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ON POLYNOMIALS ASSOCIATED WITH

HUMBERT'S POLYNOMIALS

M.A. Pathan and M.A. Khan

Communicated by Gradimir Milovanovi�c

Abstract. The principal object of this paper is to provide a natural fur-
ther step toward the uni�ed presentation of a class of Humbert's polynomials which
generalizes the well known class of Gegenbauer, Legendre, Pincherle, Horadam, Kin-
ney, Horadam-Pethe, Gould and Milovanovi�c--Dor -devi�c polynomials and many not so
well-known polynomials. We shall give some basic relations involving the generalized
Humbert polynomials and then take up several generating functions, hypergeometric
representations and expansions in series of some relatively more familiar polynomi-
als of Legendre, Gegenbauer, Hermite and Laguerre. Some of these results may be
looked upon as providing useful extensions of the known results of Dilcher, Horadam,
Sinha, Shreshtha and Milovanovi�c--Dor -devi�c.

1. Introduction. Gould [3] presented a systematic study of an interest-
ing generalization of Humbert, Gegenbauer and several other polynomial systems
de�ned by

(1.1) (c�mxt+ ytm)p =

1X
n=0

Pn(m;x; y; p; c)tn

where m is a positive integer and other parameters are unrestricted in general. For
the table of main special cases of (1.1), including Gegenbauer, Legendre, Tcheby-
che�, Pincherle, Kinney and Humbert polynomials, see Gould [3]. In [10], Milo-
vanovi�c and -Dor -devi�c considered the polynomials fp�n;mg1n=0 de�ned by the gener-
ating function

(1.2) G�
m(x; t) = (1� 2xt+ tm)�� =

1X
n=0

p�n;m(x)t
n;
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where m 2 N and � > �1=2. Note that

p�n;1(x) =
(�)n
n!

(2x� 1)n (Horadam polynomials [4])

p�n;2(x) = C�
n(x) (Gegenbauer polynomials)

p�n;3(x) = p�n+1(x) (Horadam-Pethe polynomials [5])

where (�)0 = 1; (�)n = (� + 1)(� + 2) � � � (�+ n� 1); � = 1; 2; 3; . . . . The explicit
form of the polynomial p�n;m(x) is

(1.3) p�n;m(x) =

[n=m]X
k=0

(�1)k(�)n�(m�1)k(2x)n�mk

kjn�mkj

The set of polynomials denoted by S�
n(x) considered by Sinha [13],

(1.4) [1� 2xt+ t2(2x� 1)]�� =

1X
n=0

S�
n(x)t

n

is precisely a generalization of Sn(x) de�ned and studied by Shreshtha [12]. For
� = 1=2, (1.4) gives associated Legendre polynomials Sn(x).

A generalization (and uni�cation) of various polynomials mentioned above is
provided by the de�nition

(1.5) (c� axt+ btm(2x� 1)d)�� =
1X
n=0

p�n;m;a;b;c;d(x)t
n =

1X
n=0

�n(x)t
n

In the present paper we shall give some basic relations involving the general-
ized Humbert polynomials �n(x) and then take up several operational results, series
representations, hypergeometric representations and expansions of �n(x) in series
of other polynomials which are best stated in terms of the generalized polynomials.
De�nition (1.5) of �n(x) is general enough to account for many of polynomials
involved in generalized potential problems [6], [7], [8]. This is interesting since, as
will be shown, the polynomials �n(x) contain [3], [10], [13]

Pn(m;x; y; p; c) =

[n=m]X
k=0

�
p

k

��
p� k

n�mk

�
cp�n+(m�1)kyk(�mx)n�mk (1:6)

S�
n(x) =

[n=2]X
k=0

(�1)k(�)n�k(2x)n�2k(2x� 1)k

k!(n� 2k)!
(1:7)

=

[n=2]X
k=0

(2�)n(x� 1)2kxn�2k

22k(� + 1=2)k(n� 2k)!k!
(1:8)
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2. Finite series representations for �n(x). Here we obtain the following
two �nite series representations for �n(x), viz.

