq \alpha_0$ and $\overline{b} \in A_\beta$,

$$\beta \not\Vdash' \varphi(0,\bar{b}) \land \forall x(\varphi(x,\bar{b}) \to \varphi(Sx,\bar{b})) \to \forall x \varphi(x,\bar{b}).$$

The assumption that $\beta > \alpha_0$ leads to a contradiction, since at such β , \Vdash and \Vdash' coincide, and so $\beta \Vdash' i\Gamma$.

Hence $\beta = \alpha_0$ and $\bar{b} \in A_{\alpha_0} = \mathbb{N}$. We thus have (now suppressing parameters from A_{α_0}):

$$\alpha_0 \not\Vdash' \varphi(0) \land \forall x(\varphi(x) \to \varphi(Sx)) \to \forall x \varphi(x),$$

i.e., for some $\beta \geq' \alpha_0$,

$$\beta \Vdash' \varphi(0) \land \forall x(\varphi(x) \to \varphi(Sx))$$

but $\beta \not\Vdash' \forall x \varphi(x)$. Again $\beta > \alpha_0$ is impossible since then $\beta \Vdash' i\Gamma$. So we have

- (i) $\alpha_0 \Vdash' \varphi(0) \land \forall x(\varphi(x) \to \varphi(Sx))$ and
- (ii) $\alpha_0 \not\Vdash' \forall x \varphi(x)$.

By (i) and the fact that for $\beta > \alpha_0$ we have $\beta \Vdash' i\Gamma$ we conclude that for all $\beta > \alpha_0, \beta \Vdash' \forall x \varphi(x)$. Hence we may infer from (ii) that for some $n \in A_{\alpha_0} = \mathbb{N}$, $\alpha_0 \nvDash \varphi(n)$. Here's the punch line: Let m be the least number n such that $\alpha_0 \nvDash' \varphi(n)$. Such a minimal counterexample exists since we are in the standard model \mathbb{N} . (If A_{α_0} were nonstandard, we would have to know that the forcing relation at α_0 is suitably definable in A_{α_0} .) Now since $\alpha_0 \Vdash' \varphi(0)$, we have $m \neq 0$, so m = Sk for some $k \in \mathbb{N}$. By minimality of $m, \alpha_0 \Vdash' \varphi(k)$, so by $\alpha_0 \Vdash' \forall x(\varphi(x) \to \varphi(Sx))$ we obtain $\alpha_0 \Vdash' \varphi(m)$, contradiction. \Box

2.2 COROLLARY. Every theory of the form $i\Gamma$ has the explicit definability property (ED) and the disjunction property (DP), i.e., whenever $i\Gamma$ proves a sentence

 $\exists x \varphi(x)$, then for some $n \in \mathbb{N}$, $i\Gamma \vdash \varphi(n)$, and whenever $i\Gamma$ proves a sentence $\psi \lor \chi$, then either $i\Gamma \vdash \psi$ or $i\Gamma \vdash \chi$.

Proof. We consider only *(ED)*. Suppose that $i\Gamma \nvDash \varphi(n)$ for each $n \in \mathbb{N}$. By the completeness theorem, for each n there is a Kripke model $K_n \models i\Gamma$ with $K_n \nvDash \varphi(n)$. Now consider $(\sum_{n \in \mathbb{N}} K_n)' =: K'$ which is a model of $i\Gamma$ by theorem 2.1. Obviously, $\alpha_0 \nvDash' \exists x \varphi(x)$, since this would imply $\alpha_0 \Vdash' \varphi(n)$ for some $n \in A_{\alpha_0} = \mathbb{N}$, which is impossible by $K_n \nvDash \varphi(n)$. By the soundness theorem, $i\Gamma \nvDash \exists x \varphi(x)$. \Box

Smoryński's idea obviously yields a construction method for Kripke models that can be summarized as follows:

2.3 THEOREM. Let (K, \leq) be any conversely wellfounded tree. Attach arbitrary models of $I\Gamma$ to terminal nodes of (K, \leq) and the standard model \mathbb{N} of arithmetic to each internal node of (K, \leq) . The resulting Kripke structure is then a model of $i\Gamma$.

3. Constructing models of Π_1 -induction

Sam Buss has shown in [B93] that there is an easy way to construct Kripke models of $i\Sigma_1$ over arbitrary frames: Every $I\Sigma_1$ -normal Kripke structure is a Kripke model of $i\Sigma_1$. But he also illustrates, by way of counterexample, that it is not as trivial to construct models of $i\Pi_1$. However, models of $i\Pi_1$ over conversely wellfounded frames are not too difficult to build:

3.1 LEMMA. Let $K = ((K, \leq), (A_{\alpha})_{\alpha \in K})$ be a Kripke structure such that for each $\beta \in K$ there is a terminal node $\alpha \geq \beta$ in K (this is always the case when (K, \leq) is conversely wellfounded). Suppose further that for all terminal nodes $\alpha \in K$, $A_{\alpha} \models I\Sigma_1$ and that for all internal nodes $\beta \in K$, $A_{\beta} \models I\Delta_0$. Assume that whenever $\alpha \leq \beta$ in K, A_{β} is a Δ_0 -elementary extension of A_{α} . Then $K \models i\Pi_1$.

