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Abstract. The exact asymptotics of singular values of a fractional integral
operator

I�� =

xZ

0

(x� y)��1

�(�)
� dy

for 1=2 < � is found. The results related to asymptotic behavior of singular val-
ues of convolution operators similar to fractional integral operator are given. We
also obtained a result about the asymptotic behavior of convolution operators with
logarithm-singularity.

1. Introduction. In [7] Hille and Tamarkin obtained bounds for the eigen-
values of fractional integral operators (F.I.O.). Chang [1] extended these results to
singular values of ordinary integral operators.

Faber and Wing [3] found an upper bound for the singular values of F.I.O.
and some other similar operators. They stated as an open problem to �nd the
precise asymptotics of the singular values of I� for 0 < � < 1. Also, the following
is conjectured:

If K1 and K2 are two convolution operators

Ki� =
Z x

0

Ki(x� y) � dy; i = 1; 2

whereKi are smooth functions on (0; 1] so that lim
x!0

K1(x)

K2(x)
= 1; then lim

n!1

sn(K1)

sn(K2)
= 1.

(sn(Ki) are the singular values of Ki).
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The conjecture is shown in the case

(�) Ki(x) = xnki(x);

where ki(0) = 1 and n in a natural number.

In this paper we will prove the conjecture when Ki are of the form (�) and n
is not a natural number. We will also �nd the exact asymptotics of singular values
of F.I.O. I� for � > 1=2. The case 0 < � � 1=2 was treated in [2]. The conjecture
with kernels Ki having logarithm-singularity in the point x = 0 will be proved.

Asymptotic behavior of singular values and singular functions of convolution
operators with suÆciently smooth kernels can be found in [5].

2. The singular values of F.I.O. Let H be a complex Hilbert space and
T a compact operator on H . The singular values of T (sn(T )) are eigenvalues of
the operator (T �T )1=2 (or (TT �)1=2).

We will consider the operator I� : L2(0; 1)! L2(0; 1) de�ned by

(I�f)(x) =
1

�(�)

Z x

0

(x� y)��1f(y)dy:

It is easy to prove that I� is compact [3].

Theorem 1. If � > 0, then limn!1 n�sn(I
�) = ���.

The case 0 < � � 1=2 is proved in [2]. Before proving Theorem 1, we will
prove some lemmas.

Lemma 1. If � 2 (n; n+ 1=2) [ (n+ 1=2; n+ 1) (n = 0; 1; 2; . . . ) and
B : L2(0; 1)! L2(0; 1) is de�ned by

Bf(x) =

Z 1

0

jx� yj2��1
2�(2�) cos��

f(y)dy;

then lim
n!1

n2�sn(B) = ��2�.

In [11] and [13] are given some results about eigenvalues of integral operators
with kernels \close to" kernel of operator B. We give a new proof of Lemma 1.

Proof of Lemma 1. Let us consider the function

G2�(x) =
21=2��p
��(�)

K1=2��(jxj) � jxj��1=2;

where K�(�) is McDonald function. It is known that G2�(�) 2 L1(R) andZ
R

eitxG2�(t)dt = (1 + x2)��
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(see [12]). By direct calculation we get

(1) G2�(x) =
21=2��

p
�

2�(�) cos��
� 1

2��1=2�(�+ 1=2)
jxj2��1

+
21=2��

p
�

2�(�) cos��

1X
k=1

jxj2�+2k�1
k!22k+��1=2�(k + �+ 1=2)

+ '0(x)

where '0 is an even entire function.

