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QUADRATIC MINIMIZATION PROBLEM

ON ELLIPSOID AND POLYHEDRON
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Abstract. We consider existence of solutions for quadratic minimization
problem on an ellipsoid and on a polyhedron. In the case of polyhedron, we present
a necessary and suÆcient conditions for Tikhonov well-posedness of the problem.

1. We consider the following extremal problem:

J(u) = kAu� fk2F ! inf ; u 2 U;

where U is the ellipsoid

U = fu 2 H : kBukG � Rg

or the polyhedron

U = fu 2 H : hci; ui � �i; i = 1; . . . ;mg:

Here H , F , G are real Hilbert spaces; A : H ! F , B : H ! G are bounded
linear operators; f 2 F , ci 2 H , ci 6= 0, i = 1; . . . ;m are �xed elements from the
corresponding spaces; �i, i = 1; . . .m and R > 0 are given real numbers.

The results of this paper complete the results from [1]{[3]. Namely, in the
case of an ellipsoid (1), (2), we get necessary conditions for the existence of solutions
and show that these conditions are suÆcient for normal solvable operators A and B;
in the case of polyhedron (1), (3), we present the necessary and suÆcient conditions
for the existence of solutions as well as for the well-posedness.
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Let us introduce the following notation: R(A) is the range space of the oper-
ator A, AU = fAu : u 2 Ug is the image of U under the action of A, KerA is the
kernel of A, A� : F ! H is the adjoint operator of A, M is the closure of the set
M � H with respect to the norm of H , L? is the orthogonal complement of the
subspace L, P is the orthogonal projector of H onto R(A�).

The operators A and B generate the following orthogonal decompositions of
H :

H = R(A�)�KerA; H = R(B�)�KerB:

An operator A is called normal solvable if R(A) = R(A): This condition is equiva-

lent to R(A�) = R(A�) [4].

Lemma 1. [5] A linear bounded operator A : H ! F is normal solvable if
and only if

� = inffkAuk : u ? KerA; kuk = 1g > 0:

This lemma implies immediately

Lemma 2. If a linear bounded operator A : H ! F is not normal solvable,
then there exists a sequence (pn) such that

pn 2 R(A�); kpnk = 1; pn * 0; Apn ! 0 as n!1:

Let us notice that the set U in (2) and (3) is convex and closed with respect
to the norm of H . If, moreover, the set U in (2) is bounded, then the existence of
a solution for (1), (2) for each f 2 F follows by Weierstrass theorem [6]. If U is
unbounded (that is always so for U in (3) when dimH = 1), then the problems
(1), (2) and (1), (3) have solutions for each f 2 F if and only if AU is a closed
set in F (see [1], [2]). We will use this existence criterion repeatedly in the sequel.
Now we formulate the necessary conditions for the solvability of the problem (1),
(2).

Theorem 1. Suppose that the problem (1), (2) has a solution for each f 2 F .
Then at least one of the following conditions is satis�ed:

R(A�) \ R(B�B) = f0g;(i)

KerA+KerB = KerA+KerB:(ii)

Proof. Assume that R(A�) \ R(B�B) 6= f0g. The continuity of the operator
A and the closure of the set AU imply that the set

A�1(AU) = KerA+KerB + VR;

where VR = fu 2 R(B�) : kBuk � Rg, is closed in the space H . Let y 2 R(A�) \
R(B�B), y 6= 0. Take a point z 2 H such that y = B�Bz. Present z, according to
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(4), in the form z = z1 + z2; z1 2 R(B�); z2 2 KerB. Then y = B�Bz1, and, for
the point x0 =

R
kBz1k

z1, we have

x0 2 R(B�); B�Bx0 2 R(A�) \ R(B�B); kBx0k
2 = R2;

in particular, x0 2 VR. Now take any point y0 2 KerA+KerB. The point y0+x0
is a limit point of the closed set KerA+KerB+VR. Therefore, the point y0+x0 is
presentable as y0+x0 = p0+z0, where p0 2 KerA+KerB and z0 2 VR. Multiplying
both sides of (6) by B�Bx0 and taking into account (5) and the orthogonality

