
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 62 (76), 1997, 46{52

A PROOF OF AN ALJAN�CI�C HYPOTHESIS

ON O{REGULARLY VARYING SEQUENCES

Dragan -Dur�ci�c and Vladimir Bo�zin

Communicated by Stevan Pilipovi�v

Abstract. We prove a uniform convergence theorem and a representation
theorem for O-regularly varying sequences, and we answer positively an Aljan�ci�c
hypothesis [1].

1. Introduction

The theory of regularly varying functions and sequences appeared about 1930
in the frame of Theory of Tauberian type theorems [10], [11], [15], [16], [17] etc.
A full development of this theory occurred in the last three decads, when many
applications were discovered. We only mention the monographs [3], [5], [7], [9],
[13], [18], and the monographic paper [2]. One of the main notions in this theory is
the notion of an O-regularly varying sequences that appeared in the papers [4] and
[12], and has been very much applied in several other �elds (see for instance [8],
[14], [19], [20] and others). In [6], Seneta and Bojani�c have connected the theory
of regularly varying sequences with the theory of regularly varying functions. In
this paper we shall do a similar thing with O-regularly varying functions and O-
regularly varying sequences, and answer aÆrmatively an Aljan�ci�c hypothesis. It is
interesting to mention that this hypothesis has already been used in some papers
without being proved, so that this paper makes all these results founded.

De�nition 1. A positive function F (x) de�ned on an interval [a;+1) (a > 0)
is called O-regularly varying if it is measurable and

(1) lim
x!+1

F (�x)

F (x)
= kF (�) < +1

for every � > 0. The class of all such functions is denoted ORV .
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De�nition 2. A sequence of positive numbers (cn) is calledO-regularly varying
if

(2) lim
n!+1

c[�n]

cn
= kc(�) < +1

for all � > 0. The class of all such sequences is denoted ORV .

2. Results

We �rstly prove two lemmas which will be necessary in the proof of the main
Theorem 1.

Lemma 1. If � > 0 and n 2 N are �xed, then there is an interval [�; �]
(0 < � < �) such that � 2 [�; �] and [xn] = [�n] for each x 2 [�; �].

Proof. Since the function f(x) = nx (n 2 N; x > 0) is continuous and in-
creasing, in case �n =2 N , we can take that [�; �] is a suÆciently small interval
such that � 2 (�; �). In the remaining case, �n 2 N , we can take that � = � and
� 2 (�; �+ 1=n). �

Lemma 2. If [a; b] is a �xed interval, � > 0 is �xed and � =
2�

a+ b
, then for

all suÆciently large x there is a t 2 [a; b] so that t �
�
� [x]

�
= [�x].

Proof. Since
�x� 1

� x
�

[�x]

[�[x]]
�

�x

�(x� 1)� 1
;

and
�x� 1

� x
=

�

�
�

1

x �
=

a+ b

2
+ o(1);

we have
�x

�(x � 1)� 1
=

�

� � (� + 1)=x
=

a+ b

2
+ o(1);

as x! +1. Thus
�
�x
�
=
�
� [x]

�
2 [a; b] for all suÆciently large x. �

The next theorem is the aÆrmatively proved Aljan�ci�c hypothesis.

Theorem 1. Let (cn) be a sequence of positive numbers. Then the following

assertions are equivalent:

(a) (cn) 2 ORV ; (b) F (x) = c[x] 2 ORV on interval [1;+1).

Proof. (b) =) (a) is trivial.

(a) =) (b). If a sequence (cn) satis�es (a), then the function F (x) = c[x]
(x � 1) is positive, measurable and piecewise continuous. We shall prove that it
satis�es (1). We �rst prove that there is an interval [a; b] (0 < a < b) and M > 0
such that for every � 2 [a; b] and every n 2 N , c[�n]=cn < M holds true. On the
contrary, assume that
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(3) For each M and every a; b > 0 (a < b), there is an � 2 [a; b] and n 2 N such

that c[�n]=cn > M .

We shall prove that this implies that there is a � > 0 such that

lim
n!+1

�
c[�n]=cn

�
= +1:

Let �1, n1 be such that c[�1 n1]=cn1 > 1. Then by Lemma 1 there is an interval
[�1; �1] containing �1 such that c[�n1]=cn1 = c[�1 n1]=cn1 > 1 for every � 2 [�1; �1].

Let a1 = �1, b1 = �1, and consider the interval
h2a1 + b1

3
;
a1 + 2b1

3

i
. By

(3) there is a number �2 2
h2a1 + b1

3
;
a1 + 2b1

3

i
and some n2 2 N such that

c[�2n2]=cn2 > 2. By Lemma 1, there is an interval [�2; �2], �2 < �2 containing �2,
such that c[�n2]=cn2 > 2 for every � 2 [�2; �2]. Denoting [a2; b2] = [a1; b1]\ [�2; �2],
we can easily see that a2 < b2.

Continuing this procedure in�nitely, we obtain a sequence of intervals [ak; bk]
and real numbers nk (k 2 N) such that c[�nk]=cnk > k for every � 2 [ak; bk], and
[ak; bk] � [ak+1; bk+1] for every k 2 N . It follows that there is a real number
� 2

T1
k=1[ak; bk]. For this � and every k 2 N we have that c[�nk]=cnk > k.