Let B0� : L2(�1; 1)! L2(�1; 1) be the operator de�ned by

B0�f(x) =

Z 1

�1

G2�(x� y)f(y)dy:

According to Widom's result [13, Theorem 1] we get

(2) sn(B
0

�) � (2=n�)2�; n!1:

Let D� : L2(�1; 1)! L2(�1; 1) be the operator

D�f(x) =
21=2��

p
�

2�(�) cos��

Z 1

�1

jx� yj2��1
2��1=2�(�+ 1=2)

f(y)dy:

Using the Legendre's formula �(2�) =
22��1p

�
�(�)�(� + 1=2) we get

D�f(x) =
1

2�(2�) cos��

Z 1

�1

jx� yj2��1f(y)dy:

From (1), (2), Ky Fan's theorem [6] and a theorem of Krein [6, p. 157] it follows
sn(D�) � sn(B

0

�) and so

(3) sn(D�) � (2=n�)2�:

The operator D� is selfadjoint, therefore from (3), using the substitution
x1 = (1 + x)=2, y1 = (1 + y)=2, we get sn(B) � (�n)�2�, n ! 1. Lemma is
proved. �

Let 0 < � < 1=2, �(t) =
R +1
t

s��1(1 + s)��1ds, � = n+ �,

M(x; y) =

� jx� yj2��1�(x=(y � x)); y > x

jx� yj2��1�(y=(x� y)); x > y
B1f(x) =

Z 1

0

M(x; y)f(y)dy:

Lemma 2. We have limm!1m2�sm(B1) = 0.
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Proof. Let '(t) = t2��1�(1=t) (t) = (1 � t)2��1�(t=(1 � t)). Expanding
functions ' and  in series near the points t = 0 and t = 1 we get

(4)
'(�)(0+) =  (�)(1� 0) = 0; � = 0; 1; . . . ; 2n� 1

'(2n)(0+) =  (2n)(1� 0); '(2n+1)(0+) =  (2n+1)(1� 0):

From

M(x; y) =

�
x2��1'(y=x� 1); y > x

x2��1 (y=x); x > y

and (4) it follows

@�M=@y� jy=x = 0 for � = 0; 1; . . . ; 2n� 1

@�M=@y� jy=x exist for � = 2n and � = 2n+ 1.

Let 0 < Æ < 1 and let PÆ : L
2(0; 1)! L2(0; 1) be the linear operator de�ned by

PÆf(x) =

�
f(x); 0 � x < Æ

0; Æ � x � 1.

Then

(5) B1 = B1(I � PÆ) + (I � PÆ)B1BÆ + PÆB1PÆ:

From

B1(I � PÆ)f(x) =

Z 1

Æ

M(x; y)f(y)dy; and����@2n+1M@y2n+1

���� �MÆ for Æ � y � 1; x 2 [0; 1];

according to Krein's theorem [6, p. 157] we conclude

(6) sm(B1(I � PÆ)) = o(m�2n�3=2); m!1

and from this

(7) sm((I � PÆ)B1PÆ) = o(m�2n�3=2); m!1:

We will show

(8) m2�sm(PÆB1PÆ) � C0 � Æ;

where C0 is a constant independent on both m and Æ.
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The operator PÆB1PÆ : L
2(0; Æ) ! L2(0; Æ) is given by

PÆB1PÆf(x) =

Z Æ

0

M(x; y)f(y)dy (0 < x < Æ):

Let us write PÆB1PÆ = C + C� where

C : L2(0; Æ)! L2(0; Æ); Cf(x) =

Z Æ

x

M(x; y)f(y)dy

C� : L2(0; Æ)! L2(0; Æ); C�f(x) =

Z x

0

M(x; y)f(y)dy:

(C� is the adjoint operator of C). Let I : L2(0; Æ) ! L2(0; Æ) and I� : L2(0; Æ) !
L2(0; Æ) be the operators de�ned by If(x) =

R x
0 f(s) ds and I

�f(x) =
R Æ
x f(s) ds:

Then

Cf(x) =

Z Æ

x

I�2nf(y)
@2nM

@y2n
dy

=

Z Æ

x

I�2nf(y)x2��2n�1'(2n)
�y
x
� 1

�
dy

=

Z Æ

x

I�2nf(y)x2��1'(2n)
�y
x
� 1

�
dy

= DI�2nf(x);

where D : L2(0; Æ)! L2(0; Æ) is the linear operator de�ned by

Df(x) =

Z Æ

x

x2��1'(2n)
�y
x
� 1

�
f(y)dy:

The fact sn(I
�) = sn(I) = Æ=�(n� 1=2) [6, p. 155] implies that inequality (8) will

be proved if we prove

(9) m2�sm(D) � C1 � Æ;
where the constant C1 is independent on both m and Æ.

