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ON EQUIVARIANT MAPS

BETWEEN STIEFEL MANIFOLDS

Zoran Z. Petrovi�c

Communicated by Rade �Zivaljevi�c

Abstract. We use an index theory to prove the nonexistence of some equi-
variant maps between Stiefel manifolds. We also show how to construct equivariant
maps between some Stiefel manifolds.

Introduction

We denote by Vk(R
n) the Stiefel manifold of all orthonormal k-frames in Rn.

There is an obvious action of the group Z=2, on this manifold, where the generator
of Z=2 acts by sending a frame [v1; . . . ; vk] to [�v1; . . . ;�vk]. In this paper we
investigate the following question:

For a given n; k;m and l, is there a Z=2-equivariant map between Vk(R
n)

and Vl(R
m)?

In general, this problem seems to be hard. For example, let us recall that
V1(R

n) is Sn�1 and the question whether there exists an equivariant map from

Sn�1 to Vn(R
n+k) or not, is equivalent to the question whether RPn�1 immerses

in Rn+k�1 or not. To �nd the smallest k such that RPn�1 immerses in Rn+k�1

is a longstanding problem in topology and although much work has been done, the
complete answer is still not known.

If k = 1 and l = 1 our problem reduces to the question of equivariant maps
between spheres and in that case the answer is given by Borsuk-Ulam theorem.

In this paper we use the index theory of Fadell and Husseini (see [FH]) to
answer our question in some cases.
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Index theory

Let us recall the basic de�nitions and methods of the index theory of Fadell
and Husseini. We have a (compact Lie) group G acting on a (paracompact Haus-
dor�) space X . We may then compute H�

G(X) (Borel cohomology)

H�

G(X) = H�(EG�G X)

where EG �! BG represents the universal G-bundle. If f : X ! Y , is a G-
equivariant map, then it induces a map in the equivariant cohomology in the oppo-
site direction: f� : H�

G(Y )! H�

G(X). Now, H�

G(pt) = H�(BG) (by pt we denote a
space consisting of one point only) and here is the main idea of that index theory.

We de�ne IndexG(X) as follows

IndexG(X) = Ker(c� : H�

G(pt) �! H�

G(X))

where by c we denote the unique map X �! pt. So this index is an ideal in the
ring H�(BG). If f : X ! Y is a G-equivariant map between G-spaces we have the
following diagram

X
f

����! Y

c

??y
??yc

pt
=

����! pt

and if we apply the functor H�

G(�) to this diagram we get

H�

G(X)
f�

 ���� H�

G(Y )

c�
x?? x??c�
pt

=
 ���� pt

From this diagram one sees easily that if there exists an equivariant map from X
to Y then

IndexG(Y ) � IndexG(X):

In the case we are interested in, G = Z=2 and H�(BG) = H�(BZ=2) = Z=2[x] (we

always use mod 2 coeÆcients). We proceed to show what is IndexZ=2(Vk(R
n)).

Index of Stiefel manifolds

In [GH] (see also [G1], [G2]) one �nds a de�nition of the projective Stiefel
manifold, namely it is the orbit space of Vk(R

n) under the action of Z=2 that we
mentioned before (in the case k = 1 one of course gets real projective spaces). In
the same paper, Gitler and Handel computed the cohomology of these spaces and
here is the answer.
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Theorem 1. Suppose k < n. Let

N = min
n
jjn� k + 1 � j � n;

�
n

j

�
� 1 (mod 2)

o
:

Then
H�(Yn;k) = Z=2[y]=(yN)
 V (yn�k; . . . ; yN�2; yN ; . . . ; yn�1)

as an algebra. Here, the degree of y is 1 and p�x = y where x is a generator of
H1(RP1).

Some explanation seems to be in order here. Namely, we get the map p as
follows. There is a well known �bration

Vk(R
n) �! BO(n� k) �! BO(n)

(recall that Vk(R
n) = O(n)=O(n � k)). If � is the Hopf bundle over RP1 and

f : RP1 ! BO(n) classi�es n�, this map induces the following �bration

Vk(R
n)

i
�! Yn;k

p
�! RP1:

Now, it is shown in [GH] that the space Yn;k may be identi�ed with the correspond-
ing projective Stiefel manifold Vk(R

n)=(Z=2). In order to explain the remaining
part of the cohomology of Yn;k we recall the following

Theorem 2 (see [Bo]) We have H�(Vk(R
n)) = V (zn�k; . . . ; zn�1).