�n(x) =

[n=m]X
k=0

(�1)kc���n+(m�1)k(�)n+(1�m)k(ax)
n�mk[b(2x� 1)d]k

k!(n�mk)!
(2:1)

�n(x) =

[(n�(m�2)s)=2]X
k=0

kX
s=0

c���n+(m�1)s(�)k(�k)s(2� + 2k)n�2k�(m�2)s

(n� 2k � (m� 2)s)!k!s!

�
�ax
2

�n�(m�2)s �4bc(2x� 1)d

a2x2

�s
: (2:2)

Proof of (2.1):

(1.5) with the help of the result [2]

(2.3) (1� z)�� = 1F0(�;�; z) =
1X
n=0

(�)nz
n

n!

yields

(2.4)

1X
n=0

�n(x)t
n = c��

1X
n=0

(�)n(
a
cxt� b

c t
m(2x� 1)d)n

n!

Also we know that

(2.5) (t+ v)n =
nX

k=0

n!

k!(n� k)!
tkvn�k

Using (2.5) in (2.4), we get

1X
n=0

�n(x)t
n =

1X
n=0

nX
k=0

(�1)k���n(�)n(axt)n�k [btm(2x� 1)d]k

k!(n� k)!

which on applying the result [14; pp. 100{101 eqn. (2) and (5)], gives

1X
n=0

�n(x)t
n =

1X
n=0

[n=m]X
k=0

(�1)k���n+(m�1)k(�)n+(1�m)k(ax)
n�mk [b(2x� 1)d]ktn

k!(n�mk)!

On comparing the coeÆcients of tn from both sides, we get the �nite series repre-
sentation (2.1) for �n(x).

Proof of (2.2). From (1.5), we have

1X
n=0

�n(x)t
n = [c� axt+ btm(2x� 1)d]��

= c��
�
1� axt

c
+
� a

2c
xt
�2

�
� a

2c
xt
�2

+
b

c
tm(2x� 1)d

�
��

= c��
�
1� axt

2c

�
�2� �

1� a2x2t2=4c2 � btm(2x� 1)d=c

(1� axt=2c)2

���
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which with the help of the result (2.3), gives

= c��
1X
k=0

(�)k
k!

�
a2x2t2

4c2
� btm(2x� 1)d

c

�k �
1� axt

2c

�
�(2�+2k)

= c��
1X
n=0

1X
k=0

(�)k(2� + 2k)n
k!n!

�ax
2c

�n+2k
tn+2k

�
1� 4bctm�2(2x� 1)d

a2x2

�k

= c��
1X
n=0

1X
k=0

kX
s=0

(�)k(2� + 2k)n(�k)s
n!k!s!

�ax
2c

�n+2k �4bc(2x� 1)d

a2x2

�2
t(m�2)s+n+2k

Replacing n by n� 2k � (m� 2)s, we get

1X
n=0

�n(x)t
n =

1X
n=0

[(n�(m�2)s)=2]X
k=0

kX
s=0

c��(�)k(2�+2k)n� 2k � (m� 2)s(�k)s

(n� 2k � (m� 2)s)!k!s!

�ax
2c

�n�(m�2)s �4bc(2x� 1)d

a2x2

�s
tn:

On comparing the coeÆcients of tn from both the sides, we get the �nite
series representation (2.2) for �n(x).

In (2.1) and (2.2), setting a = m = 2, b = c = 1 and d = 1, we get the series
representations (1.7) and (1.8) of Sinha [13, p. 439, (3 and 4)].

If in (2.1) and (2.2), we set a = m, b = c = 1 and d = 0, we get

h�n;m(x) =

[n=m]X
k=0

(�1)k(�)n+(1�m)k(mx)n�mk

k!(n�mk)!
(2:6)

h�n;m(x) =

[(n�(m�2)s)=2]X
k=0

kX
s=0

(�)k(�k)s(2� + 2k)n�2k�(m�2)s(mx=2)n�ms

(n� 2k � (m� 2)s)!k!s!

(2:7)

where h�n;m(x) is Humbert polynomial [6].

