PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 62 (76), 1997, 99–104

ON PRE-PARAREFLEXIVE OPERATOR ALGEBRAS

Pawan Bala

Communicated by Stevan Pilipović

Abstract. The notions of pre-parareflexivety and pre-algebraic reflexivity are introduced and studied. The conditions under which pre-parareflexivity coincides with pre-reflexivity or pre-algebraic reflexivity, are obtained.

Let H denote an infinite-dimensional separable complex Hilbert space and B(H), the set of all bounded linear operators on H. An operator range is a linear manifold in H that is also the range of an operator in B(H). For any set $S \subseteq B(H)$, Lat S denotes the lattice (with closed linear span as join and intersection as meet) of all the closed linear subspaces of H invariant under every operator in S, Lat_{1/2} S denotes the lattice (with algebraic sum of linear manifolds as join and intersection as meet) of all operator ranges invariant under every operator in S and Lat₀ S denotes the lattice of all invariant linear manifolds for S. If S is singleton say $\{T\}$, we write these notions as Lat T, Lat_{1/2} T and Lat₀ T respectively. Alg Lat S (Alg Lat_{1/2} S, Alg Lat₀ S) denotes the algebra of all operators leaving invariant every member of Lat S (Lat_{1/2} S, Lat₀ S respectively). A weakly closed algebra \mathcal{A} containing identity is called reflexive if Alg Lat $\mathcal{A} = \mathcal{A}$ and pre-reflexive [1] if

$$(\operatorname{Alg}\operatorname{Lat}\mathcal{A})\cap (\operatorname{Alg}\operatorname{Lat}\mathcal{A})^* = \mathcal{A}\cap \mathcal{A}^*$$

where $\mathcal{A}^* = \{T^*: T \in \mathcal{A}\}$. Ong [8] considered an analogous notion of reflexivity with respect to the lattice of invariant operator ranges and the lattice of invariant linear manifolds.

Definition 1. [8]. An algebra $\mathcal{A} \subseteq B(H)$ (not necessarily closed in any topology) is parareflexive if for any $T \in B(H)$ with $\operatorname{Lat}_{1/2} T \supseteq \operatorname{Lat}_{1/2} \mathcal{A}$ we have $T \in \mathcal{A}$. Equivalently $\operatorname{Alg}\operatorname{Lat}_{1/2} \mathcal{A} = \mathcal{A}$.

AMS Subject Classification (1991): Primary 47D25

Key words and Phrases: Pre-reflexive algebra, parareflexive algebra, pre-parareflexive algebra, pre-algebraically reflexive algebra, strictly cyclic algebra, operator range.

Bala

Definition 2. [8]. An algebra \mathcal{A} is algebraically reflexive if \mathcal{A} contains all operators $T \in B(H)$ such that $\operatorname{Lat}_0 T \supseteq \operatorname{Lat}_0 \mathcal{A}$. Equivalently $\operatorname{Alg}\operatorname{Lat}_0 \mathcal{A} = \mathcal{A}$.

In this paper we define an operator range analogue of prereflexive algebras namely, pre-parareflexive algebras and discuss some properties of such algebras.

Definition 3. An algebra \mathcal{A} is said to be pre-parareflexive if

$$\mathcal{A} \cap \mathcal{A}^* = (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^*$$

Definition 4. An algebra \mathcal{A} is said to be prealgebraically reflexive if

 $\mathcal{A} \cap \mathcal{A}^* = (\operatorname{Alg}\operatorname{Lat}_0 \mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_0 \mathcal{A})^*.$

It is easily seen that every parareflexive algebra is pre-parareflexive and every algebraically reflexive algebra is prealgebraically reflexive. For more details on parareflexive algebras and algebraically reflexive algebras, one may refer to [4], [6], [8].

THEOREM 5. Every prereflexive algebra is pre-parareflexive and every preparareflexive algebra is prealgebraically reflexive.

