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STABILITY AND ASYMPTOTIC BEHAVIOR

FOR CERTAIN SYSTEMS OF

DELAY DIFFERENCE EQUATIONS
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Communicated by Stevan Pilipovi�c

Abstract. We give a condition for systems of di�erence equations to have
solutions tending to a constant vector.

Introduction

We consider systems of di�erence equations for which each constant function
is a solution and give a simple condition which guarantees that each solution of
these equations tends to a constant limit as n ! 1 and that the zero solution of
these equations is uniformly stable. Most of these results are quite easy to state.
However, for good introductory level material on di�erence equations, we refer the
reader to [1, 2, 3].

Notations and preliminaries

Denote by N (n0) = fn0; n0 + 1; . . . g, where n0 is a natural number or zero;

R
k { the k-dimensional real euclidean space with the norm, jxj =

Pk
i=1 jxij, x =

(x1; :::xk), M
k the space of all k � k matrices A = (aij) with the norm jAj =

maxj
Pk

i=1 jaij j. If u : N (n0) ! R (R{the real numbers) is a discrete function,

fu(n)g is the sequence denoted by u(n). Similarly u : N (n0) ! R
k , u(n) =�

u1(n); . . . ; uk(n)
�
with components that are functions de�ned on the same set

N (n0), is the sequence denoted by u(n). We will consider the linear system

(1) �x(n) = P (n)[x(n) � x(n� r)]
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and its perturbed system

(2) �y(n) = P (n)[y(n)� y(n� r)] +Q(n)y(n) +R(n)y(n� r)

or

(3) �y(n) = F (n; y(n)) +G(n; y(n� r));

where x; y are k-dimensional vector functions, P;Q;R : N (n0) ! Mk, F;G :
N (n0) � R

k ! R
k are for any n 2 N (n0) continuous as a functions of y 2 R

k ,
� is the forward di�erence operator i.e., �vn = v(n + 1) � v(n) for any function
v : N (n0) ! R

k We assume throughout that r is a natural number. Systems (1)
and (2) are special cases of (3).

By a solution of a di�erence equation we mean a real sequence fy(n)g, n =
0; 1; . . . satisfying it, and throughout this paper we will usually refer to a solution
fy(n)g, n = 0; 1; . . . , simply as a solution y(n).

Here we need to introduce the concept of an initial function. An initial
function � of (3) is a function from hn0 � r; n0i to Rk . A solution y(n) = y(n; n0; �)
of (3) is a sequence satisfying (3) for n 2 N (n0) and y(s) = �(s) for s 2 hn0 � r; n0i.

Remark. For any n0 and any � on hn0 � r; n0i, the solutions x(n; n0; �) and
y(n; n0; �) of (1) and (2), respectively, are de�ned as solutions on the entire interval
N (n0). All initial functions are assumed to be bounded. When we refer to a solution
y(n; n0; �) of (3) (in particular of (1) or (2)), we shall mean a solution with initial
function � on hn0 � r; n0i with the norm k�k = max

hn0�r;n0i
j�(n)j, where j � j is a

suitable norm in Rk

De�nition. Suppose that F (n; 0) � 0 � G(n; 0) for n 2 N (n0). The zero
solution y(n) � 0, of (3) is eventually uniformly stable if for every " > 0 there
exists a Æ = Æ(") > 0 and T = T (") > 0 such that, jy(n; n0; �)j < ", n � n0 � T ,
provided k�k < Æ on hn0 � r; n0i.

De�nition. A solution y(n; n0; �) of (3) is said to be bounded in the future
if it is de�ned as a solution on (n0;1) and if there exists a constant M > 0 such
that jy(n; n0; �)j �M for all n 2 hn0 � r;1i.

We need the following lemmas regarding lp-sequences for our discussion. For
p in the interval 1 � p < 1, lp is the space of sequences u = fyig

1
i=1 such that

P1
i=1 jyij

p < 1 with the norm jujp =
�P1

i=1 jyij
p
�1=p

< 1, where j � j is an

R
k{norm.

Lemma 2.1. If q 2 lp for some p � 1, then

(i) v; w 2 lp, where v = fv(n)g, v(n) =
Pn

s=n�r q(s), w = fw(n)g, w(n) =Pn
s=n�r jq(s)j,

(ii)
Pn

s=n�r jq(s)j ! 0 as n!1.

Lemma 2.2. If q1 2 lp, q2 2 lp for some p � 1 and if the product q = q1q2 is
de�ned, then q 2 lp=2.
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Lemma 2.3. If �x 2 l1, then x(n)! const as n!1.

We omit the proofs of these lemmas because of their simplicity.

Main results

Before presenting the main results of the paper we will establish three prepara-
tory lemmas.

Lemma 3.1. If P 2 l2 and if any solution x(n) = x(n; n0; �) of (1) is bounded
in the future, then x(n)! const as n!1.