Let D� be the conjugate operator of the operator D in the space L2(0; Æ).
Then

D�f(x) =

Z x

0

y2��1'(2n)
�
x

y
� 1

�
f(y)dy:

FromZ x

0

y2��1'(2n)
�
x

y
� 1

�
f(y)dy =

Z x

0

(I2�f)(y)A(x; y)dy; [12, pp. 42, 43],

where

A(x; y) = � 1

�(1� 2�)

d

dy

Z x

y

t2��1'(2n)
�
x
t � 1

�
(t� y)2�

dt:
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it follows

(10) D� = F � I2� ;

where

I2� : L2(0; Æ)! L2(0; Æ); I2�f(x) =
1

�(2�)

Z x

0

(x� y)2��1f(y)dy

and F is the linear operator on L2(0; Æ) de�ned by Ff(x) =
R x
0 A(x; y)f(y)dy. We

will show that the operator F is bounded. It is easy to check that A(�; �) is the
homogeneous function of order �1. If

�(x) =

�
1; x � 0

0; x < 0

then the function A(x; y)�(x � y) is also homogeneous of order �1.
According to the inequality of Hardy and Littlewood [12, p. 28] from

Z
1

0

jA(1; y)jj�(1� y)jy�1=2dy =
Z 1

0

y�1=2jA(1; y)jdy = L(�) <1

it follows that the operatorZ
1

0

A(x; y)�(x � y) � dy : L2(0;1)! L2(0;1)

is bounded with the norm not greater then L(�). But then the operator F is also
bounded and kFk � L(�).

From sm(I
2�) � C2 � Æ2�=m2� (with the constant C2 independent from both

m and Æ) and (10) we get sm(D) � C2L(�) �Æ2�=m2� < C2L(�)Æ=m
2�. This proves

the inequality (9) and so (8).

From (6), (7), (8) and the properties of the singular numbers of the summ of
operators it follows limm!1m2�sm(B1) = 0 and the lemma is proved. �

Let � = n+ 1=2 + �, 0 < � < 1=2, �0(x) =
R
1

x s��1=2(1 + s)��3=2ds,

R(x; y) =jx� yj2n �
�
x�+1=2y��1=2; y � x

y�+1=2x��1=2; y � x

+ (1=2� �)jx � yj2��1 �
�
�0(x=(y � x)); y > x

�0(y=(x� y)); x > y.

Let B2 : L
2(0; 1)! L2(0; 1) be the linear operator de�ned by

B2f(x) =

Z 1

0

R(x� y)f(y)dy:
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Let 0 < Æ < 1 and PÆ : L
2(0; 1)! L2(0; 1) be the linear operator

PÆf(x) =

�
f(x); 0 � x < Æ

0; Æ � x < 1.

Let T0 : L2(0; Æ) ! L2(0; Æ) and S : L2(0; Æ) ! L2(0; Æ) be the linear operators
given by

T0f(x) =

Z Æ

x

@2n+1R

@y2n+1
f(y)dy

Sf(x) =

Z x

0

(y2� � x2�)(x � y)2nf(y)dy:

Lemma 3.

a) sm(T0) � C3 � Æ=m2�, where the constant C3 is independent on both m and Æ.

b) m2�sm(s) � C4 � Æ, where the constant C4 is independent on both m and Æ.

c) limm!1m2�sm(B2) = 0.

Proof. Let ' and  be the functions

'(t) = (t� 1)2nt��1=2 + (1=2� �)(t� 1)2��1�0(1=(t� 1)); (t > 1)

 (t) = (1� t)2nt�+1=2 + (1=2� �)(1� t)2��1�0(t=(1� t)); (t < 1)

Then

R(x; y) =

�
x2��1'(y=x); y � x

x2��1 (y=x); x � y.

It is easy to check that

(11)

�
'(�)(1 + 0) =  (�)(1� 0) = 0; for � = 0; 1; . . . ; 2n� 1

'(�)(1 + 0) =  (�)(1� 0); for � = 2n, 2n+ 1, 2n+ 2.