Proof. As Lat $\mathcal{A} \subseteq \operatorname{Lat}_{1/2} \mathcal{A} \subseteq \operatorname{Lat}_0 \mathcal{A}$, we have

 $\operatorname{Alg}\operatorname{Lat}_0\mathcal{A}\subseteq\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}\subseteq\operatorname{Alg}\operatorname{Lat}\mathcal{A}.$

This implies that

$$(\operatorname{Alg}\operatorname{Lat}_{0}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{0}\mathcal{A})^{*} \subseteq (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^{*}$$
$$\subseteq (\operatorname{Alg}\operatorname{Lat}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}\mathcal{A})^{*}$$

The result follows.

THEOREM 6. Any algebra unitarily equivalent to a pre-parareflexive algebra is pre-parareflexive.

Proof. Let \mathcal{A} be a pre-parareflexive algebra and S, a unitary operator. Let

$$\mathcal{B} = S\mathcal{A}S^* = \{SAS^* : A \in \mathcal{A}\}$$

be an algebra unitarily equivalent to \mathcal{A} . Let

$$T \in (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{B}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{B})^*$$

Then

$$\operatorname{Lat}_{1/2} \mathcal{B} \subseteq \operatorname{Lat}_{1/2} T$$
 and $\operatorname{Lat}_{1/2} \mathcal{B} \subseteq \operatorname{Lat}_{1/2} T$

Let M be an operator range invariant under \mathcal{A} . Then

$$\mathcal{B}S(M) = (S\mathcal{A}S^*)S(M) \subseteq S(M)$$

Therefore S(M) is an operator range invariant under \mathcal{B} and thus under T and T^* both. This implies that for $M \in \operatorname{Lat}_{1/2} \mathcal{A}$

$$(S^*TS)M \subseteq M$$
 and $S^*T^*S(M) \subseteq M$.

Thus

$$S^*TS \in (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^* = \mathcal{A} \cap \mathcal{A}^*,$$

or

$$T \in (S\mathcal{A}S^*) \cap (S\mathcal{A}^*S^*) = \mathcal{B} \cap \mathcal{B}^*.$$

COROLLARY 7. An algebra unitarily equivalent to a parareflexive algebra is parareflexive.

For a Hilbert space H, the tensor product of H with itself denoted by $H \otimes H$ is the space $\sum_{n=1}^{\infty} \oplus H_n$ with $H_n = H$ for all n. For an algebra \mathcal{A} the tensor product $\mathcal{A} \otimes B(H)$ is the set of all operators on $H \otimes H$ of the form

A_{11}	A_{12}	A_{13}	· · ·]
A_{21}	A_{22}	A_{23}	
A_{31}	A_{32}	A_{33}	
•			
· ·			

such that $A_{ij} \in \mathcal{A}$ for all i and j.

THEOREM 8. If \mathcal{A} is a preparareflexive algebra then, $\mathcal{A} \otimes B(H)$ is pre-parareflexive.

Proof. Let $T \in (\operatorname{Alg}\operatorname{Lat}_{1/2} \mathcal{A} \otimes B(H)) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2} \mathcal{A} \otimes B(H))^*$. Then

 $\operatorname{Lat}_{1/2} \mathcal{A} \otimes B(H) \subseteq \operatorname{Lat}_{1/2} T$ and $\operatorname{Lat}_{1/2} \mathcal{A} \otimes B(H) \subseteq \operatorname{Lat}_{1/2} T^*$.

Here T is an operator on $H \otimes H$ which is of the form

$ B_{11} $	B_{12}	B_{13}	· · ·]
B_{21}	B_{22}	B_{22}	
B_{31}	B_{32}	B_{33}	
	•		
ι.	•		

where $B_{ij} \in B(H)$. Let M be an operator range invariant under \mathcal{A} . Let $N = \sum_{k=1}^{\infty} \oplus M_k$ where $M_k = M$ for each k. Then N is an operator range invariant under $\mathcal{A} \otimes B(H)$ and thus invariant under both T and T^* . This implies that M is invariant under every B_{ij} and B_{ij}^* . Thus

$$B_{ij} \in (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^* = \mathcal{A} \cap \mathcal{A}^*$$

Bala

implying that $T \in (\mathcal{A} \otimes B(H)) \cap (\mathcal{A} \otimes B(H))^*$.