Proof. We proceed by brute force (see [W96a] for an alternative proof). Take any $\alpha \in K$ and let $\psi(x, \bar{y}, \bar{z})$ be a Δ_0 -formula. We have to prove that α forces

 $\forall \bar{z} (\forall \bar{y} \ \psi(0, \bar{y}, \bar{z}) \land \forall x (\forall \bar{y} \ \psi(x, \bar{y}, \bar{z}) \rightarrow \forall \bar{y} \ \psi(Sx, \bar{y}, \bar{z})) \rightarrow \forall x \forall \bar{y} \ \psi(x, \bar{y}, \bar{z})).$

So let $\beta \geq \alpha$, $\overline{b} \in A_{\beta}$ and suppose that

$$\beta \Vdash \forall \bar{y} \ \psi(0, \bar{y}, b) \land \forall x (\forall \bar{y} \ \psi(x, \bar{y}, b) \to \forall \bar{y} \ \psi(Sx, \bar{y}, b)).$$

Thus every terminal node above β classically satisfies this last sentence. Since all terminal nodes are classical models of $I\Sigma_1 \ (\equiv I\Pi_1)$, every such node also satisfies $\forall x \forall \bar{y} \ \psi(x, \bar{y}, \bar{b})$). This sentence is Π_1 and thus downwards preserved in Δ_0 -elementary extensions. In particular, it is classically true in every $\gamma \geq \beta$. But we want to show that $\beta \Vdash \forall x \forall \bar{y} \ \psi(x, \bar{y}, \bar{b})$. However, this just means that for all $\gamma \geq \beta$ and all $c, \bar{d} \in A_{\gamma}, \gamma \Vdash \psi(c, \bar{d}, \bar{b})$, i.e., by 1.1 that $\gamma \models \forall x \forall \bar{y} \ \psi(x, \bar{y}, \bar{b})$, which, as we have just seen, is indeed the case. \Box

3.2 *Remark.* This result shows that Buss' counterexample is not just accidentally not conversely wellfounded: Every *PA*-normal Kripke structure on conversely wellfounded frames validates $i\Pi_1$.

4. Some general Kripke model theory

In the next section, we will use a modification of Smoryński's $(\sum)'$ operation to construct models of $i\Pi_2$ from *arbitrary* classical models of $I\Sigma_2$. The present section develops a little theorem in general Kripke model theory as a preparation for that result.

4.1 Definition. A formula φ of some language L is positive if it is built up from atomic formulae using only \wedge , \vee and \exists .

4.2 Remark. For all Kripke structures $K, \alpha \in K, \bar{a} \in A_{\alpha}$ and every positive formula $\varphi(\bar{x})$ we have: $\alpha \Vdash \varphi(\bar{a}) \iff \alpha \models \varphi(\bar{a})$. (In fact this property characterizes the positive formulae: If always $\alpha \Vdash \varphi(\bar{a}) \iff \alpha \models \varphi(\bar{a})$, then φ is intuitionistically equivalent to a positive formula; cf. [M83].) If in the respective Kripke model Δ_0 -formulae are decidable, we may, by 1.1, relax the definition of positivity by replacing 'atomic' with ' Δ_0 ', and the property will continue to hold.

4.3 Definition. Let Γ be the smallest class of formulae containing the positive formulae, closed under application of \forall and \land and under the following rule: If φ is positive and $\psi \in \Gamma$, then $\varphi \to \psi$ is in Γ .

4.4 *Remark.* Under classical logic, Γ is the class of $\forall \exists$ -formulae. This is also true in intuitionistic theories within which atomic formulae are decidable.

4.5 LEMMA. Let $\varphi(\bar{z}) \in \Gamma$, let K be a Kripke structure, $\alpha \in K$, $\bar{a} \in A_{\alpha}$ and suppose that for all $\beta > \alpha$ we have $\beta \Vdash \varphi(\bar{a})$. Then:

$$\alpha \Vdash \varphi(\bar{a}) \iff \alpha \models \varphi(\bar{a}).$$

Proof. We proceed by induction on the definition of $\varphi \in \Gamma$.

If $\varphi(\bar{z})$ is positive, then the claim follows from our remark above. Using the induction hypothesis, the case of conjunction is trivial.