For m = a = 3 and � = 1=2, (2.6) and (2.7) further reduce to

(2.8) Pn(x) =

[n=3]X
k=0

(�1)k(1=2)n�2k(3x)n�3k
k!(n� 3k)!

and

(2.9) Pn(x) =

[(n�s)=2]X
k=0

kX
s=0

(1=2)k(�k)s(1 + 2k)n�2k�s(3x=2)
n�3s

(n� 2k � s)!k!s!
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respectively, where Pn(x) is Pincherle polynomial [6].

For a = m = 2 and � = 1=2, (2.6) and (2.7) give �nite series representations
of Legendre polynomial [11, p. 164 (1)].

In (2.1) and (2.2), setting m = a = 2, b = c = 1 and d = 0, we get the
following representations of Gegenbauer polynomial

C�
n(x) =

[n=2]X
k=0

(�1)k(�)n�k(2x)n�2k
k!(n� 2k)!

(2:10)

C�
n(x) =

[n=2]X
k=0

(2�)nx
n�2k(x2 � 1)k

22k(� + 1=2)kk!(n� 2k)!
(2:11)

In (2.1) and (2.2), setting a = c = 1, d = 0 and m = 2 and replacing b and x
by �z2 and 1 + z + z2 respectively, we get

f�;�n (z) =

[n=2]X
k=0

(�1)k(�)n�k(1 + z + z2)n�2k(�z2)k

k!(n� 2k)!
(2:12)

f�;�n (z) =

[n=2]X
k=0

(2�)n

�
1+z+z2

2

�n h
1� 4�z2

(1+z+z2)

ik
22k(� + 1=2)kk!(n� 2k)!

(2:13)

where � > 1=2, � is a real parameter. Note that f�;�n (z) is related to C�
n(z) by the

relation [1, p. 474 (1.2)]

f�;�n (z) = �n=2znC�
n

�
1 + z + z2

2
p
�z

�

3. Hypergeometric representation for �n(x). The �nite representation
(2.1) for �n(x) is of particular interest to us in obtaining the following hypergeo-
metric form for �n(x),

(3.1) �n(x) =
(�)nc

��n(ax)n

n!

mFm�1

2
64
� n

m
;
�n+ 1

m
; . . . ;

�n+m� 1

m
;

�� � n+ 1

m� 1
;
�� � n+ 2

m� 1
; . . . ;

�� � n+m� 1

m� 1
;

mmbcm�1(2x� 1)d

(m� 1)m�1(ax)m

3
75

where m � 2.

Proof of (3.1). Since we know that [11, p. 58(2)]

(3.2) (�)n�k =
(�1)k(�)n
(1� �� n)k

; 0 � k � n;
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replacing � and k by � and (m� 1)k respectively and using

(n�mk)! =
(�1)mkn!

(�n)mk
; 0 � mk � n; (3:3)

(�n)mk = mmk
mY
s=1

��n+ s� 1

m

�
k

(3:4)

and

(3.5) (1� � � n)(m�1)k = (m� 1)(m�1)k
(m�1)Y
p=1

��� � n+ p

m� 1

�
k

; k = 0; 1; 2; . . . ;

we arrive at (3.1).

If in (3.1), we set a = m = 2 and b = c = d = 1, then we get a known result
[13; p. 442 (12)].

In (3.1), setting a = m; b = c = 1 and d = 0, we get the following hypergeo-
metric representation of Humbert polynomial

(3.6) h�n;m(x) =
(�)n(mx)n

n!

mFm�1

2
64
�n
m

;
�n+ 1

m
; . . . ;

�n+m� 1

m
;

�� � n+ 1

m� 1
;
�� � n+ 2

m� 1
; . . . ;

�� � n+m� 1

m� 1
;

1

(m� 1)m�1xm

3
75

For m = 2, (3.6) gives hypergeometric representation of Gegenbauer polyno-
mial

(3.7) C�
n(x) =

(�)n(2x)
n

n!
2F1

2
4 � n

2
;
�n+ 1

2
;

1� � � n;

1

x2

3
5

which is a generalization of a known result [11; p. 166 (4)].