R(A�) \ R(B�B) ? KerA+KerB;

we �nd that R2 = kBx0k2 = hBz0; Bx0i. Since z0 2 VR, we obtain

kB(x0 � z0)k
2 = kBx0k

2 � 2hBx0; Bz0i+ kBz0k
2 � 0

and therefore x0 = z0. Now we have y0 = p0 2 KerA +KerB. Recalling that y0
was an arbitrary point from KerA+KerB, we �nally get the condition (ii). This
concludes the proof. �

The following example shows that the assumptions about normal solvability of
both operators A and B do not guarantee the existence of solutions of the problem
(1), (2) for all f 2 F .

Example. Take H = F = G = l2 and consider two closed subspaces of l2:

L = fx 2 l2 : x = (0; x2; 0; x4; 0; x6; 0; . . . )g;

M = fx 2 l2 : x = (0; x2; x2=2; x4; x4=4; x6; x6=6; . . . )g:

De�ne A as the orthoprojector of l2 onto L
? and B as the orthoprojector of l2 onto

M?. Then A = A�, B = B� = B�B, KerA = L, KerB = M , operators A and B
are normal solvable but both relations (i) and (ii) from Theorem 1 are violated:

x0 = (1; 0; 0; . . . ) 2 R(A�) \R(B�B) = L? \M? 6= f0g;

KerA+KerB = L+M 6= L+M = KerA+KerB = fx0g
?:

It means that in this case the problem (1), (2) can not have a solution for each
f 2 l2.

One can ask about additional conditions that normal solvable operators A
and B should satisfy for the existence of a solution of the problem (1), (2) for each
f 2 F . In order to answer this question, we shall prove the following

Lemma 3. Let A be a normal solvable operator and let V � H be a convex
closed set. Then

AV = A(KerA+ V ):
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Proof. For each y0 2 AV there exists a sequence (un); un 2 V such that the
sequence yn = Aun converges to y0 as n!1. According to (4) we can present un
as

un = xn + zn; xn 2 R(A�); zn 2 KerA:

Then
Axn = Aun = yn ! y0; n!1:

As the operator A is normal solvable, (7) implies that the sequence (xn) is bounded.
Therefore, (xn) (or some its subsequence) converges weakly to some limit x0 and
also xn 2 V + KerA. The set KerA+ V is weakly closed, thus x0 2 KerA+ V
and

y0 = lim
n!1

Aun = lim
n!1

Axn = Ax0 2 A(KerA+ V ):

Therefore, we have proved the inclusion AV � A(KerA+ V ). Conversely, for each
y0 2 A(KerA+ V ) there exists a sequence un 2 KerA+ V such that the sequence
yn = Aun ! y0 as n!1. Present the elements un 2 KerA+ V in the form:

un = zn + xn; zn 2 KerA; xn 2 V:

Since yn = Aun = Axn 2 AV , it follows that y0 2 AV . Thus we have proved the
inclusion A(KerA+ V ) � AV , which completes the proof. �

Now we show that for normal solvable operators A and B the statement of
Theorem 1 can be inverted.

Theorem 2. Let A and B be normal solvable operators. If at least one of
the conditions (i) or (ii) from Theorem 1 is satis�ed, then the problem (1), (2) has
a solution for each f 2 F .

Proof. First consider the case (ii) when

KerA+KerB = KerA+KerB:

Using Lemma 3 for V = KerB, we get

A(KerB) = A(KerA+KerB) = A(KerA+KerB) = A(KerB);

i.e., the set A(KerB) is closed. Then, by Theorem 3 in [2], it follows that the
problem (1), (2) has a solution.