Like in Lemma 2 we use the fact that

B2 = B2(I � PÆ) + (I � PÆ)B2PÆ + PÆB2PÆ:

It follows from (11) that @�R=@y� jy=x = 0 for � = 0; 1; . . . ; 2n� 1 and that there
exist @�R=@y� jy=x for � = 2n, 2n+ 1, 2n+ 2. From j@2n+2R=@y2n+2j �MÆ <1
for Æ � y � 1, 0 � x � 1 and

B2(I � PÆ)f(x) =

Z 1

Æ

R(x; y)f(y)dy

it follows that

(12)

�
sm(B2(I � PÆ)) = o(m�(2n+2+1=2))

sm((I � PÆ)BPÆ) = o(m�(2n+2+1=2))
; m!1:
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We write the operator

PÆB2PÆf(x) =

Z Æ

0

R(x; y)f(y)dy : L2(0; Æ)! L2(0; Æ)

in the form PÆB2PÆ = E +E�, where

Ef(x) =

Z Æ

x

R(x; y)f(y)dy; E�f(x) =

Z x

0

R(x; y)f(y)dy:

Using the partial integration 2n+ 1 times and applying (11) we get

Ef(x) = I�2n+1f(x) � @2nR=@y2njy=x+0 + T0I
�2n+1f(x);

and so
Ef(x) = '(2n)(1 + 0) � x2�I�2n+1f(x) + T0I

�2n+1f(x):

Let

V f(x) =
x2�

(2n)!

Z Æ

x

(y � x)2nf(y)dy : L2(0; Æ)! L2(0; Æ):

Then E = '(2n)(1 + 0) � V + T0I
�2n+1, and from this we get E� = '(2n)(1 + 0) �

V � + I2n+1T �0 . Therefore

(13) PÆB2PÆ = '(2n)(1 + 0)(V + V �) + T0I
�2n+1 + T �0 I

2n+1:

Proof of part a) of Lemma 3 is the same as the proof of Lemma 2.

It follows from this that

(14) m2�sm(T0I
�2n+1 + T �0 I

2n+1) � C5 � Æ;

with C5 independent from both m and Æ.

Note that V + V � = S +W , with W : L2(0; Æ)! L2(0; Æ) de�ned by

Wf(x) =

Z Æ

0

x2�(x� y)2nf(y)dy:

The operator W is an operator of the rang 2n + 1 and if part b) of Lemma 3 is
proved, we get

(15) m2�sm(V + V �) � C6 � Æ;

the constant C6 is independent from both m and Æ.

From (13), (14), (15) and from the properties of the singular values of the
summ of operators it follows

(16) m2�sm(PÆB2PÆ) � C7 � Æ;
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C7 is independent from m and Æ. But then from (12) and (16) it follows part c) of
Lemma 3.

We will prove the statement b). For that it is suÆcient to prove that
m2�sm(S1) � C4 � Æ (C4 is independent from m, Æ), with

S1f(x) =

Z Æ

x

(y2� � x2�)(x� y)2nf(y)dy : L2(0; Æ)! L2(0; Æ):

Set h(t) = (t2� � 1)(t� 1)2n. Then

S1f(x) =

Z Æ

x

x2��1h
�y
x

�
f(y)dy:

Note that

(17) h(�)(1 + 0) = 0, for � = 0; 1; . . . ; 2n and h(2n+1)(1 + 0) = �2�

Using (17), after 2n+1 partial integrations we get S1 = DI�2n+1, whereD : L2(0; Æ)
! L2(0; Æ) is the linear operator de�ned by

Df(x) =

Z Æ

x

x2��1h(2n+1)
�y
x

�
f(y)dy:

If we prove

(18) m2�sm(D) � C8Æ (C8 is independent on m, Æ);

the part b) of Lemma 3 will be proved.

