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Abstract. We present results concerning absolute closeness of multivalued
mappings for some well-known classes of pointwise closed mappings. The main
results are the characterizations of absolute closeness for co�nally continuous and
for residually continuous multivalued mappings. We found necessary and suÆcient
conditions so that the multivalued mapping F : X �! Y cannot be extended to a
co�nally or a residually continuous mapping F : X�

�! Y from a space X� in which
X is a proper dense subset. We also proved some characterizations of co�nally and
residually continuous mappings.

Our aim is to give, for multivalued mappings, some generalizations of the re-
sults obtained in [1], [2] and [3] related to the characterizations of absolute closeness
for a singlevalued continuous mappings.

In [4, theorem 3], were proved some suÆcient conditions for multivalued
pointwise closed mapping F : X �! Y that cannot be extended to an upper
semicontinuous (u.s.c.) or a lower semicontinuous (l.s.c.) mapping from a space
X� in which X is a dense proper subset, i.e., there were found suÆcient conditions
for the absolute u.s.c. or absolute l.s.c. closeness of multivalued mappings.

We prove a criterion for absolute closeness of mappings for the class of mul-
tivalued pointwise closed co�nal continuous mappings in which the class of u.s.c.
mappings is contained, if the space Y is T3-space. Also, we prove a criterion for
absolute closeness of mappings for the class of multivalued pointwise closed residual
continuous mappings which is identical to the class of l.s.c. mappings.

The terminology and the notation that we shall use throughout this article
will be as follows.

(1) Let F : X �! Y be a multivalued mapping of a topological space X onto
a topological space Y . The inverse image of y 2 Y by the mapping F is the set
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F 0y = fx j y 2 Fxg. The inverse mapping F 0 : Y �! X of the mapping F is
de�ned pointwise by the inverse images F 0y, for all y 2 Y . The image of a set
A � X by the mapping F is the set FA =

S
fFx j x 2 Ag = fy j F 0y \A 6= ;g and

the small image of the same set by the mapping F is the set F#A = fy j F 0y � Ag
= Y n F (X n A): The inverse image of a set B � Y by the mapping F is the set
F 0B =

S
fF 0y j y 2 Bg = fx j Fx \ B 6= ;g and the small inverse image of the

same set by the mapping F is the set F [B =
S
fx j Fx � Bg = X n F 0(Y nB).

In addition, we shall give some well-known inclusions, implications and de�-
nitions concerning multivalued mappings that will be used frequently in the sequel.
If A � X is a set, then F#A � FA and F [F#A � F 0F#A � A � F [FA � F 0FA.
If B � Y is a set, then F [B � F 0B and F#F [B � FF [B � B � F#F 0B � FF 0B.
If A;A0 � Y , then A \ A0 = ; =) FA \ F#A0 = ;, and if B;B0 � Y , then
B \ B0 = ; =) F 0B \ F [B0 = ;.

(2) Let us remark that multivalued co�nal and residual mappings are usually
de�ned locally, by nets in a topological space, as follows.

Previously note, that a net ' : (D;�) �! X in a topological space X con-
verges to x 2 X (written '(D;�) �! x) provided that it is residual in every
nhood U of x, i.e., if for each nhood U 2 U(x) there is a d0 2 D such that
d0 � d =) '(d) = xd 2 U for each d 2 D. If F : X �! Y is a multivalued
mapping of a space X onto a space Y and ' : (D;�) �! X is a net in X converg-
ing to an x 2 X , then lim supd Fxd and lim infd Fxd denote the topological limes
superior , respectively limes inferior of the net fFxd j d 2 Dg in Y . Then:

(3) y 2 lim supd Fxd i� for each nhood V 2 V(y) in Y the set

�(V ) = fd j Fxd \ V 6= ;g

is co�nal in the directed set (D;�), i.e., for each index d 2 D there is some
d0 2 �(V ) so that d � d0;

y 2 lim infd Fxd i� for each nhood V 2 V(y) in Y the set �(V ) is residual in
the directed set (D;�), i.e., there is some d 2 D so that d0 � d implies d0 2 �(V ):

Note that lim infd Fxd � lim supd Fxd, since the set �(V ) is co�nal in the
directed set (D;�), if it is residual in the directed set (D;�).