So suppose that $\varphi(\bar{z})$ is of the form $\forall y \, \psi(y, \bar{z})$ with $\psi(y, \bar{z}) \in \Gamma$. By assumption for all $\beta > \alpha, \beta \Vdash \forall y \, \psi(y, \bar{a})$. (We will from now on suppress mention of the parameters \bar{a} and just write $\forall y \, \psi(y)$.) First suppose that $\alpha \Vdash \forall y \, \psi(y)$. In particular, for all $c \in A_{\alpha}, \alpha \Vdash \psi(c)$, and so by persistence of forcing, for all $c \in A_{\alpha}$ and all $\beta \geq \alpha \, \beta \Vdash \psi(c)$. By the induction hypothesis then for all $c \in A_{\alpha} \, \alpha \models \psi(c)$, i.e., $\alpha \models \forall y \, \psi(y)$.

Now suppose that $\alpha \nvDash \forall y \psi(y)$. By definition, for some $\beta \geq \alpha$ and some $c \in A_{\beta}, \beta \nvDash \psi(c)$. But since all $\beta > \alpha$ force $\forall y \psi(y)$, we must have $\alpha \nvDash \psi(c)$ for some $c \in A_{\alpha}$. But for all $\beta > \alpha \beta \Vdash \psi(c)$ and so by induction hypothesis $\alpha \not\models \psi(c)$ and thus $\alpha \not\models \forall y \psi(y)$.

For the case of implication, suppose φ is of the form $\psi \to \chi$, where ψ is positive and $\chi \in \Gamma$. (We are again suppressing parameters from A_{α} .) Assume that for all $\beta > \alpha$, $\beta \Vdash \psi \to \chi$.

First let $\alpha \Vdash \psi \to \chi$. We consider two cases. For the first case, suppose that $\alpha \Vdash \psi$. Then for all $\beta \ge \alpha \ \beta \Vdash \psi$ and thus for all $\beta \ge \alpha \ \beta \Vdash \chi$. By induction hypothesis then $\alpha \models \chi$ and of course $\alpha \models \psi \to \chi$. In the second case $\alpha \nvDash \psi$. Since ψ is positive, we then have $\alpha \nvDash \psi$ and so vacuously $\alpha \models \psi \to \chi$.

For the other direction, assume that $\alpha \nvDash \psi \to \chi$. Then for some $\beta \ge \alpha \ \beta \Vdash \psi$ and $\beta \nvDash \chi$. Since by assumption for all $\beta > \alpha \ \beta \Vdash \psi \to \chi$, we must in fact have $\alpha \Vdash \psi$ and $\alpha \nvDash \chi$. Since $\alpha \Vdash \psi$, for all $\beta > \alpha \ \beta \Vdash \chi$. Hence by induction hypothesis $\alpha \nvDash \chi$. $\alpha \Vdash \psi$ and ψ is positive, so $\alpha \models \psi$. Together we get $\alpha \nvDash \psi \to \chi$. \Box

4.6 Question. Does the property exhibited in Lemma 4.5 characterize the class Γ ?

4.7 Remark. If Δ_0 -formulae are decidable in the model under consideration, the theorem remains true if we use the relaxed definition of positivity indicated in remark 4.2 in the definition of Γ (cf. lemma 1.1), so that we are then talking about Π_2 -formulae.

5. Constructing models of Π_2 -induction

In the variant indicated at the end of the previous section, we can use our result 4.5 to construct certain models of the intuitionistic version $i\Pi_2$ of $I\Pi_2$:

5.1 THEOREM. Let K be an $I\Sigma_2$ -normal Kripke structure over a conversely wellfounded frame. Then K is a model of $i\Pi_2$, i.e., for each $\alpha \in K$, $\bar{a} \in A_{\alpha}$ and every Π_2 -formula $\varphi(x, \bar{y})$ we have

$$\alpha \Vdash \varphi(0,\bar{a}) \land \forall x(\varphi(x,\bar{a}) \to \varphi(Sx,\bar{a})) \to \forall x \varphi(x,\bar{a}).$$

Proof. Note that in $I\Sigma_2$ -normal Kripke structures all extensions are Δ_0 elementary (since the MRDP theorem can be proved in $I\Sigma_2$, cf. [HP93]), and so $K \models i\Delta_0$ by 1.1.

We proceed by bar induction on α . For terminal α there is nothing to show since $I\Pi_2 \equiv I\Sigma_2$.