Here the degree of zq is q and V (x1; . . .xm) denotes any commutative, asso-
ciative algebra over Z=2 with unit, generated by elements x1; . . . ; xm, such that
x�11 � � �x

�m
m where �i 2 f0; 1g, form an additive basis for that algebra (the so-called

simple system of generators). It is also shown in [GH] that i�(yq) = zq. By now, it

should be clear what is IndexZ=2(Vk(R
n)). We have a �bration

Vk(R
n) �! EZ=2�Z=2 Vk(R

n)
p1
�! BZ=2:

But, since the action of Z=2 on Vk(R
n) is free, EZ=2 �Z=2 Vk(R

n) is homotopy
equivalent to Vk(R

n)=(Z=2). There are only two possibilities for p�1(x) (where
H�(BZ=2) = Z=2[x])|it is either y or 0. But, if it were zero, elementary exam-
ination of the spectral sequence associated to this �bration would show that one
cannot get the correct cohomology for our total space (which is, as we have seen, a
projective Stiefel manifold). So, p�1(x) = y and we get

Theorem 3. One has IndexZ=2(Vk(R
n)) = (xN ), where (xN ) is the ideal in

Z=2[x] generated by (xN ), where N is as before.

Since, in what follows, we will be using only indices of Stiefel manifolds, and
they are characterized (as we have seen) by a number, we will, by abuse of language,
say that the index of Vk(R

n) is N .
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When one deals with binomial coeÆcients modulo 2, the following lemma is
almost indispensable.

Lemma 1. If a =
Pm

i=0 ai2
i and b =

Pm
i=0 bi2

i, are the dyadic expansions of
a and b respectively, then

�
b

a

�
�

mY
i=0

�
bi
ai

�
(mod 2)

As to the proof, the reader may supply it himself, or look it up in [SE].

Now we give some conditions that ensure that the index is very small and
some others where it is very big.

Proposition 1. We have

a) IndexZ=2(Vn�1(R
n)) = IndexZ=2(SO(n)) = 2 if n � 2; 3 (mod 4);

b) IndexZ=2(Vn�2(R
n)) = 3; for n � 3 (mod 4) and

IndexZ=2(SO(n)) 6= 3; for all n;

c) IndexZ=2(Vn�3(R
n)) = 4; for n � 4; 5; 6; 7 (mod 8);

IndexZ=2(Vn�2(R
n)) = 4; for n � 4; 5; 7 (mod 8);

IndexZ=2(SO(n)) = 4; for n � 4; 5 (mod 8);

d) IndexZ=2(Vn�4(R
n)) = 5; for n � 5; 7 (mod 8); while IndexZ=2(Vn�3(R

n));

IndexZ=2(Vn�2(R
n)) and IndexZ=2(SO(n)) are never equal to 5:

Proof. Let us just recall that Vn�1(R
n) = SO(n) (we just add an additional

vector to get an element of SO(n)). Since all the proofs are quite similar (and
simple) we prove only part c). So,

IndexZ=2(Vn�2(R
n)) = min

n
jj4 = n� (n� 3) + 1 � j � n;

�
n

j

�
= odd

o

and one only needs to check whether
�
n
4

�
is odd. Now, this can be checked sepa-

rately for all the possibilities for n mentioned in the statement, but it follows easily
from the previous lemma|what this lemma actually states is that the binomial
coeÆcient is odd i� whenever 1 appears in the dyadic expansion for a, then on the
same place 1 should also appear in the dyadic expansion for b, and this is certainly
true in our case:

n = � � � 1 � �

4 = 000100



On equivariant maps between Stiefel manifolds 137

Remark. One sees that in many cases mentioned above, the index is as low
as it can be.

Let us now turn to the question when is the index as big as it can be, namely

when is IndexZ=2(Vk(R
n)) = n. The answer is given by the following

Theorem 4. We have IndexZ=2(Vk(R
n)) = n i� �2(n) � �[� log2(k)], where

�2(n) is the exponent of the highest power of 2 dividing n (n = 2�2(n)�odd).

Proof. Let us �rst unravel the curious condition mentioned in the statement
of the theorem. It means that 2s j n where 2s is the smallest power of 2 not less
than k.

): Assume that IndexZ=2(Vk(R
n)) = n and that 2s�1 < k � 2s. We have to

prove that 2s j n. If 2s does not divide n, then n is of the form

n = 2p1 + 2p2 + � � �+ 2pl

where p1 > p2 > � � � > pl and pl � s� 1. But this gives

2pl � 2s�1 � k � 1

or
n > n� 2pl � n� k + 1

and �
n

2pl

�
� 1 (mod 2);

and that contradicts the fact that IndexZ=2(Vk(R
n)) = n.