(4) A multivalued mapping F : X �! Y is co�nally continuous (residually
continuous) i� lim supd Fxd � Fx (Fx � lim infd Fxd) for each x 2 X and each
net ' : (D;�) �! X converging to x

(5) The mapping F is Y -compact if the image Fx of each x 2 X is compact
and F is X-compact if the inverse image F 0y of each y 2 Y is compact. The
mapping F is closed (regularly closed) if the image of each closed (regularly closed)
set is closed. Furthermore we shall assume that all mappings are pointwise closed,
i.e., the image Fx of each point x 2 X is a closed set.

A criterion of co�nal continuity of multivalued mappings will be proved �rst.

Theorem 1. A multivalued mapping F : X �! Y of a space X onto a space
Y is co�nally continuous i� for each x 2 X

(1) Fx = fFU j U 2 U(x)g;
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For the proof of the theorem we need the following

Lemma 1. Let F : X �! Y be a multivalued mapping. Then for each x 2 X
and each y 2

T
fFU j U 2 U(x)g there is a net ' : (D;�) �! X converging to x,

so that y 2 lim infd Fxd.

Proof. At �rst we de�ne a relation � in the Cartesian product

D = U(x)�V(y)

of the open neighbourhood system U(x) of x and the open neighbourhood system
V(y) of y, putting

(*) (U; V ) � (U 0; V 0) :, (U 0 � U) ^ (V 0 � V ):

It is easy to see that � is a partial order and a direction on D. Indeed, let
(U; V ); (U 0; V 0) 2 U(x) � V(y) = D. Then from U;U 0 2 U(x) and U 00 =
U \ U 0 2 U(x), follows U 00 � U and U 00 � U 0 and, also, from V; V 0 2 V(y),
V 00 = V \ V 0 2 V(y), follows V 00 � V and V 00 � V 0. By the de�nition (�) we have

(U; V ) � (U 00; V 00) and (U 0; V 0) � (U 00; V 00):

If y 2
T
fFU j U 2 U(x)g, then y 2 FU for every nhood U 2 U(x), so

V \ FU 6= ; for every nhood V 2 V(x). Since V \ FU 6= ; () F 0V \ U 6= ;;
the net ' : (D;�) �! X can be de�ned putting '(U; V ) = xd 2 F 0V \U; for each
d = (U; V ) 2 D, where xd is any point in F 0V \ U . The net ' : (D;�) �! X
converges to x. Indeed, if U 2 U(x) is any nhood, then d0 = (U; Y ) is such an
\index" that for each \index" d0 = (U 0; V 0)

d0 � d0 =) '(d0) = '(U 0; V 0) = xd0 2 F 0V 0 \ U 0 � U 0 � U;

since d0 � d0 implies U 0 � U .

Now let V; V 0 2 V(y) so that V 0 � V . Then for each \index" d0 = (U 0; V 0),
we have d0 = (X;V ) � (U 0; V 0) = d0 and

d0 � d0 =) '(U 0; V 0) = '(d0) = xd0 2 F 0V 0 \ U 0 � F 0V 0 � F 0V:

Since xd0 2 F 0V () Fxd0 \ V 6= ;, we have proved that the set

�(V ) = fd j Fxd \ V 6= ;g

is residual in the directed set (D;�). Since V 2 V(x) is an arbitrary set, it follows
that y 2 lim infd Fxd.
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Proof of Theorem 1. (a) Let F : X �! Y be a co�nally continuous mapping
and y 2

T
fFU j U 2 U(x)g. By Lemma 1 there is a net ' : (D;�) �! X

converging to x so that y 2 lim infd Fxd � lim supd Fxd. Since F is co�nally
continuous, lim supd Fxd � Fx, so y 2 Fx and we have proved the implication

y 2
\
fFU j U 2 U(x)g =) y 2 Fx;

from which follows the inclusion
T
fFU j U 2 U(x)g � Fx. Since the converse

inclusion is obvious, the equality (1) is proved.