Consequently, we obtain that limn!+1

�
c[�n]=cn

�
= +1. This contradiction shows

that (3) is impossible.

Hence, there is an M > 0 and some interval [a; b] (0 < a < b) such that
c[�n]=cn < M for all n 2 N and every � 2 [a; b].

Next, let � > 0 and � =
2�

a+ b
. Using Lemma 2 and the previous proof we

�nd that for all suÆciently large x there is a t 2 [a; b] such that

c[�x]

c[x]
=

c[t[�[x]]]

c[�[x]]
�
c[�[x]]

c[x]
:

Since c[t[�[x]]]=c[�[x]] < M and by assumption (a) c[�[x]]=c[x] < K for some
K > 0 (depending on �) and all x � x0, we obtain that c[�x]=c[x] < K �M for all

suÆciently large x. Consequently, limx!+1

�
c[�x]=c[x]

�
< +1. This means that

F (x) = c[x] 2 ORV on the interval [1;+1). �

Theorem 1 gives as a consequence the following uniform convergence theorem
for O-regularly convergence sequences.

Theorem 2. If (cn) is an O-regularly varying sequence and [a; b] is a �nite

interval included in (0;+1), then

(4) lim
n!+1

sup
�2[a;b]

c[�n]
cn

< +1:
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Proof. If (cn) 2 ORV , then by Theorem 1, F (x) = c[x] 2 ORV on the
interval [1;+1), so [2] provides that

lim
x!+1

sup
�2[a;b]

F (�x)

F (x)
< +1:

Since next

sup
x�t
x2N

F (�x)

F (x)
� sup

x�t

F (�x)

F (x)
(t � 1; � 2 [a; b]);

we �nd that

inf
t�1

sup
�2[a;b]

sup
n�[t]+1

c[�n]

cn
� inf

t�1
sup

�2[a;b]

sup
x�t

c[�x]

c[x]
;

that is

inf
t�1

sup
n�[t]+1

sup
�2[a;b]

c[�n]

cn
� inf

t�1
sup
x�t

sup
�2[a;b]

c[�x]

c[x]
:

Since F 2 ORV , we �nally obtain relation (4). �

Now we shall prove a representation theorem for the sequences from the class
ORV .

Theorem 3. Let (cn) be a sequence of positive numbers. Then the next

assertions are equivalent:

(a) (cn) 2 ORV ;

(b) The sequence (cn) is represented as

(5) cn = exp
n
�n +

nX
k=1

Æk
k

o
;

where (�n) and (Æn) are bounded sequences.

Proof. (a) =) (b). If a sequence (cn) 2 ORV , then by Theorem 1 the function
F (x) = c[x] 2 ORV on the interval [1;+1). By [2] for every n � 1 one has

cn = F (n) = exp
n
�(n) +

Z n

1

�(t)

t
dt
o
;

where � and � are bounded and measurable functions on the interval [1;+1). This

means that cn = exp
n
�n +

Pn
k=1

Æk
k

o
, where �n = �(n) is the general term of a

bounded sequence, Æk = k
R k
k�1

�(t)=t dt for all k � 2, and Æ1 = 0. Finally, we have
that

jÆkj = k �
���
Z k

k�1

�(t)

t
dt
���

� k � sup
t�k�1

j�(t)j � log
�
1 +

1

k � 1

�
e

� 2 sup
t�k�1

j�(t)j �M < +1;
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for k � 2, since �(t) is a bounded function on the interval [1;+1).

(b) =) (a). Assume (b), and choose � > 1. Then by (5)

c[�n]

cn
= exp

�
�[�n] � �n

	
� exp

n [�n]X
k=n+1

Æk
k

o
:

Since (�n) is a bounded sequence, we have that

lim
n!+1

exp
�
�[�n] � �n

	
< +1:

Besides, we have that

���
[�n]X

k=n+1

Æk
k

��� � sup
k�n+1

jÆkj

Z [�n]+1

n+1

dt

t� 1
= sup

k�n+1
jÆkj log

� [�n]
n

�
:

Hence

lim
n!+1

���
[�n]X

k=n+1

Æk
k

��� �M � log� = K < +1;

where K is a constant depending on �.

Therefore we have that limn!+1(c[�n]=cn) < +1 if � � 1. A similar proof
holds when � 2 (0; 1). Hence (cn) 2 ORV . �

Theorem 4. Let (cn) 2 ORV . Then its index function kc is in ORV .