COROLLARY 9. If \mathcal{A} is a parareflexive algebra, then $\mathcal{A} \otimes B(H)$ is also parareflexive.

Remark. We may likewise prove that for a prealgebraically reflexive algebra \mathcal{A} :

(i) $\mathcal{A} \otimes B(H)$ is prealgebraically reflexive,

(ii) SAS^* is prealgebraically reflexive for any unitary operator S.

THEOREM 10. Let \mathcal{A} be a weakly closed algebra of operators such that every operator range invariant under \mathcal{A} is the range of an operator of the form

$$\sum 2^{-k} (E_{k+1} - E_k),$$

where $\{E_k\}$ is an increasing sequence of projections whose ranges are in Lat \mathcal{A} . Then \mathcal{A} is pre-parareflexive if and only if \mathcal{A} is prereflexive.

Proof. Let \mathcal{A} satisfy the hypothesis and let

$$\mathcal{A} \cap \mathcal{A}^* = (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^*.$$

Let $T \in (\operatorname{Alg}\operatorname{Lat} \mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat} \mathcal{A})^*$. Let R be any operator range invariant under \mathcal{A} and let R be the range of the operator $P = \sum 2^{-k} (E_{k+1} - E_k)$ for some increasing sequence $\{E_k\}$ of projections in Lat \mathcal{A} . Let F be the spectral measure of P. Then

$$F(2^{-k},1] = E_k \in \operatorname{Lat} \mathcal{A}$$

which is contained in both Lat T and Lat T^* . Thus the range of $F(2^{-k}, 1]$ is invariant under T and T^* , for $k = 1, 2, 3, \ldots$ By [7, Theorem B], the range R of P is invariant under both T and T^* . This implies that

$$\operatorname{Lat}_{1/2} \mathcal{A} \subseteq \operatorname{Lat}_{1/2} T$$
 and $\operatorname{Lat}_{1/2} \mathcal{A} \subseteq \operatorname{Lat}_{1/2} T^*$.

This gives

$$T \in (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^* = \mathcal{A} \cap \mathcal{A}^*.$$

Hence \mathcal{A} is prereflexive.

COROLLARY 11. Let \mathcal{A} be a weakly closed algebra containing a maximal abelian selfadjoint algebra. Then \mathcal{A} is prereflexive if and only if it is pre-parareflexive.

An algebra \mathcal{A} is said to be strictly cyclic [5] on a Hilbert space H if there exists a vector x_0 in H such that $\mathcal{A}x_0 = H$. In the following we prove that abelian strictly cyclic prealgebraically reflexive algebras are pre-parareflexive.

THEOREM 12. Let \mathcal{A} be a strictly cyclic abelian algebra of operators. Then \mathcal{A} is pre-parareflexive if and only if \mathcal{A} is prealgebraically reflexive.

102

Proof. For any $x \in H$, Ax is an operator range invariant under A and any invariant linear manifold of A is the sum of spaces of the form Ax. Thus $\text{Lat}_0 A \subseteq \text{Lat}_{1/2} A$ and therefore

$$(\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^* = (\operatorname{Alg}\operatorname{Lat}_0\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_0\mathcal{A})^*.$$

Definition 13. For an algebra \mathcal{A} , $\operatorname{Lat}_{1/2} \mathcal{A}$ is said to be commutative if there exists a commuting set of positive operators such that every element of $\operatorname{Lat}_{1/2} \mathcal{A}$ is the range of some operator in this set.

THEOREM 14. Let \mathcal{A} be pre-parareflexive algebra. The following are equivalent.