(b) Now let the equality (1) hold and let ' : (D;�) �! X be a net converging
to x. We shall prove the inclusion

(2) lim sup
d

Fxd � Fx:

Let y 2 lim supd Fxd. Then for every V 2 V(y) the set �(V ) = fd j Fxd \ V 6= ;g
is co�nal in (D;�). Since '(D;�) �! x, for each U 2 U(x), there is an index
dU 2 D so that dU � d =) '(d) = xd 2 U , for every index d 2 D,

As the set �(V ) is co�nal in (D;�) for dU there is d0 2 �(V ) so that dU � d0.
Then xd0 2 U and Fxd0 \V 6= ;, so ; 6= Fxd0 \V � FU \V and, because V 2 V(y)
is any set, y 2 FU . But since U 2 U(x) is an arbitrary set too,

y 2
\
fFU j U 2 U(x)g = Fx:

So the implication y 2 lim supd Fxd =) y 2 Fx, as well as the inclusion (2) are
proved. By de�nition of co�nal continuity of multivalued mappings, F is co�nally
continuous in x and Theorem 1 is proved. �

Corollary 1.1. A multivalued mapping F : X �! Y of a space X onto a
space Y is co�nally continuous i� the inverse mapping F 0 : Y �! X is co�nally
continuous.

The proof of the corollary follows from Theorem 1 and the next

Lemma 2. Let F : X �! Y be a multivalued mapping of a space X onto a
space Y . Then

(a) (8x 2 X)(Fx =
\
fFU j U 2 U(x)g)

i�

(b) (8y 2 Y )(F 0y =
\
fF 0V j V 2 V(y)g):
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Proof. Let the equality (a) hold and y 2 Y . Then

x 2
\
fF 0V j V 2 V(y)g () (8V 2 V(y))(x 2 F 0V )

() (8V 2 V(y))(8U 2 U(x))(U \ F 0V 6= ;)

() (8U 2 U(x))(8V 2 V(y))(FU \ V 6= ;)

() (8U 2 U(x))(y 2 FU)

() (y 2
\
fFU j U 2 U(x)g = Fx);

by (a). Since y 2 Fx() x 2 F 0y, it is proved the implication

x 2
\
fF 0V j V 2 V(y)g =) x 2 F 0y;

which implies the inclusion
T
fF 0V j V 2 V(y)g � F 0y. As the converse inclusion

is obvious, the implication (a) =) (b) is proved. The proof of the implication
(b) =) (a) is similar. �

Proof of Corollary 1. By Theorem 1 and Lemma 2 the mapping F is co�nally
continuous i� (8y 2 Y )(F 0y =

T
fF 0V j V 2 V(y)g). But, by Theorem 1 the

mapping F 0 is co�nally continuous i� (8y 2 Y )(F 0y =
T
fF 0V j V 2 V(y)g); so the

mapping F is co�nally continuous i� the mapping F 0 is co�nally continuous.

Corollary 1.2. A multivalued u.s.c. mapping F : X �! Y of a space X
onto a space Y is co�nally continuous, if: (i) Y is a T3-space or (ii) Y is a
T2-space and the mapping F is Y -compact.

Proof. The corollary will be proved if we show

(1) Fx =
\
fFU j U 2 U(x)g

for each x 2 X . Let y 2 Y n Fx. From the assumptions (i) or (ii) there ex-
ists an open set W so that Fx � W � W � Y n fyg: Then it follows that
x 2 F [Fx � F [W = U0 2 U(x), since U0 is open because F is u.s.c. mapping.

Hence,
T
fFU j U 2 U(x)g � FU0 � FF [W � W � Y n fyg and the implication

y =2 Fx =) y =2
T
fFU j U 2 U(x)g and the inclusion

T
fFU j U 2 U(x)g � Fx

are proved. Since the converse inclusion is obvious, the corollary is proved. �

Theorem 2. Let F : X �! Y be a multivalued mapping of a space X onto
a space Y and let X� be a space in which X is a dense subspace so that

(8x� 2 X�)
�\

fF (U� \X) j U� 2 U�(x�)g 6= ;
�
;

where U�(x�) denotes the open neighbourhood system of x� 2 X�. Then the map-

ping F : X� �! Y de�ned by Fx� =
T
fF (U� \X) j U� 2 U�(x�)g; is co�nally

continuous, for each x� 2 X�.
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If F is co�nally continuous, then F is a co�nally continuous extension of F .