In (3.1), setting a = c = 1, m = 2, d = 0 and replacing b and x by �z2 and
1 + z + z2 respectively, we get the following representation

(3.8) f�;�n (z) =
(�)n(1 + z + z2)n

n!
2F1

2
4 � n

2
;
�n+ 1

2
;

1� � � n;

4�z2

(1 + z + z2)

3
5

For � = 2 and � = 1, f�;�n (z) reduces to fn(z). As remarked by Dilcher [1],
fn(z) are polynomials of degree 2n, and their coeÆcients are rows of the \Pascal
type" triangle (after normalizing) (see, e.g., [1; p. 473 (1.1)]). In view of (3.7),
equation (3.1) of Dilcher's result [1, p. 476] readily follows from (3.8).
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4. Additional generating function for �n(x).We now obtain the follow-
ing four additional generating functions for �n(x).

(4.1)

1X
n=0

�n(x)t
n

(�)n
=

1X
n=0

c���n(axt)n

n!

1Fm

�
� + n;

� + n

m
;
� + n+ 1

m
; � � � ; � + n+m� 1

m
;
�btm(2x� 1)d

mm

�
;

(4.2)

1X
n=0

(e)n�n(x)t
n

(�)n
=

1X
n=0

(e)nc
���n(axt)n

n!

m+1Fm

2
64
� + n;

e+ n

m
;
e+ n+ 1

m
; � � � ; e+ n+m� 1

m
;

� + n

m
;
� + n+ 1

m
; � � � ; � + n+m� 1

m
;

� b

c
tm(2x� 1)d

3
75 ;

(4.3)

1X
n=0

�n(n)t
n

(2�)n
=

1X
n=0

1X
k=0

kX
s=0

c���n�2k(�k)s
�
axt
2

�n+2k h 4bc2tm�2(2x�1)d

a2x2

is
22k(� + 1=2)kk!n!(2� + n+ 2k)(m�2)ss!

(4.4)
1X
n=0

(e)n�n(x)t
n

(2�)n
=
1X
n=0

1X
k=0

kX
s=0

c���n�2k(e)n+2k(�k)s(e+ n+ 2k)(m�2)s

n!k!22k(� + 1=2)k(2� + n+ 2k)(m�2)ss!�
axt

2

�n+2k �
4bc2tm�2(2x� 1)d

a2x2

�s
:

Proofs of (4.1) to (4.4). From (2.1), we have

1X
n=0

�n(x)t
n

(�)n
=

1X
n=0

[n=m]X
k=0

(�1)k(�)n+(1�m)k(ax)
n�mk [b(2x� 1)d]ktn

c�+n�(m�1)k(�)nk!(n�mk)!

On using the results [14; p. 101 (6), p. 22 (20)] and Gauss's multiplication
theorem [14; p. 23 (26)], we have

1X
n=0

�n(x)t
n

(�)n
=

1X
n=0

c���n(axt)n

n!

1X
k=0

(� + n)k

h
� btm(2x�1)d

cmm

ik
Qm

p=1

�
�+n+p�1

m

�
k
k!

which is equivalent to (4.1).

If e is an arbitrary number, maybe a complex number, then following the
method of derivation of (4.1), we obtain (4.2) to (4.4).



60 Pathan and Khan

For the purpose of illustration of the usefulness of our results (4.1) to (4.4),
we choose to mention here some special cases.

For a = 2, b = c = 1 and d = 0, (4.1) gives the generating function for p�n;m(x)
de�ned and considered in [9]

(4.5)

1X
n=0

p�n;m(x)t
n

(�)n
=

1X
n=0

(2xt)n

n!
1Fm

�
� + n;

� + n

m
;
� + n+ 1

m
; . . . ;

� + n+m� 1

m
;

�
� t

m

�m�

which further for m = 2 and m = 3 lead naturally to generating functions for the
polynomials of Legendre, Pincherle, Humbert, Sinha, Shreshtha, Kinney, Horadam,
Gegenbauer and Horadam-Pethe polynomials (see also [10]).

In (4.2), setting a = m = 2 and b = c = d = 1, we get the generating function
for S�

n(x)
(4.6)

1X
n=0

(e)nS
�
n(x)t

n

(�)n
=

1X
n=0

(e)n(2xt)
n

n!
3F2

2
64
� + n;

e+ n

2
;
e+ n+ 1

2
;

� + n

2
;
� + n+ 1

2
;

� t2(2x� 1)

3
75

For e = �, (4.6) reduces to a known result of Sinha [13; p. 439 (2)].