Proof. We have

x(n)� x(n� r) =

n�1X
s=n�r

�x(s) =

n�1X
s=n�r

P (s)[x(s) � x(s� r)]:

Thus,

�x(n) = P (n)[x(n)� x(n� r)] = P (n)

n�1X
s=n�r

P (s)[x(s) � x(s� r)]:

Since P 2 l2 and x(n) is bounded in the future, it follows from Lemma 2.1 that

z 2 l2, where z =
nPn�1

s=n�r P (s)[x(s) � x(s� r)]
o
. Hence, by Lemma 2.2 the

sequence �x is in l1 and the conclusion follows from Lemma 2.3.

Lemma 3.2. If P 2 l2, then for any " > 0 there exists Æ > 0 such that, for
any n0 � 0, k�k < Æ on hn0 � r; n0i implies

jx(n; n0; �)� x(n� r; n0; �)j < " for n0 � n � n0 + r

Proof. Let x(n) = x(n; n0; �). Then x(n � r) = �(n � r) for hn0; n0 + ri.
From Lemma 2.1

Pn+r
s=n jP (s)j ! 0 as n ! 1. Then there exists a constant

M1 > 0 such that
Pn+r

s=n jP (s)j �M1 for n 2 N (n0). Let " > 0 be given and choose

Æ < min
�
"
2 ;

"
(1+M1)eM1

�
. Then for k�k < Æ on hn0 � r; n0i and n 2 hn0; n0 + ri we

have

jx(n)j � jx(n0)j+
n�1X
s=n0

jP (s)j [jx(s)� x(s � r)j]

� j�(n0)j+
n�1X
s=n0

jP (s)jj�(s� r)j +
n�1X
s=n0

jP (s)jjx(s)j

� j�(n0)j+
n0+rX
s=n0

jP (s)j j�(s� r)j +
n�1X
s=n0

jP (s)j jx(s)j

� Æ(1 +M) +

n�1X
s=n0

jP (s)jjx(s)j:
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By a discrete version of Gronwall inequality we obtain

jx(n)j � Æ(1 +M)eM < "=2

So jx(n) � x(n� r)j < " for n 2 hn0; n0 + ri, since k�k < Æ < "=2.

Lemma 3.3. If P 2 l2, then for every " > 0 there exists a Æ > 0 such that, for
any n0 � T1 � 0, k�k < Æ on hn0 � r; n0i implies jx(n; n0; �)� x(n� r; n0; �)j < "
for all n > n0 (T1 is chosen such that

Pn
s=n�r jP (s)j < 1 for all n � T1).

Proof. Let " > 0 be given and Æ chosen as in Lemma 3.2. Then

jx(n) � x(n� r)j < "

for n0 � n � n0 + r, and any n0 � 0, where x(n) is a solution of (1). Let n0 � T1
and let there exist an n > n0 + r such that

jx(n)� x(n� r)j =: ju(n)j = ":

Let n� > n0+ r be the �rst such moment. Then " = ju(n�)j > ju(n)j for T1 � n0 �
n < n� and

ju(n�)j = jx(n�)� x(n� � r)j =
���

n��1X
s=n��r

�x(s)
���

=
���
n��1X

s=n��r

P (s) [x(s)� x(s� r)]
��� =

���
n��1X

s=n��r

P (s)u(s)
��� =

n��1X
s=n��r

jP (s)j ju(s)j:

Since ju(n�)j � ju(s)j for n� � r � s � n� � 1, it follows that

(4) ju(n�)j � ju(n�)j
n��1X

s=n��r

jP (s)j

From (4) we have
Pn��1

s=n��r jP (s)j � 1, which contradicts the choice of T1, since
n� > n0 � T1. So jx(n) � x(n� r)j < " for all n � n0.

Theorem 3.1. If P 2 l2, then the zero solution of (1) is uniformly stable.

Proof. We show that the zero solution is eventually uniformly stable and then
we apply a continual dependence argument. Let � > 0 be given. We wish to �nd
a Æ0 > 0 and a T � 0 such that n1 � T and k�k < Æ imply jx(n; n1; �)j < �
for all n � n1and any n1 � T . Let " = 1 and choose Æ = Æ(") < 1 according to
Lemma 3.3. Let Æ0 = min(Æ; �=3). Now, by Lemma 2.1 we have u 2 l2 ) w 2 l2,
where u = fjP (n)jg, w =