Proof. Let ' : (D;�) �! X� be a net in X� converging to an x� 2 X�. If
lim supd Fx

�

d
6� Fx�, then there is a y 2 lim supd Fx

�

d
n Fx�: But then y =2 Fx� =T

fF (U� \X) j U� 2 U�(x�)g, and there is a U�

0 2 U
�(x�) so that y =2 F (U�

0 \X).

Then y 2 Y n F (U�

0 \X) = V0 2 V(y); since V0 is open in Y . Because y 2
lim supd Fx

�

d
, the set �(V0) = fd j Fx�

d
\ V0 6= ;g is co�nal in the directed set

(D;�).

Since '(D;�) �! x�, for the set U�

0 2 U
�(x�), there is an index d0 2 D so

that for each d 2 D; d0 � d =) '(d) = x�
d
2 U�

0 . Then as the set U�

0 is open,
U�

0 2 U
�(x�

d
). So if d0 � d, then

(3) Fx�d =
\
fF (U� \X) j U� 2 U�(x�d)g � F (U�

0 \X) � Y n V0:

By co�nality of �(V0) it follows that, for the index d0, there is an index d0 2 �(V0)
so that d0 � d0 and Fx�

d0\V0 6= ;. Hence, by (3) ; 6= Fx�
d0\V0 � (Y nV0)\V0 and we

have contradiction. Therefore for every x� 2 X� and every net ' : (D;�) �! X�

converging to x� we have lim supd Fx
�

d
� Fx�; and the mapping F is co�nally

continuous.

Now we show that F is an extension of F , i.e., Fx = Fx, for each x 2 X .
Since x 2 U� \X for each U� 2 U�(x), we have

Fx �
\
fF (U� \X) j U� 2 U�(x�)g = Fx:

If y 2 Fx =
T
fF (U� \X) j U� 2 U�(x�)g, then by Lemma 1 there is a net

' : (D;�) �! X converging to x, so that

(4) y 2 lim sup
d

Fxd:

Since F is co�nally continuous, we have lim supd Fxd � Fx; and y 2 Fx by (4). So
the implication y 2 Fx =) y 2 Fx; as well as the inclusion Fx � Fx are proved
and the proof of the theorem is completed. �

Observe that by [6] a topological space X is absolutely closed i� there does
not exist any space X� with X as a dense subspace. Also by [6], a topological
space X is absolutely closed i� every free open ultra�lter U (i.e., maximal centred
system of open sets) has a nonempty adherence adU =

T
fU j U 2 Ug 6= ;: Let

now F : X �! Y be a multivalued mapping of a space X onto a space Y . We call
the mapping F absolutely co�nally (residually, u.s.c., l.s.c.) closed i� there is no

co�nally continuous (residually continuous, u.s.c., l.s.c.) extension F : X� �! Y
of the mapping F to a space X� in which X is dense subset.

The next two theorems present a basic characterizations of absolute co�nal
and residual closeness of the multivalued mappings and are generalizations of cor-
responding criteria for continuous single valued mappings.
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Theorem 3. Let F : X �! Y be a multivalued co�nally continuous mapping
of a T3-space X onto a space Y . The mapping F is absolutely co�nally closed i�
(a) F is X-compact and (b) F is closed mapping.

Proof. (1) (a) Let F be an absolutely co�nally closed mapping. If F were
not X-compact, then it would exist a point y 2 Y so that the set F 0y would not
be compact. Therefore, there is an open cover U = fU� j � 2 Ag of F 0y so that for
all its �nite subfamilies

U� = fU�(i) j i = 1; . . . ; ng 6= ;;

F 0y n jU�j = F 0y n
[
fU�(i) j i = 1; . . . ; ng 6= ;:

Since X is a T3-space, it may be assumed that also

(1) F 0y n
[
fU�(i) j i = 1; . . . ; ng 6= ;

for every �nite subfamily U� = fU�(i) j i = 1; . . . ; ng 6= ; � U.