Proof. If (cn) 2 ORV , then by Theorem 1 F (x) = c[x] 2 ORV on the interval
[1;+1). By formulas (1) and (2) we immediately �nd that kc(�) � kF (�) for
every � > 0. On the other hand, for arbitrary �xed � > 0 and Æ > 1 we �nd
(�x)=[�[x]] 2 [1; Æ] for all suÆciently large x. Thus by Theorem 2

1 �M(Æ) = lim
x!+1

sup
�2[1;Æ]

c[�x]

c[x]
< +1:

So, for any Æ > 1 and � > 0 we have

kF (�) = lim
x!+1

c[�x]
c[x]

� lim
x!+1

c[�[x]]
c[x]

� lim
x!+1

c�
�x

[�[x]]
[�[x]]

�
c[�[x]]

�

� kc(�) �M(Æ):

Since M(Æ) is an increasing function on interval [1;+1), we �nd that 1 � M =
limÆ!1+M(Æ). Hence

kc(�) � kF (�) � kc(�) �M (� > 0):
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Next observe that the function kc is measurable on the interval (0;+1) and

kc(�) �
kF (�)

M
�

1

MkF (1=�)
> 0

(because F 2 ORV ), thus kc(�) is positive on that interval.

Since besides

kF (�t) � kF (�) kF (t) (�; t > 0);

we �nd that

kkc(t) = lim
�!+1

kc(�t)

kc(�)
� lim

�!+1

kF (�t)
1
M
kF (�)

=

=M � kkF (t) �M � kF (t) < +1 (t > 0);

hence we �nally �nd that kc 2 ORV . �

Remark. On the basis of the theory of O-regularly varying functions [5] and by
applying the previous four theorems, we can develop the theory and applications
of O-regularly varying sequences in a very close connection with the theory and
applications of O-regularly varying functions.

References

[1] S. Aljan�ci�c, Some applications of O-regularly varying functions, Proceedings Internat. Conf.
\Approximations and function spaces", Gdanjsk 1979, Math. Inst. Polish Acad. Sci., North-
Holland and PWN, 1981, pp. 1{15.

[2] S. Aljan�ci�c, D. Aran -delovi�c, O-regularly varying functions, Publ. Inst. Math. (Beograd) 22
(36) (1977), 5{22.

[3] S. Aljan�ci�c, R. Bojani�c, M. Tomi�c, "Slowly varying functions with remainder term and their
applications in Analysis", Monographs Serb. Acad. Sci. Arts, CDLXVII (Sect. Nat. Math.
Soc.), No. 41, Beograd, 1954.

[4] V. G. Avakumovi�c, Sur une extension de la condition de convergence des theorems inverses
de sommabilite, C. R. Acad. Sci. Paris 200 (1935), 1515{1517.

[5] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation, Cambridge Univ. Press, Cam-
bridge, 1987.

[6] R.Bojani�c, E.Seneta, A uni�ed theory of regularly varying sequences, Math. Zeit. 134 (1973),
91{106.

[7] J. L. Geluk, L. de Haan, "Regular variation, extension and Tauberian theorems", CWI Tract
No. 40, Math. Centre, Amsterdam, 1987.

[8] D. Grow,�C. V. Stanojevi�c, Convergence and the Fourier character of trigonometric transforms
with slowly varying convergence moduli, Math. Ann. 302 (1955), 433{472.

[9] L. de Haan, "On regular variation and its application to the week convergence of sample
extremes", CWI Tract No. 32, Math. Centre, Amsterdam, 1970.

[10] J. Karamata, Sur certains "Tauberian theorems" de M.M.Hardy et Littlewood, Mathematica
Cluj 3 (1930), 33{48.

[11] J. Karamata, Sur un mode de croissance r�eguliere. Th�eor�emes fondamentaux, Bull. Soc. Math.
France 61 (1933), 55{62.



52 -Dur�ci�c and Bo�zin

[12] J. Karamata, Remark on the preceding paper by V. G. Avakumovi�c, with the study of a class
of functions occurring in the inverse theorems of the summability theory, (in Serboian) Rad.
JAZU 254 (1936), 187{200.

[13] E. Omey, Multivariate Regular Variation and Application in Probability Theory, Economische
Hogeschool Sint-Aloysius, Brusseles, 1989.

[14] E. Omey, On the asymptotic behaviour of two sequences related by a convolution equation,
Publ. Inst. Math. (Beograd) 58 (72) (1995), 143{148.

[15] G.Polya, Bemerkungen�uber unendliche Folgen und ganze Funktionen, Math. Ann. 88 (1923),
169{183.

[16] R. Schmidt, �Uber divergente Folgen und lineare Mittelbildungen, Math. Z. 22 (1925), 89{152.

[17] I. Schur, Zur Theorie der Cesaroschen und Holderschen Mittelwerte, Math. Z. 31 (1930),
391{407

[18] E. Seneta, Regularly Varying Functions, Lecture Notes Math. 508, Springer-Verlag, Berline,
1976.

[19] �C. V. Stanojevi�c, O-regularly varying convergence moduli of Fourier and Fourier{Stieltjes
series, Math. Ann. 279 (1987), 103{115.

[20] �C. V. Stanojevi�c, Structure of Fourier and Fourier{Stieltjes coeÆcients of series with slowly
varying convergence moduli, Bull. Amer. Math. Soc. 19 (1988), 283{286.

Tehni�cki fakultet (Received 13 03 1997)
Svetog Save 65
32000 �Ca�cak
Yugoslavia

Matemati�cki institut
Kneza Mihaila 35/I
11001 Beograd
Yugoslavia