Using [12, pp. 42, 43] we conclude

D�f(x) =

Z x

0

y2��1h(2n+1)
�
x

y

�
f(y)dy =

Z x

0

(I2�f)(y)B(x; y)dy

with

B(x; y) = � 1

�(1� 2�)

d

dy

Z x

y

t2��1h(2n+1)(x=t)

(t� y)2�
dt:

The operator

F1f(x) =

Z x

0

B(x; y)f(y)dy

is bounded and its norm has an upper bound independent of Æ. The proof of this
fact is as in Lemma 2. This implies (18) and completes the proof. �

Lemma 4. Let L : L2(0; 1)! L2(0; 1) be the linear operator de�ned by

Lf(x) =

Z 1

0

(x� y)2n ln(
p
x+

p
y)f(y)dy:
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Then limm!1m2n+1sm(L) = 0.

Proof. Considered the operator L in the form

Lf(x) =
2nX
�=0

�
2n

�

�
(�1)�xn��=2T�f(x)

with

T�f(x) =

Z 1

0

y�=2(
p
x+

p
y)2n ln(

p
x+

p
y)f(y)dy;

we conclude that it is enough to show that lim
m!1

m2n+1sm(G1) = 0 for

G1f(x) =

Z 1

0

(
p
x+

p
y)2n ln(

p
x+

p
y)f(y)dy:

To do this, it is suÆcient to show that lim
m!1

m2n+1sn(G) = 0; for the operator

Gf(x) =

Z 1

0

(x+ y)2n ln(x+ y)f(y)dy:

By partial integrations we get

(19) G = �nite rank operator + (2n)!H � I2n;

where

I2nf(x) =
1

(2n� 1)!

Z x

0

(x� y)2n�1f(y)dy; Hf(x) =

Z 1

0

ln(x+ y)f(y)dy:

In [2] it was shown that lim
m!1

msm(H) = 0 and thus from (19) the conclusion of
the lemma follows. �

Lemma 5. Let P : L2(0; 1)! L2(0; 1) be the linear operator de�ned by

Pf(x) =

Z 1

0

(x� y)2n

�(2n)!
ln jx� yjf(y)dy:

Then lim
m!1

m2n+1sm(P ) = ��2n�1.

Proof. The function G1(x) = ��1K0(jxj) 2 L1(R) (K0 is McDonald function
[12]) satis�es the relation

Z
R

G1(t)e
itxdt = (1 + x2)�1=2:
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Diferentiating this relation 2n times we getZ
R

G1(t)t
2neitxdt = (�1)n d2n

dx2n
(1 + x2)�1=2

Using Widom's result [13] and having in mind that���� d2ndx2n
(1 + x2)�1=2

���� � (2n)!

x2n+1
(x!1)

(because (1 + x2)�1=2 =
P
1

k=0

�
�1=2
k

�
x�2k�1, x� 1) we obtain

(20) sm

�Z 1

�1

G1(x� y)(x� y)2n � dy
�
� (2n)!

(m�=2)2n+1
(m!1):

But, on the other side

G1(x) = � ln jxj
�

1X
k=0

(x=2)2k

(k!)2
+ '0(x)

('0 is an even entire function). Therefore, using Ky-Fan's theorem [6] and (20) we
conclude

sm

�Z 1

�1

(x� y)2n ln jx� yj
�

� dy
�
� (2n)!

(m�=2)2n+1

and thus

sm

�Z 1

�1

(x� y)2n ln jx� yj
� � (2n)! � dy

�
� 1

(m�=2)2n+1

The last relation implies sm(P ) � 1=(m�)2n+1. The lemma is proved. �

Proof of Theorem 1. By direct calculation we �nd the kernel K0(x; y) of
the operator A0 = (I�)�I�:

K0(x; y) =

(
��2(�)

R 1�x
0 (t+ x� y)��1t��1dt; 1 � x � y � 0

��2(�)
R 1�y
0

(t+ x� y)��1t��1dt; 1 � y � x � 0.

The eigenvalues of the operator A0 are the same as the eigenvalues of the operator
A with kernel

K� =

�
��2(�)

R x
0
t��1(t+ y � x)��1dt; 1 � y � x � 0

��2(�)
R y
0
t��1(t+ x� y)��1dt; 1 � x � y � 0.