Now let B1 be the family of all sets B� = X nU�. Then, by (1), F 0y nU� 6= ;
and hence F 0y \ B� 6= ;. But then from F 0y \ B� 6= ; () y 2 FB� � FB� it
follows that

(2) y 2
[
fFB� j � 2 Ag:

Since B� = X n U� () B� = X n U� and F 0y � jUj = [fU� j � 2 Ag, we have

\
fB� j � 2 Ag =

\
fX n U� j � 2 Ag = X n

[
fU� j � 2 Ag � X n F 0y:

Since the mapping F is co�nally continuous, then F 0y = fF 0V j V 2 V(y)g by
Lemma 2. If x =2 F 0V , then there is an open set Bx � X so that F 0V � Bx �
Bx � X n fxg and F 0V �

T
fBx j x 2 X n F 0V g.

Let now B2 be the collection of all open sets Bx, if x 2 X n F 0y. Then we
have

adB2 =
\
fBx j x 2 X n F 0yg =

\
fF 0V j V 2 V(y)g = F 0y:

Note that, if B�; B�0 2 B1, then

B� \ B�0 = (X n U�) \ (X n U�0) =

= X n (U� [ U�0) � F 0y n (U� [ U�0) 6= ;;

if Bx; Bx0 2 B2, then there are V; V 0 2 V(y) so that

Bx \ Bx0 � F 0V \ F 0V 0 � F 0y 6= ;;
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and if B� 2 B1 and Bx 2 B2, then

B� \ Bx � B� \ F 0V � B� \ F
0y 6= ;:

Because of that, the family B = B1 [ B2 may by taken as a base of an open
ultra�lter W in X . Observe that the ultra�lter W is free, since

adW � adB =
h\

fB� j � 2 Ag
i
\
h\

fBx j x 2 X n F 0yg
i

� (X n F 0y) \ F 0y = ;:

Now if Bx 2 B2, then there is a set V 2 V(y) so that F 0y � F 0V � F 0V � Bx and
y 2 FF 0y � FBx � FBx. Therefore y 2

T
fFBx j Bx 2 B2g and by (2) we have

y 2
h\

fFB� j � 2 Ag
i
\
h\

fFBx j Bx 2 B2g
i
=
\
fFW jW 2Wg 6= ;:

Now we put fWg = x� and X� = X[fx�g. On the set X� we de�ne a topology T�

keeping on X the existing topology and taking at the point x� as the neighbourhood
system U�(x�) the family fW [ fx�g j W 2 Wg: Then X is a dense subset in the
space (X�;T�) and we may de�ne the mapping F : X� �! Y setting Fx� =T
fFW j W 2 Wg and Fx = Fx if x 2 X . Then y 2 Fx� 6= ; and by Theorem

1, the mapping F is co�nally continuous at x�. So F is a co�nally continuous
extension of F , contrary to the assumption that F is absolutely closed. Hence, the
mapping F is X-compact.

(b) Further, we shall show that F is closed if it is absolutely closed. Let
C � X be any closed set. We need only to prove the inclusion FC � FC.

If y 2 FC n FC, then (8V 2 V(y))(V \ FC 6= ;) and y =2 FC. But y =2 FC
() F 0y \ C = ; and, since F is X-compact, there is an open set B0 � X so that
C � B0 � B0 � X nF 0y: Let now B = B2 [ fB0g, where B2 is the same family as
in (a). Then Bx \B0 � F 0V \C 6= ;, since for each Bx 2 B2, Bx � F 0V for some
V 2 V(y) and

(8V 2 V(y))(V \ FC 6= ;)() (8V 2 V(y))(F 0V \ C 6= ;)

=) (8V 2 V(y))(F 0V \ C 6= ;):

So the family B may be accepted as a base of an open ultra�lter W in the space
X . The ultra�lter W is free, since

adW =
\
fW jW 2Wg � adB =

h\
fBx j x 2 X n F 0yg

i
\B0

=
h\

fF 0V j V 2 V(y)g
i
\ B0 = F 0y \ B0 � F 0y \ (X n F 0y) = ;:

Observe here, that y 2
�T
fFBx j Bx 2 B2g

�
\FB0 6= ;, since by C � B0 it follows

that y 2 FC =) y 2 FB0 and, as is proved in (a), y 2 \fFBx j Bx 2 B2g: As in
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the part (a) of the proof we may de�ne the mapping F : X� �! Y setting Fx� =T
fFW jW 2 Wg and Fx = Fx if x 2 X , where fWg = x� and X� = X [ fx�g.