- (i) A contains a maximal abelian selfadjoint algebra.
- (ii) $\operatorname{Lat}_{1/2} \mathcal{A}$ is commutative.

Proof. Let $\operatorname{Lat}_{1/2} \mathcal{A}$ be commutative. Let $S \subseteq B(H)$ be a commutative set of positive operators such that every element of $\operatorname{Lat}_{1/2} \mathcal{A}$ is the range of some operator in S. Then S', the commutant of S, and $\mathcal{A}(S)$, the weakly closed algebra generated by S, leave invariant all the elements of $\operatorname{Lat}_{1/2} \mathcal{A}$ and thus are contained in AlgLat $_{1/2} \mathcal{A}$. Between $\mathcal{A}(S)$ and S', there is a maximal abelian selfadjoint algebra, say M. As M is selfadjoint, $M \subseteq (\operatorname{AlgLat}_{1/2} \mathcal{A})^*$. This implies that

$$M \subseteq (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A}) \cap (\operatorname{Alg}\operatorname{Lat}_{1/2}\mathcal{A})^* = \mathcal{A} \cap \mathcal{A}^*.$$

If \mathcal{A} contains a maximal abelian selfadjoint algebra, then every element of $\operatorname{Lat}_{1/2} \mathcal{A}$ is the range of some operator in the maximal abelian selfadjoint algebra [3]. Thus $\operatorname{Lat}_{1/2} \mathcal{A}$ is commutative.

Corollary 11 together with Theorem 15 imply the following.

COROLLARY 15. If \mathcal{A} is a weakly closed algebra with commutative Lat_{1/2} \mathcal{A} , then \mathcal{A} is pre-parareflexive if and only if \mathcal{A} is prereflexive.

Definition 16. An operator T on H is called a parareflexive operator if every operator S on H leaving invariant all invariant operator ranges of T, is an entire function of T. Equivalently, if $S \in \text{Alg} \text{Lat}_{1/2} T$, then S is an entire function of T.

THEOREM 17. Let \mathcal{A} be a commutative parareflexive algebra on a finitedimensional space. Then each element of \mathcal{A} is parareflexive.

Proof. Let $T \in \mathcal{A}$. Let $B \in \operatorname{Alg}\operatorname{Lat}_{1/2} T$. Then

$$\operatorname{Lat}_{1/2} \mathcal{A} \subseteq \operatorname{Lat}_{1/2} T \subseteq \operatorname{Lat}_{1/2} B.$$

This implies that $B \in \text{Alg} \text{Lat}_{1/2} \mathcal{A} = \mathcal{A}$. As \mathcal{A} is commutative, BT = TB. Also $B \in \text{Alg} \text{Lat} T$ and acts on a finite-dimensional space. By [2, Theorem 10], B is a polynomial in T. Thus T is a parareflexive operator.

Bala

Acknowledgement: The author is thankful to Dr. S.C. Arora for many helpful suggestions.

References

- 1. W. Arveson, Operator algebras and invariant subspaces, Annals of Math. 100 (1974), 433-532.
- L. Brickman and P.A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19 (1967), 810–822.
- 3. C. Foias, Invariant paraclosed subspaces, Indiana Univ. Math. J. 21 (1972), 881-907.
- D.W. Hadwin and S.C. Ong, On algebraic and parareflexivity, J. Operator Theory 17 (1987), 23-31.
- 5. A. Lambert, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717-726.
- 6. M. Omladič, Parareflexive operators on Banach spaces, Michigan Math. J. 37 (1990), 133-143.
- S.C. Ong, Converse of a theorem of Foias and reflexive lattices of operator ranges, Indiana Univ. Math. J. 30 (1981), 57-63.
- S.C. Ong, A note on parareflexivity of algebras of operators, Rev. Roumane Math. Pures Appl. 32 (1987), 551-553.

Department of Mathematics Kirori Mal College Delhi University Delhi 110007 India (Received 24 07 1996)