We will use the formulae from [10]:

(21)

Z
xp(1 + x)qdx =

xp+1(1 + x)q

p+ q + 1
+

p

p+ q + 1

Z
xp(1 + x)q�1dxZ

xp(1 + x)qdx =
xp(1 + x)q+1

p+ q + 1
� p

p+ q + 1

Z
xp�1(1 + x)qdx:
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From (21) we obtainZ
x��1(1 + x)��1dx =

x�(1 + x)��1

2�� 1
+
x��1(1 + x)��1

2(2�� 1)
(22)

� �� 1

2(2�� 1)

Z
x��2(1 + x)��2dx:

I case: � = n+ �, 0 < � < 1=2, n = 0; 1; 2; . . . . If we apply (21) n times, we
get

K�(x; y) = kernel of a �nite (2n) rank operator

+
(�1)n(x � y)2n

(2�� 1) � . . . � (2�� 2n)
K�(x; y):

In [2] it is shown that

K�(x; y) =
B(�; 1� 2�)

�2(�)
jx� yj2��1 +G(x; y)

with

G(x; y) =

8<
:
���2(�)(y � x)2��1�

�
x

y�x

�
; y > x

���2(�)(x� y)2��1�
�

y
x�y

�
; x > y.

(The function � is introduced before Lemma 2). Therefore

K�(x; y) =
(�1)njx� yj2��1B(�; 1� 2�)

�2(�)(2�� 1) � . . . � (2�� 2n)

+ kernel of a �nite rank operator + C(�) �M(x; y)

=
jx� yj2��1
2�(2�) cos��

+ kernel of a �nite rank operator + C(�)M(x; y):

From this it follows

(23) A = B + �nite (2n) rank operator + C(�) � B1

From (23), Lemma 1, Lemma 2 and Ky-Fan's theorem [6] it follows

sm(A) � (�m)�2�; (m!1) and thus sm(I
�) � (�m)��; (m!1):

II case: � = n + 1=2 + �, 0 < � < 1=2. Similarly to the previous case we
obtain

K�(x; y) = kernel of a �nite rank (2n) operator

+
(�1)n(x � y)2n

(2�� 1) � . . . � (2�� 2n)
K�+1=2(x; y)
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Using (21) we get

K�+1=2(x; y) =
1

�2(� + 1=2)

8<
:

x�+1=2y��1=2

2� ; y � x

y�+1=2x��1=2

2� ; x � y

+ jx� yj2� � � � 1=2

2��2(� + 1=2)

Z
1

0

s��1=2(1 + s)��3=2ds

+
� � 1=2

2��2(� + 1=2)
jx� yj2� �

8<
:
�0

�
x

y�x

�
; y � x

�0

�
y

x�y

�
; x � y.

Then

K�(x; y) =
jx� yj2��1
2�(�) cos��

+ kernel of a �nite rank operator + q(�)R(x; y)

From this it follows

(24) A = B + �nite rank operator + q(�)B2:

From (24), Lemma 1, Lemma 3 and Ky-Fan's theorem [6] it follows

sm(A) � (�m)�2� and thus sm(I
�) � (�m)��; m!1:

III case: � = n+ 1=2. From

K�(x; y) = kernel of a �nite rank operator +
(�1)n(x� y)2n

(2n)!
K1=2(x; y)

and

K1=2(x; y) = � 1

�
ln jx� yj+ 2

�
ln(
p
x+

p
y)

we conclude

A = �nite rank operator +
2

�

(�1)n
(2n)!