If in (4.2), we set a = m, b = c = 1 and d = 0, we get the generating function
for Humbert polynomial

(4.7)

1X
n=0

(e)nh
�
n;m(x)t

n

(�)n
=

1X
n=0

(e)n(mxt)n

n!
m+1Fm

2
64
� + n;

e+ n

m
; . . . ;

e+ n+m� 1

m
;

� + n

m
;
� + n+ 1

m
; . . . ;

� + n+m� 1

m
;

� tm

3
75

which further reduces to a known result [14; p. 86 (26)] for e = �.

In (4.7), setting m = 3 and � = 1=2, we get the generating function for
Pincherle polynomial Pn(x)

(4.8)

1X
n=0

(e)nPn(x)t
n

(1=2)n
=

1X
n=0

(e)n(3xt)
n

n!
4F3

2
64
1

2
+ n;

e+ n

3
;
e+ n+ 1

3
;
3 + n+ 2

3
;

1=2 + n

3
;
3=2 + n

3
;
5=2 + n

3
;

� t3

3
75
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which further reduces to a known result [3; p. 697] for e = 1=2.

5. Expansions of �n(x) in series of polynomials. Expansions �n(x) in
series of Legendre, Gegenbauer, Hermite and Laguerre polynomials relevent to our
present investigation are given by

(5.1) �n(x) =

[n�(m�2)s
m

]X
k=0

kX
s=0

(�1)kc���n+(m�1)(k�s)(�)n�(1�m)k+(1�m)s(�k)s
k!s!(3=2)n�mk�(1�m)s

(2n� 2mk � 2(2�m)s+ 1)Pn�mk�(2�m)s(ax=2)[b(2x� 1)d]k�s;

(5.2) �n(x) =

[n�(m�2)s
m ]X

k=0

kX
s=0

(�1)kc���n+(1�m)s+(m�1)k(�)n+(m�1)s+(1�m)k

(�)n+1�mk�(1�m)sk!s!

(� + n� 2s�m(k � s))(�k)s[b(2x� 1)d]k�sC�
n�2s�m(k�s)(ax=2)

(5.3) �n(x) =

[n�(m�2)s
m ]X

k=0

kX
s=0

(�1)kc���n+(1�m)(s�k)(�)n+(m�1)(s�k)(�k)s
k!s!(n� 2s�m(k � 1))!

[b(2x� 1)d]k�sHn�2s�m(k�s)

�ax
2

�

and

(5.4) �n(x) =

[n�(m�2)k]X
s=0

[n=2]X
k=0

(�1)k+sc���n(m�1)k(�)n�(m�1)k(1 + �)n

k!(n� s�mk)!(1 + �)s

2n�mk[b(2x� 1)d]kL(�)s (ax=2)

Proofs of (5.1) to (5.4). By using the relations (2.1), we have

1X
n=0

�n(x)t
n =

1X
n=0

[n=m]X
k=0

(�1)mc���n+(m�1)k(�)n+(1�m)k(ax)
n�mk

k!(n�mk)!

� [b(2x� 1)d]ktn:

On using the results [14; p. 101 (6)] and [11; p. 181 (theorem 65)]

(5.5)
(ax)n

n!
=

[n=2]X
s=0

(2n� 4s+ 1)Pn�2s(ax=2)

s!(3=2)n�s
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we get

1X
n=0

�n(x)t
n =

1X
n=0

1X
k=0

[n=2]X
s=0

(�1)kc���n�k(�)n+k(2n� 4s+ 1)

k!s!(3=2)n�s

Pn�2s(ax=2)[b(2x� 1)d]ktn+mk

which on using the results [14; pp. 100 (1) and 101 (4)] and (3.3) and comparing
the coeÆcients of t yields (5.1).

In a similar manner, results (5.2) to (5.4) are obtained by using [11, p. 283
(36), p. 194 (4) and p. 207 (2)] instead of (5.5).

The authors acknowledge their thanks to the referee for the helpful sugges-
tions.
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