Then Fx� 6= ;, since y 2
T
fFBx j Bx 2 B2g =

T
fFW j W 2 Wg: The mapping

F is a co�nally continuous extension of F , contrary to the assumption that F is
absolutely closed. Hence, F is closed.

(2) Now let both conditions (a) and (b) hold and let U = fU� j � 2 Ag be
any open ultra�lter with adU =

T
fU�j � 2 Ag = ;. If y 2 Y is a point, then for

each � 2 A, it may not be F 0y\U� 6= ;; since the family F = fF 0y\U� j U� 2 Ug
is a closed �lter in the compact subspace F 0y by (a). Then it must be

; 6=
\
fF 0y \ U� j � 2 Ag = F 0y \

h\
fU� j � 2 Ag

i
= F 0y \ adU

what contradicts the assumption adU = ;. Hence, there is a set U�0 2 U so that
F 0y \ U�0 = ;: Now let W0 = X n U�0 . Then F 0y � W0 and W0 \ U�0 = ;. The
set F#W0 = V0 is open in Y , since W0 is open and F closed. But y 2 F#F 0y �
F#W0 = V0, so V0 is an open nhood of y in Y . Since

W0 \ U�0 = ; =) F#W0 \ FU�0 = ;;

i.e., V0 \ FU�0 = ;, it follows that y =2 FU�0 �
T
fFU�j � 2 Ag. Because the

point y 2 Y is arbitrary, there must be
T
fFU� j � 2 Ag = ;; and F cannot be

extended to a co�nal continuous mapping of any overspace X� in which X is a
dense subspace. So the mapping F is co�nally absolutely closed. �

Corollary 3.1. Let F : X �! Y be an u.s.c. mapping of a T3-space X onto
a compact T2-space Y . Then F is absolutely u.s.c. closed i� (a) F is X-compact
and (b) F is closed.

The corollary follows from the well known fact that, if Y is a compact T2-
space, then the multivalued co�nally continuous mapping F : X �! Y is an u.s.c.
mapping.

Corollary 3.2. Let F : X �! Y be a mapping of a T3-space X onto a
T3-space Y . The mapping F is on both sides co�nally absolutely closed i� it is
perfect (� F and F 0 are closed and F is X-compact and Y -compact).

Note that Corollary 3.2 also presents a characterization of multivalued perfect
mappings.

Let us remark that the next criterion of absolute residual closeness of the
multivalued mappings, which we shall prove further, is a criterion of absolute lower
semicontinuous closeness too, since the class of residual continuous multivalued
mappings is the same as the class of lower semicontinuous mappings. Although that
fact has for a long time been known, for sake of completeness we shall, however,
give a short proof of it.

Let F : X �! Y be a multivalued residual continuous mapping. Since F
is l.s.c. i� the inverse F 0 is open or, equivalently, i� the small inverse F [ of F is



On absolutely closed multivalued mappings of topological spaces 129

closed, it is enough to prove that F [ is closed. Therefore we only needs to prove

the inclusion F [B � F [B; where B � Y is any closed set.

Let us note that (U(x);�) is a directed set, if in U(x) we de�ne partial order
� by U � U 0 () U 0 � U; for U;U 0 2 U(x). Since

x 2 F [B () (8U 2 U(x))(U \ F [B 6= ;);

we may de�ne a net ' : (U(x);�) �! X; converging to x 2 F [B, by putting
'(U) = x

U
2 U \ F [B; for each U 2 U(x). Further, we shall prove the inclusion

lim infU FxU � B: Let y 2 lim infU FxU by any point. Since

'(U) = x
U
2 U \ F [B � F [B () FXu � B;

if U 2 �(V ) = fU j Fx
U
\ V 6= ;g, it follows that ; 6= Fxu \ V � B \ V; for each

V 2 V(y). So y 2 B = B and the implication

y 2 lim inf
U

Fx
U

=) y 2 B

as the inclusion lim infU FxU � B are proved. Since the mapping F is residually
continuous at x i� Fx � lim infU FxU we have the inclusion Fx � B, i.e., x 2 F [B.