(: Assume that 2s j n where 2s is the smallest power of 2 not less that k. So

n = 2p1 + 2p2 + � � �+ 2pl ; where pl � 2:

Now, 2pl � 2s � k > k � 1 and it clearly follows from the lemma that
�
n
j0

�
� 0

(mod 2), for 1 � j0 � k � 1 and, consequently, we have:
�
n
j

�
� 0 (mod 2) for

n� k + 1 � j � n� 1 (j = n� j0,
�
n
j

�
=
�
n
j0

�
). So, IndexZ=2(Vk(R

n)) = n.

Corollary 1. We have IndexZ=2(SO(n)) = n i� n is a power of 2.

Proof. IndexZ=2(Vn�1(R
n)) = IndexZ=2(SO(n)) = n i� 2s j n where 2s is the

smallest power of 2 not less than n�1 (from the previous theorem). So, 2s � n�1,
2s j n, therefore 2s must be n.

We see from Theorem 3 that

n = IndexZ=2(V1(R
n)) � IndexZ=2(V2(R

n)) � � � � � IndexZ=2(Vn�1(R
n))

and
IndexZ=2(Vk(R

n)) � n� k + 1:
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The following question then arises: When is IndexZ=2(Vk(R
n)) = n� k + 1 for all

1 � k � n� 1? The answer is quite simple.

Proposition 2. We have IndexZ=2(Vk(R
n)) = n�k+1 for all 1 � k � n�1

i� n = 2m � 1 for some m.

The proof is along similar lines as the previous results and so will be omitted.
We now proceed to the original question of (non)-existence of equivariant maps
between Stiefel manifolds.

Equivariant maps between Stiefel manifolds

Let us recall that, should there exist a Z=2-equivariant map

f : Vk(R
n) �! Vl(R

m)

then IndexZ=2(Vk(R
n)) � IndexZ=2(Vl(R

m)) (we look at the index as an integer as
we mentioned above). From this we get the following

Proposition 3. If n is a power of 2, then there is no Z=2-equivariant map

f : SO(n) �! Vk(R
n);

where k < m < n.

This follows immediately from Corollary 1. In addition to this proposition, we
can, using the results from the previous section, get many other results concerning
equivariant maps between Stiefel manifolds. Here are some

Proposition 4. There is no Z=2-equivariant map

f : Vn�2(R
n) �! Vn�1(R

n); for n � 3 (mod 4):

f : Vn�3(R
n) �! Vn�2(R

n); for n � 7 (mod 8):

f : Vn�4(R
n) �! Vn�3(R

n); for n � 7 (mod 8):

All of this follows from Proposition 1. And some examples for particular
manifolds.

Example 1. There are no Z=2-equivariant maps:

V3(R
6) �! V5(R

6); V2(R
8) �! V9(R

10);

V2(R
8) �! V9(R

11); V3(R
13) �! V7(R

15)

etc.
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As far as the construction of equivariant maps goes, we mention, in addition
to the trivial observation that there is an equivariant map Vk(R

n) �! Vk�1(R
n)

(simply forget, say, the last vector in a frame), the following

Lemma 2. If there exists a Z=2-equivariant map f : Sn�1 ! Vl(R
m), then

there exists a Z=2-equivariant map g : Vk(R
n) �! Vl(R

mk).

Proof. We have

g([v1; . . . ; vk]) = ff(v1); . . . ; f(vk)g
t:

So, if we have enough supply of equivariant maps from spheres to Stiefel
manifolds, we can construct many equivariant maps from Stiefel manifolds to Stiefel
manifolds. But, we do have that|we mentioned that the existence of such maps
is, for some particular values of l;m (l;m from the previous lemma), equivalent to
the existence of an immersion of a real projective space into an Euclidean one (see
[BR]). For the results concerning immersions, see [D1], [D2], [D3]. We mention here
only the following (see [Mi], [La]).

Theorem 5. Let d = 1; 2; 4 or 8. If n 6= 1; 3; 7 and n+ 1 � 0 (mod d), then

RPn immerses in R2n��(n)��(d), where �(n) is the number of 1's in the dyadic
expansion of n, and �(d) = d� 1� �(d � 1).

So, as mentioned in the Introduction, there exist an equivariant map

Sn �! Vn+1(R
2n��(n)��(d)+1)

and, consequently (using the previous lemma), equivariant maps

Vk(R
n) �! Vn+1(R

(2n��(n)��(d)+1)m)

for k < n. For example, there is an equivariant map

S31 �! V32(R
53)

and so an equivariant map

V2(R
32) �! V32(R

106):

Let us just say a few words for the conclusion. As we mentioned in the Introduction,
the immersion problem is rather hard and therefore so is the more general problem
we discussed in this paper. But it may be that the results related to this more
general problem would give us more insight to the immersion problem. That was
this author prime motivation to deal with this problem.
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