So let α be an internal node and suppose that

$$\alpha \nvDash \varphi(0,\bar{a}) \land \forall x(\varphi(x,\bar{a}) \to \varphi(Sx,\bar{a})) \to \forall x \varphi(x,\bar{a}).$$

Then for some $\beta \geq \alpha$ we have $\beta \Vdash \varphi(0, \bar{a}), \beta \Vdash \forall x(\varphi(x, \bar{a}) \rightarrow \varphi(Sx, \bar{a}))$ and $\beta \nvDash \forall x \varphi(x, \bar{a})$. But by induction hypothesis, we must have $\beta = \alpha$, so $\alpha \Vdash \varphi(0, \bar{a})$, $\alpha \Vdash \forall x(\varphi(x, \bar{a}) \rightarrow \varphi(Sx, \bar{a}))$ and $\alpha \nvDash \forall x \varphi(x, \bar{a})$.

By persistence of \Vdash we obtain for each $\beta > \alpha$ that $\beta \Vdash \varphi(0,\bar{a}), \beta \Vdash \forall x(\varphi(x,\bar{a}) \to \varphi(Sx,\bar{a}))$ and hence by induction hypothesis that $\beta \Vdash \forall x \varphi(x,\bar{a})$. So it follows from $\alpha \nvDash \forall x \varphi(x,\bar{a})$ that already for some $b \in A_{\alpha}, \alpha \nvDash \varphi(b,\bar{a})$; however, for each $\beta > \alpha$ we have $\beta \Vdash \varphi(b,\bar{a})$ and φ is Π_2 , so by 4.5 $\alpha \not\models \varphi(b,\bar{a})$. Now

let c be the least element e of A_{α} such that $\alpha \not\models \varphi(e, \bar{a})$. (This is possible since $\alpha \models I\Pi_2$.)

Then the following obtain:

- 1. $\alpha \nvDash \varphi(c, \bar{a})$ (by 4.5, since $\alpha \nvDash \varphi(c, \bar{a})$ and for all $\beta > \alpha$ we have $\beta \Vdash \varphi(c, \bar{a})$);
- 2. for each $d <_{\alpha} c, \alpha \Vdash \varphi(d, \bar{a})$ (again by 4.5, since for $d <_{\alpha} c \alpha \models \varphi(d, \bar{a})$ and for each $\beta > \alpha \ \beta \Vdash \varphi(d, \bar{a})$).

But now c is not 0, since $\alpha \Vdash \varphi(0, \bar{a})$ and $\alpha \nvDash \varphi(c, \bar{a})$. Hence c = Sd for some $d \in A_{\alpha}$. But by 2. $\alpha \Vdash \varphi(d, \bar{a})$, so by $\alpha \Vdash \forall x(\varphi(x, \bar{a}) \to \varphi(Sx, \bar{a}))$ we get $\alpha \Vdash \varphi(Sd, \bar{a})$, i.e., $\alpha \Vdash \varphi(c, \bar{a})$, contradicting 1. \Box

5.2 Remark. It is clear by Theorem 5.1 that every PA-normal Kripke structure over a wellfounded frame is a model of $i\Pi_2$. This result is in some sense optimal: Zambella and Visser show in a forthcoming paper that there are PA-normal Kripke structures over two-element frames, the respective PA-models an end-extension, which are not models of $i\Sigma_2$.

References

- [B93] S. Buss, Intuitionistic validity in T-normal Kripke structures, Ann. Pure Appl. Logic 59 (1993), 159–173
- [HP93] P. Hajek and P. Pudlak, Metamathematics of First-Order Arithmetic, Springer-Verlag, Berlin, Heidelberg, New York, 1993
- [K91] R. Kaye, Models of Peano Arithmetic, Oxford University Press, Oxford, 1991
- [M83] Z. Marković, Some preservation results for classical and intuitionistic satisfiability in Kripke models, Notre Dame J. Formal Logic 24 (1983), 395-398
- [M84] Z. Marković, Kripke models for intuitionistic theories with decidable atomic formulas, Publ. Inst. Math. (Beograd)(N.S.) 36 (50) (1984), 3-7
- [M93] Z. Marković, On the structure of Kripke models of Heyting arithmetic, Math Logic Quart. 39 (1993), 531–538
- [S73] C. Smorynski, Applications of Kripke Models, in: [T73], 324-391
- [T73] A. S. Troelstra (ed.), Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1973
- [W96] K. F. Wehmeier, Classical and intuitionistic models of arithmetic, Notre Dame J. Formal Logic 37 (1996), 452-461
- [W96a] K. F. Wehmeier, Semantical Investigations in Intuitionistic First-order Arithmetic, Dissertation, Münster, 1996
- [W97] K. F. Wehmeier, Fragments of HA based on Σ_1 -induction, Arch. Math. Logic **37** (1997), 37–49

Institut für Mathematische Logik und Grundlagenforschung Einsteinstr. 62 D-48149 Münster, Germany (Received 08 10 1997)

8