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Abstract. We prove a uniform convergence theorem and a representation
theorem for O-regularly varying sequences, and we answer positively an Aljancié¢
hypothesis [1].

1. Introduction

The theory of regularly varying functions and sequences appeared about 1930
in the frame of Theory of Tauberian type theorems [10], [11], [15], [16], [17] etc.
A full development of this theory occurred in the last three decads, when many
applications were discovered. We only mention the monographs [3], [5], [7], [9],
[13], [18], and the monographic paper [2]. One of the main notions in this theory is
the notion of an O-regularly varying sequences that appeared in the papers [4] and
[12], and has been very much applied in several other fields (see for instance [8],
[14], [19], [20] and others). In [6], Seneta and Bojani¢ have connected the theory
of regularly varying sequences with the theory of regularly varying functions. In
this paper we shall do a similar thing with O-regularly varying functions and O-
regularly varying sequences, and answer affirmatively an Aljanc¢i¢ hypothesis. It is
interesting to mention that this hypothesis has already been used in some papers
without being proved, so that this paper makes all these results founded.

Definition 1. A positive function F(z) defined on an interval [a,+00) (a > 0)
is called O-regularly varying if it is measurable and

(1) lim = kF()\) < 400

for every A > 0. The class of all such functions is denoted ORV.
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Definition 2. A sequence of positive numbers (¢, ) is called O-regularly varying
if

2) Im 2l _
n—+o0o Cp

kc(A) < 400

for all A > 0. The class of all such sequences is denoted ORV .

2. Results

We firstly prove two lemmas which will be necessary in the proof of the main
Theorem 1.

LEMMA 1. If A > 0 and n € N are fized, then there is an interval [, (]
(0 < a < B) such that X € [, B] and [zn] = [An] for each x € [a, (]

Proof. Since the function f(z) = nz (n € N,z > 0) is continuous and in-
creasing, in case A\n ¢ N, we can take that [, 5] is a sufficiently small interval
such that A € (a, 3). In the remaining case, An. € N, we can take that a = A and
BgeMNA+1/n). O

2\
LEMMA 2. If [a,b] is a fized interval, X > 0 is fized and n = Py then for
all sufficiently large x there is a t € [a,b] so that t- [n[z]] = [\z].

Proof. Since

Az —1  [\] Az
< < )
nx miz]] ~ nz—-1)-1
and -1 A 1 b
G O R o(1),
nw n T 2
we have \ \ .
7 =212 o),

ne-1)-1 n-@+1)/z 2
as @ = +oo. Thus [Az]/[n[z]] € [a,b] for all sufficiently large z. O
The next theorem is the affirmatively proved Aljanc¢i¢ hypothesis.

THEOREM 1. Let (c,) be a sequence of positive numbers. Then the following
assertions are equivalent:

(a) (cn) € ORV; (b) F(x) = cf5) € ORV on interval [1,+00).

Proof. (b) => (a) is trivial.

(a) = (b). If a sequence (c,) satisfies (a), then the function F'(z) = ¢[y
(z > 1) is positive, measurable and piecewise continuous. We shall prove that it
satisfies (1). We first prove that there is an interval [a,b] (0 < a < b) and M > 0

such that for every A € [a,b] and every n € N, cjan/cn < M holds true. On the
contrary, assume that
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(3) For each M and every a,b > 0 (a < b), there is an X € [a,b] and n € N such
that C[)\n]/cn > M.

We shall prove that this implies that there is a A > 0 such that

nli>_r_i1_100 (cpany/cn) = +o0.

Let Ay, ny be such that c[y, ,,1/¢n, > 1. Then by Lemma 1 there is an interval
[ov1, B1] containing Ay such that cjnp,1/cn, = €[x, ny]/Cny > 1 for every A € [aq, B1].
2a1 + b1 a; + 2b1] By
3 7 3 '
} and some ny € N such that

Let a; = a1, by = (1, and consider the interval [

2 b 2b
(3) there is a number Xy € [ al; LA e

ClAsns]/Cns > 2. By Lemma 1, there is an interval [as, B2], aa < B2 containing As,
such that ¢, /cn, > 2 for every A € [ag, B2]. Denoting [az, b2] = [a1,b1]N[az, B],
we can easily see that as < bs.

Continuing this procedure infinitely, we obtain a sequence of intervals [ay, by]
and real numbers ny, (k € N) such that cjx,,)/cn, > k for every A € [ag, by], and
[ak,br] D [ak+1,brt1] for every k € N. It follows that there is a real number
A € Mpeilar,br]. For this X and every k € N we have that cx,,]/cn, > k.
Consequently, we obtain that lim,, _, o (C[M]/cn) = +00. This contradiction shows
that (3) is impossible.

Hence, there is an M > 0 and some interval [a,b] (0 < a < b) such that
Ccian)/cn < M for all n € N and every A € [a, b].