So we proved the implication x 2 F [B =) x 2 F [B and the inclusion F [B �
F [B.

Let now F be a l.s.c. mapping and ' : (D;�) �! X a net converging to
x 2 X . But the mapping F is l.s.c. i� the set F 0V � X is open as the set V � Y is
open. So, if V 2 V(y) is an open nhood of a y 2 Fx, then x 2 F 0y � F 0V 2 U(x).
Since the net converges to x, for the nhood F 0V = U 2 U(x), there is an index
d
V
2 D so that, for each d 2 D,

d
V
� d =) '(d) = xd 2 F 0V; i:e:; d

V
� D =) Fxd \ V 6= ;:

Thus we have proved that the set �(V ) = fd j Fx
U
\V 6= ;g is residual in the direct-

ed set (D;�) and, as the set V 2 V(y) is arbitrary, it follows that y 2 lim infU FxU :
So we have proved the implication y 2 Fx =) y 2 lim infU FxU from which fol-
lows the inclusion Fx � lim infU FxU and that F is residually continuous in x 2 X .

The next criterion of absolute residual closeness of the multivalued mappings
is also a criterion of absolute lower semicontinuous closeness, since, as it has been
showed, the class of residual continuous multivalued mappings coincides with the
class of lower semicontinuous (l.s.c.) mappings.

Theorem 4. Let F : X �! Y be a multivalued residually continuous map-
ping of a T2-space X onto a T2-space Y . The mapping F is absolutely residually
closed i� (a) for each free open ultra�lter U in X with adU = ; and each y 2 Y
there is a U 2 U so that F 0y \ U = ;; (b) F is a regular closed mapping.
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Proof. (1) (a) Let the mapping F be absolutely residual closed and let U be
any free open ultra�lter with adU = ;. Let us note that, for each y 2 Y ,

(*) F 0y =
\
fF 0V j V 2 V(y)g;

since the mapping F is pointwise closed. Indeed, since the set Fx is closed and
x =2 F 0y () y =2 Fx; the set V0 = Y nFx is an open nhood of y. Then F 0y � F 0V0,
as y 2 V0 and, because of V0\Fx = ; () x =2 F 0V0; we have proved the implication
x =2 F 0y =) x =2 F 0V0 from which follows the inclusion

\
fF 0V j V 2 V(y)g � F 0V0 � F 0y

and the equality (�).

Let now y 2 Y be any point. If we suppose that F 0y\U 6= ;, for each U 2 U,
then by (�) we have

; 6= F 0y \ U =
h\

fF 0V j V 2 V(y)g
i
\ U =

\
fF 0V \ U j V 2 V(y)g:

So F 0V \ U 6= ;, for each U 2 U and V 2 V(y). Since the mapping F is residually
continuous i� it is l.s.c., the set F 0V is open, so F 0V \ U 6= ;, for each U 2 U
and each V 2 V(y). From the supposition that U is an ultra�lter it follows that
F 0V 2 U, for each set V 2 V(y).

Put now fUg = x�, X� = X [ fx�g and assume for the nhoods of x� 2 X�

all the sets U� = U [ fx�g; U 2 U. If on X we keep the existing topology, then on
X� is de�ned a topology in which X is a dense subset.

Further on X� we de�ne the mapping F : X� �! Y; by putting Fx� = fyg
and Fx = Fx, for each x 2 X . We shall prove that F is a residually continuous
extension of F . Indeed, it is obvious that F is residually continuous at each x 2 X
and we need only to prove that F is residually continuous at x�.