�Pn
s=n�r jP (n)j

	
, hence (by Lemma 2.2) v 2 l1, v =�

jP (n)j
Pn

s=n�r jP (s)j
	
. Let T � T1 + r be chosen so that

n�1X
m�n1

�
jP (m)j

m�1X
s=m�r

jP (s)j
�
<

�

3
and

n1+rX
s=n1

jP (s)j <
�

3
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for all n � n1 � T � T1 + r (T1 was de�ned in Lemma 3.3). Thus, for n1 � T and
k�k < Æ0, we have, for n1 � n � n1 + r

jx(n; n1; �)j � jx(n1)j+
n�1X
s=n1

jP (s)j <
2

3
�;

where we used the fact that jx(n) � x(n� r)j < 1. If n1 + r � n, then

jx(n)j � j�(n1)j+
n1+rX
s=n1

jP (s)j+
n�1X

s=n1+r

jP (s)j jx(s) � x(s� r)j

� j�(n1)j+
n1+rX
s=n1

jP (s)j+
n�1X

s=n1+r

jP (s)j
s�1X

u=s�r

jP (u)j jx(u)� x(u� r)j

�
�

3
+
�

3
+

n�1X
s=n1+r

�
jP (s)j

s�1X
u=s�r

jP (u)j
�
< �:

In this case jx(n; n1; �)j < � for n � n1 � T and k�k < Æ0. The zero solution
of (1) is eventually uniformly stable. Since solutions depend continuously on initial
conditions, we can �nd Æ1 � Æ0 such that jx(n; n�; �)j < Æ0, for k�k < Æ1 and for
any n� � n � T . Hence jx(n; n1; �)j < � for all n � n1; k�k < Æ1, and any n1 � n0.
We have uniform stability of the zero solution.

Now we consider the perturbed system

�y(n) = P (n) [y(n)� y(n� r)] + f(n; y(n); y(n� r)):

Lemma 3.4. Assume: 1Æ P 2 l2; 2Æ there exists a function !(n; u; v) de�ned
on N (n0) � R+ � R+ , nondecreasing in u; v and such that !(n; a; b) 2 l2 for each
a; b 2 R+ and furthermore

jf(n; u; v)j � !(n; juj; jvj); f(n; 0; 0) = 0; n 2 N (n0); juj; jvj <1;

3Æ any solution y(n) of (5) is bounded in the future. Then y(n)! const, as n!1.

The proof is similar to the proof of Lemma 3.1

Remark. If f(n; y(n); y(n�r)) � Q(n)y(n)+R(n)y(n�r) and Q 2 l2, R 2 l2,
then y(n)! const, as n!1, where y(n) is a solution of (2).

Lemma 3.5. Let the solution x(n) of (1) be bounded in the future, and Q;R 2
l1. Then, the solution y(n) of (2) is bounded in the future

Proof. If y(n) is a solution of (2), then we have

(6) y(n) = x(n) +

n�1X
s=0

fQ(s)y(s) +R(s)y(s� r)g
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where x(n) is a solution of (1). Denote by

(7) v(n) = max fjy(n)j : jy(n� r)jg :

Then from (6) and the condition 1Æ we obtain

v(n) �M +

n�1X
s=0

fjQ(s)j+ jR(s)jg v(s):

Now applying the discrete version of Gronwall inequality we have

v(n) �M exp
� n�1X
s=0

fjQ(s)j+ jR(s)jg
�
:

By (7) this gives the required result.

Theorem 3.2. If Q;R 2 l1, and the zero solution of (1) is uniformly stable,
then the zero solution of (2) is uniformly stable.

Proof. As the zero solution of (1) is uniformly stable (Theorem 3.1) and
Q;R 2 l1 it follows from Lemma 3.5 that the zero solution of (2) is also uniformly
stable.

Theorem 3.3. If the conditions 1Æ{3Æ of Lemma 3:4 hold, and if there exists
a solution z(n) of the di�erence equation �z(n) = !(n; z(n); z(n)) with an initial
value z(0) > M0 > 0, M0 = const, then any y(n) solution of (5), with an initial
condition k�k < M0, satis�es jy(n)j < z(n) for all n 2 N (n0).

Proof. Any solution y(n) of (5) is of the form

y(n) = x(n) +

n�1X
s=0

f(s; y(s); y(s� r)):

Thus, from the condition 1Æ we obtain that

jy(n)j �M +

n�1X
s=0

!(s; jy(s)j; jy(s� r)j):

Let v(n) = max fjy(n)j; jy(n� r)jg; then

v(n) �M0 +

n�1X
s=0

!(s; v(s); v(s):

Hence by the assumption z(0) > M0, where z(n) is the solution of (8), we obtain
[4]

jy(n)j < z(n) for all n 2 N (n0):
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Corollary. Let in Theorem 3:3 !(n; z(n); z(n)) = a(n)z(n), and
P1

n=0 an
<1. Then the zero solution of (5) will be stable (uniformly stable), where the zero
solution of (1) will be stable (uniformly stable).

Proof. Consider the di�erence equation

�z(n) = a(n)z(n); z(0) = z0:

Any solution of this equation is of the form

z(n) = z0

n�1Y
s=0

(1 + a(s)):

Taking a suitable Æ > 0 and for any " > 0 we obtain that the zero solution of (5)
will be stable (uniformly stable).
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