Now consider the case (i) when R(A�) \ R(B�B) = f0g. Since the operators
A�, B�B are normal solvable and their ranges R(A�), R(B�B) are closed, we get

H = f0g? = (R(A�) \ R(B�B))? = KerA+KerB;

i.e., the set KerA +KerB is dense in H . Note that ellipsoid (2) has a nonempty
interior (we consider R > 0), therefore U+KerA+KerB = H . On the other hand,
U = U +KerB, hence U +KerA = H . Finally, we see that

AU = A(U +KerA) = AH = R(A);
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i.e., the set AU is closed. This concludes the proof. �

Let us consider the existence problem for (1), (3). Suppose the operator
B : H ! Rm is de�ned by Bu = (hc1; ui; hc2; ui; . . . ; hcm; ui); u 2 H . The
operator B is normal solvable and

R(B�) =
n mX
i=1

�ici : �i 2 R1; i = 1; . . . ;m
o
= L(c1; c2; . . . ; cm):

Since H = R(B�)�KerB, the constraints (3) can be presented in the form

(f1) U = V� �KerB;

where
V� = fv 2 R(B�) : hci; vi � �j ; j = 1; . . . ;mg:

Theorem 3. The problem (1), (3) has a solution for each f 2 F if and only
if the operator A is normal solvable.

Proof. The implication normal solvability) existence was proved in [1, p. 12].
Let us prove the converse implication. First observe that (f1) implies AU = AV� +

A(KerB). We claim that AU = AV� +A(KerB). Since by assumption the set AU

is closed, we see that any point y 2 AV� +A(KerB) as a limit point of AU belongs

to AU . So, we have obtained that AV� + A(KerB) � AU . It is obvious that the
inverse inclusion is valid. Therefore

AV� +A(KerB) = AV� +A(KerB)

is really true. Adding A(R(B�)) to both sides, by the inclusion V� � R(B�), we
get

R(A) = A(R(B�)) +A(KerB) = A(R(B�)) +A(KerB):

To conclude the proof, it remains to note that the set R(A) is closed as a sum of

the �nite-dimensional subspace A(R(B�)) and the closed subspace A(KerB). �

2. Consider the question of well-posedness for the problem (1), (3) in
Tikhonov sense.

De�nition. [1] The problem (1) is well-posed in the space H in Tikhonov
sense if the following three conditions hold: 1) J� = inffJ(u) : u 2 Ug > �1;
2) U� = fu 2 U : J(u) = J�g 6= ;; 3) each minimizing sequence (un) of the problem
(1) converges strongly in H to the solution set U�, i.e.,

d(un; U�) = inffkun � uk : u 2 U�g ! 0 as n!1:

If at least one of the conditions 1), 2), 3) is not valid, then the problem is
called ill-posed.
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Theorem 4. The problem (1), (3) is well-posed in the sense of Tikhonov if
and only if the operator A is normal solvable.

Proof. Let A be a normal solvable operator and let un be an arbitrary min-
imizing sequence of the problem (1), (3). Present the elements un in the form
un = Pun + (I � P )un and note that

(f2) kPun � Pu�k ! 0 as n!1;

where u� 2 U� is a solution (for instance, normal) of the problem (1), (3). Consider
the sequence vn = Pu� + (I � P )un. Then

J(vn) = J(Pu�) = J(u�) = J�

and

hci; vni = hci; Pu�i+ hci; (I � P )uni = hci; uni+ hci; Pu� � Puni; i = 1; 2; . . . ;m:

Let us introduce the notation �in = hci; Pu��Puni. The last relation implies that

(f3) hci; vni � �i + �in;

and, moreover, according to (f2)

(f4) �in ! 0 as n!1; i = 1; 2; . . . ;m:

Present the set U� in the form: U� = (Pu� +KerA) \ U and notice that v 2 U� if
and only if v = Pu� + (I � P )v and

(f5) �i � hci; vi = hci; Pu�i+ hci; (I � P )vi; i = 1; . . . ;m:

Take the �nite-dimensional subspace

L = Lf(I � P )c1; (I � P )c2; . . . ; (I � P )cmg

and denote by Q the orthogonal projector of H onto L. Then we have

(f6) h(I � P )ci; (I � P )vi = h(I � P )ci; Qvi; i = 1; . . . ;m:

According to (f5) and (f6), we get that for each v 2 U�

(f7) h(I � P )ci; Qvi � �i � i; i = 1; 2; . . . ;m;

where i = hci; Pu�i. Using (f3), (f7), we obtain

(f8) h(I � P )ci; Qvni � �i � i + �in; i = 1; 2; . . . ;m; n = 1; 2; . . .
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In the subspace L de�ne the set W by

(f9) W = fw 2 L : h(I � P )ci; wi � �i � i; i = 1; 2; . . . ;mg:

According to (f7), Qv 2 W for all v 2 U�. By virtue of (f4), (f8), and Ho�man's
lemma [7] we derive

(f10) d(Qvn;W ) = inffkQvn � wk : w 2Wg ! 0; n!1:

Note that in (f10) the in�mum is achievable for each n = 1; 2; . . . and take the
elements wn 2 W so that d(Qvn;W ) = kQvn � wnk. Furthermore, consider the
sequence yn = Pu�+(I�Q)(I�P )un+wn; n = 1; 2; . . . Then, for all n = 1; 2; . . . ,
J(yn) = J(Pu�) = J(u�) = J�, and using (f9) we get

hci; yni = hci; Pu�i+ h(ci; (I �Q)(I � P )uni+ hci; wni

= i + hci; (I � P )uni � hQci; (I � P )uni+ hci; wni

= i + h(I � P )ci; (I � P )uni � h(I � P )ci; (I � P )uni+ h(I � P )ci; wni

� i + �i � i = �i:

This means that (yn) is a minimizing sequence for the problem (1), (3) (moreover,
yn 2 U�). Let us now note that

kvn � ynk = kPu� + (I � P )un � Pu� � (I �Q)(I � P )un � wnk

= kQ(I � P )un � wnk = kQvn � wnk:

Finally, by (f10), we obtain

d(un; U�) � kun � ynk � kun � vnk+ kvn � ynk

= kPun � Pu�k+ kQvn � wnk ! 0; n!1;

hence, the well-posedness of the problem (1), (3) is proved.

Suppose conversely, that the problem (1), (3) is well-posed in the sense of
Tikhonov. It is necessary to prove that the operator A is normal solvable. Let
us suppose conversely that R(A�) 6= R(A�). Then, according to Lemma 2, there
exists a sequence pn such that

(f11) pn 2 R(A�); kpnk = 1; pn * 0; Apn ! 0; n!1:

Let c1; . . . ; ck be some base of the system c1; . . . ; cm. De�ne the sequences
(�n1); . . . ; (�nk ) so that for the elements

vn = u� + pn +

kX
i=1

�nici
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we have
hvn; cii = hu�; cii; i = 1; . . . ;m:

These relations form a system of linear equations

�n1hc1; cii+ �n2hc2; cii+ � � �+ �nkhck ; cii = �hpn; cii; i = 1; . . . ;m:

This system is equivalent to the shortened system

(f12) �n1hc1; cii+ �n2hc2; cii+ � � �+ �nkhck ; cii = �hpn; cii; i = 1; . . . ; k:

The system (f12) has a unique solution �n1 ; . . . ; �nk ; moreover, by virtue of (f11),
we have

lim
n!1

�ni = 0; i = 1; . . . ; k:

Thus we see that (vn) is a minimizing sequence; however, by (f11), we derive that

d2(vn; U�) � kpnk
2 �

kX
i=1

�2ni kcik
2 ! 1 as n!1:

Therefore, we have constructed a minimizing sequence (vn) that does not converge
to the solution set U�, but this is impossible under the above assumption of the
well-posedness of the problem (1), (3). This completes the proof. �
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