Let ' : (D;�) �! X� and be a net converging to x�. If V 2 V(y), then

x� 2 F
0

y � F
0

V = fx�g [ F 0V = U� and so U� is an open nhood of x�. Then
there is an index d0 2 D so that for each d 2 D

d � d0 =) '(d) = xd 2 F 0V; i.e., d � d0 =) Fxd \ V 6= ;:

Since for each x 2 X; Fx = Fx, it follows that d � d0 =) Fxd \ V 6= ;:
Thus we have proved that the set �(V ) = fd j Fxd \ V 6= ;g is residual in
the directed set (D;�), for any set V 2 V(y). Then y 2 lim infd Fxd, thus we
proved the implication y 2 fyg = Fx� =) y 2 lim infd Fxd as well as the
inclusion fyg = Fx� � lim infd Fxd; which shows that the mapping F is residually
continuous at x�, since ' : (D;�) �! X� is an arbitrary net converging to x�. But
then the mapping F is not absolutely residually closed, contrary to the supposition.
So F satis�es the condition (a).
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(b) Let C = IntC � X be any regularly closed set. If we prove the inclusion
FC � FC; then the condition (b) will be proved. Let y 2 FC be any point. Then
V \ FC 6= ; for each nhood V 2 V(y) and also F 0V \ IntC 6= ;, since

V \ FC 6= ; () ; 6= F 0V \ C = F 0V \ IntC () F 0V \ IntC 6= ;:

If V; V 0 2 V(y), then V 00 = V \ V 0 2 V(y) and

; 6= F 0V 00 \ IntC � [F 0V \ IntC] \ [F 0V 0 \ IntC]:

Then we may assume that the family B = fF 0V \ IntC j V 2 V(y)g as a base of
an open ultra�lterW of all open sets W � X containing any set F 0V \ IntC 2 B.
Then, obviously, IntC 2 U and fF 0V j V 2 V(y)g � U.

If we suppose that y =2 FC, then ; = F 0y \ C � F 0y \ IntC and

\
W =

\
fW jW 2Wg �

\
fF 0V \ IntC j V 2 V(y)g

=
h\

fF 0V j V 2 V(y)g
i
\ IntC = F 0y \ IntC = ;;

and it follows that the ultra�lter W is free. Then, as in the part (a), putting
fWg = x�, X� = X [ fx�g and de�ning a topology on X� and the mapping
F : X� �! Y as in (a), we obtain that F is a residual continuous extension of F
contrary to the supposition that F is absolutely residually closed. So F satis�es
the condition (b).

(2) Now let F satisfy both (a) and (b), and suppose F is not absolutely
residually closed. Then, there is a residual continuous extension F : X� �! Y of
F , where X� is any space in which X is a dense subset.

If x� 2 X� n X , then the family U�(x�) of open nhoods of x� in X� is an
open ultra�lter and the family U = fU j U = U� \X;U� 2 U�(x�)g is a free open
ultra�lter in the subspace X , since

T
fU� j U� 2 U�(x�)g = fx�g in each T2-space.

If y 2 Fx� then by (a) there is a set U0 2 U so that F 0y \ U0 = ;: But then
y =2 FU0 and, since F is by (b) regularly closed, the set FU0 is closed in Y . So
V0 = Y n FU0 is an open nhood of y, since y 2 Y n FU0 = V0: Because F is a

residually continuous mapping i� is l.s.c., the set F
0

V0 is in X� an open set, as the

set V0 is open. The set F
0

V0 is, also, an nhood of the point x in the space X�, since
from y 2 Fx� and y 2 V0 it follows that Fx� \ V0 6= ; and x� 2 FV0.

So FV0 2 U�(x�) and FV0 \ X = FV0 2 U and, as U is an ultra�lter,
FV0\U 6= ;, for each U 2 U. But since FV0\U 6= ; () V0\FU 6= ; and U0 2 U,
it must be also ; 6= V0 \ FU0 � V0 \ FU0 = (Y n FU0) \ FU0; what is impossible.
Hence, the mapping F is absolutely residually closed. �

Corollary 4.1. A multivalued continuous (� u.s.c. & l.s.c.) mapping
F : X �! Y of a T2-space X onto a T2-space Y is absolutely closed i� (a) for each
free open ultra�lter U in X with adU = ; and each y 2 Y , there is a U 2 U so that
F 0y \ U = ;; (b) F is a regular closed mapping.
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Corollary 4.2. A singlevalued continuous mapping f : X �! Y of a T2-
space X onto a T2-space Y is absolutely closed i� (a) for each free open ultra�lter

U in X with adU = ; and each y 2 Y there is a U 2 U so that f�1y \ U = ;; (b)
F is a regular closed mapping.
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