L+ (�1)n+1P

Using (25), Lemma 4, Lemma 5 and Ky-Fan's theorem [6] we obtain

sm(A) � 1=(m�)2n+1; m!1 and thus sm(I
�) � 1=(m�)�; m!1:

IV case: � = n, (n is a natural number). In this case the problem on
asymptotic behavior of singular numbers reduces to the problem on asymptotic
behavior of eigenvalues of a di�erential operator with regular boundary conditions.
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Asymptotic of eigenvalues of a di�erential operator with regular boundary
condition is known (see [8]) and therefore

sm(I
n) � 1=(m�)n; m!1:

Thisf completes the proof. �

Theorem 2. Let Ki : L
2(0; 1)! L2(0; 1) (i = 1; 2) be the operators de�ned

by

Kif(x) =

Z x

0

Ki(x� y)f(y)dy;

where

Ki(x) =
x��1

�(�)
(1 + ri(x)); ri 2 C1+[�][0; 1]; � > 0; ri(0) = 0;

[�] is the greatest integer wich is not greater than �. Then

lim
n!1

sn(K1)

sn(K2)
= 1:

Proof. It is suÆcient to cinsider the case

K1(x) =
x��1

�(�)
(1 + r(x)); K2(x) =

x��1

�(�)

r 2 C1+[�][0; 1]; r(0) = 0; r0(0) = 0;

since from r0(0) 6= 0 it follows

sn

�Z x

0

r0(0)
(x� y)�

�(�)
� dy

�
� r0(0)

(n�)�+1
;

by virtue of Theorem 1.

We will use the Keldysh{Krein's result [9]: If A and B are compact operators
such that A = B(I + T ) for compact operator T such that �1 2 �(T ), then

lim
n!1

sn(A)=sn(B) = 1:

For A = K1, B = K2, using the fractional integral operator we get (see [12]):

Tf(x) =
(�1)[�]
�(�)

Z x

0

f(y) � S(x; y)dy;
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with

S(x; y) = � 1

�(1� �+ [�])

d

dy

Z x

y

(t� y)�(��[�])
@[�]

@t[�]
((x� t)��1r(x � t))dt

From the conditions r 2 C1+[�][0; 1], r(0) = 0, r0(0) = 0 it follows that the function
S is bounded on the set � = f(x; y) 2 R2 : 0 � y � x; 0 � x � 1g and thus the
operator T is compact and Volterra. Therefore, according to quoted theorem we
have lim

n!1
sn(K1)=sn(K2) = 1. �

Corollary. If � > 0, r 2 C [�]+1[0; 1], r(0) 6= 0, k(x) = x��1r(x) and

K : L2(0; 1)! L2(0; 1) is the linear operator de�ned by

Kf(x) =

Z x

0

k(x� y)f(y)dy;

then sn(K) � r(0)�(�)(n�)��, n!1.

Let us consider the kernels ki(x) = ln� x�1(1 + ri(x)); i = 1; 2 with ri(0) = 0
and the operators

Kif(x) =

Z x

0

ki(x � t)f(t)dt:

We will prove the following.

Theorem 3. If 1 < � < 2, ri 2 C3[0; 1], dkri=dx
kjx=0 = 0 for k 2 f0; 1; 2g

then limn!1 sn(K1)=sn(K2) = 1.

Proof. Like in Theorem 2, it is enough to consider the case

k1(x) = ln� x�1(1 + r(x)); k2(x) = ln� x�1;

with r 2 C2[0; 1], r(0) = r0(0) = r00(0) = 0.

If K1 and K2 are operators with kernels k1 and k2, then, with A = K1 and
B = K2 in Keldysh{Krein theorem quoted in the proof of Theorem 2, we have
A = B(I + T ) with

Tf(x) = P

Z x

0

S(x; y)f(y)dy

where P is a bounded operator and [12, p. 487]

S(x; y) =
d

dx

Z x

y

�0;�(x� t) ln�
1

t� y
r(t � y)dt:

Changing the variable in the last integral we obtain

S(x; y) = � d

dx

Z 0

y�x

�0;�(t) ln
� 1

x� y � t
r(x � y � t)dt:
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It is easy to prove, using the asymptotic behavior of the function �0;� [12, p. 482],
that the operator T is Hilbert-Schmidt, and hence compact.

Reasoning as in the proof of Theorem 2 we conclude

lim
n!1

sn(K1)=sn(K2) = 1:

Theorem is proved. �

Remark. It remains as an open problem to �nd the exact asymptotic of
singular values of the operator K:L2(0; 1)! L2(0; 1) de�ned by

Kf(x) =

Z x

0

ln�
1

x� y
f(y)dy; � > 0:
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