2\
Next, let A > 0 and n = P Using Lemma 2 and the previous proof we
a

find that for all sufficiently large = there is a ¢ € [a, b] such that

Ca] _ Ctnl=]]] C[n[w]]_
Clz] Clnl=]] Cla]

Since C[t[n[z]”/qn[z“ < M and by assumption (a) C[H[I”/C[z] < K for some
K > 0 (depending on A) and all z > xo, we obtain that c[y,)/c,) < K - M for all
sufficiently large z. Consequently, limg ;o0 (¢prs]/cfs]) < +00. This means that
F(z) = c;) € ORV on the interval [1,+00). O

Theorem 1 gives as a consequence the following uniform convergence theorem
for O-regularly convergence sequences.

THEOREM 2. If (¢,) is an O-regularly varying sequence and [a,b] is a finite
interval included in (0, 4+00), then

fr ClAn]
4 lim sup
@ n—=+00 \glab] Cn

< +o0.
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Proof. 1f (c,) € ORV, then by Theorem 1, F(z) = ¢, € ORV on the
interval [1, +00), so [2] provides that

Tm sup L)
T—+00 \g[a,b] F(z)

< +00

Since next
“u F(\z) < F(\zx)
zzli F(z) — z;t) F(x)

(t>1, A€ fa,b]),

zEN
we find that . .
inf sup sup [An] <inf sup sup [M],
21 \glab] n>[t]+1 Cn  t21aglab] 2>t €[]
that is
[an] “[re]

inf sup sup < inf sup sup .
21 p>[t]+1 A€[ash] Cn t21 4>t Ae[a,b] 0[35]

Since F' € ORV, we finally obtain relation (4). O

Now we shall prove a representation theorem for the sequences from the class
ORV.

THEOREM 3. Let (¢,) be a sequence of positive numbers. Then the next
assertions are equivalent:

(a) (cn) € ORV;
(b) The sequence (cy,) is represented as

(5) cnzexp{un+§n:%},
k=1

where () and (8,) are bounded sequences.

Proof. (a) = (b). If a sequence (¢,) € ORV, then by Theorem 1 the function
F(z) = ¢z € ORV on the interval [1,+00). By [2] for every n > 1 one has

cn = F(n) = exp {,u(n) + /1n @ dt},

where p and € are bounded and measurable functions on the interval [1,4+00). This
means that ¢, = exp {,un + >y %}, where p, = p(n) is the general term of a

bounded sequence, & = k f:ﬁl €(t)/tdt for all k > 2, and §; = 0. Finally, we have
that .
t
10k] = & - ‘/ ﬂdt‘
k-1 ¢

1
<k- sup le(t)|-log|1l+ e
<k sup [e(t)] log (1+ =)

<2 sup |e(t)| < M < +oo,
t>k—1
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for k > 2, since €(t) is a bounded function on the interval [1, +00).
(b) = (a). Assume (b), and choose A > 1. Then by (5)

c n] 1)
A
O — oxp {pan) = fin} -eXP{ > —k}-
Cn k
k=n-+1
Since (uy,) is a bounded sequence, we have that
Jimexp {Bpan — pn} < 4o0.
Besides, we have that
(An] [An]+1
0 dt An
‘ Z f‘g sup |0x] ;o= sup |6k|10g(u).
k—nt1 k>n+1 n+1 k>n+1 n
Hence
U
Jdm | > ﬂ < M -logh = K < +00,
k=n+1

where K is a constant depending on A.

Therefore we have that mn_>+oo(c[>‘n]/cn) < +oo if A > 1. A similar proof
holds when A € (0,1). Hence (¢,) € ORV. O

THEOREM 4. Let (¢,) € ORV. Then its index function k. is in ORV .

Proof. If (c,) € ORV, then by Theorem 1 F'(x) = c[,; € ORV on the interval
[1, +00). By formulas (1) and (2) we immediately find that k.(\) < kgp(\) for
every A > 0. On the other hand, for arbitrary fixed A > 0 and § > 1 we find
(Az)/[A[z]] € [1,4] for all sufficiently large z. Thus by Theorem 2

1< M(§)= lim sup M<-+—oo.
T—=+00 \e[1,6] Cla]

So, for any § > 1 and A > 0 we have

= O] — el T C[T” ALz]]]
kp(A) = lim < Tim 2. Qm SRR <
r—400 C[ac] r—400 c[m] z—400 C[A[m]]

< ko(N) - M(9).

Since M (0) is an increasing function on interval [1,+00), we find that 1 < M =
lims_14+ M(5). Hence
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Next observe that the function k. is measurable on the interval (0, +00) and

kr()) 1

M2 e 0

ke(A) =

(because F' € ORV'), thus k.(\) is positive on that interval.

Since besides
kF()\t) < kF()\) kF(t) ()\,t > 0),

we find that

— k) — k(M)
ke (t) = 1 < 1 _— =
RO = Im T S IR Ty

=M ki, (t) <M kp(t) < 00 (t > 0),

hence we finally find that k. € ORV. O

Remark. On the basis of the theory of O-regularly varying functions [5] and by
applying the previous four theorems, we can develop the theory and applications
of O-regularly varying sequences in a very close connection with the theory and
applications of O-regularly varying functions.
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