
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 62 (76), 1997, 13{25

ON MELLIN-BARNES TYPE OF INTEGRALS AND SUMS

ASSOCIATED WITH THE RIEMANN ZETA-FUNCTION

Masanori Katsurada

Communicated by Aleksandar Ivi�c

Abstract. Two types (binomial and exponential types) of power series, to-
gether with a related sum, associated with the Riemann zeta-function �(s) will be
investigated by using Mellin-Barnes type integrals. As for generalizations of these
sums we shall introduce hypergeometric type generating functions of �(s) and derive
their basic properties.

1. Introduction

It is the main aim of this paper to study two types of power series, together
with a related sum, associated with the Riemann zeta-function �(s). The �rst
object is a binomial type series (2.1) given below, which will be studied in the next
section, while the asymptotic behaviour of an exponential type series (3.2) will be
investigated in Section 3. Section 4 will be devoted to the consideration of the sum
(4.3). Mellin-Barnes type integrals such as (2.2), (3.3) and (4.4) will play essential
roles in these investigations. Furthermore, as for generalizations of these sums we
shall introduce hypergeometric type generating functions of �(s) and derive their
basic properties in the �nal section. It should be remarked that functions of this
type were recently introduced by Raina and Srivastava [RS], and the author [Ka3],
independently of each other. Raina-Srivastava's function in the most general form
[RS, (2.4)] includes our F�(a; b; c; z) and F�(a; c; z) (see Section 5) as the special
cases.

It is worth while noting that eÆcient applications of Mellin-Barnes type inte-
grals have recently been made by Motohashi [Mo1] and [Mo2] to study the fourth
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power mean of �(s) and Kuznetsov's spectral expansion of Kloosterman-sum zeta-
function, respectively. Integrals of this type were also applied to deduce full as-
ymptotic expansions for the mean squares of Dirichlet L-functions and Lerch zeta-
functions (see [Ka1] and [Ka2]). Also in this paper, our main theorems result
from the arguments of moving the path of integration, similarly to [Ka1], [Ka2], for
Mellin-Barnes type integrals. Part of the results in this paper have been announced
in [Ka3].

This work was initiated while the author was staying at the Department of
Mathematics, Keio University in Yokohama. He would like to express his sincere
gratitude to this institution, especially to Professor Iekata Shiokawa for warm hos-
pitality and constant support. The author would also like to thank Professors
Masayoshi Hata, Aleksandar Ivi�c, Kohji Matsumoto and Eiji Yoshida for valuable
comments on this work.

2. Binomial type series

Let � > 0 be a parameter, and �(s; �) the Hurwitz zeta-function de�ned by

�(s; �) =

1X
n=0

(n+ �)�s (Re s > 1);

and its meromorphic continuation over the whole s-plane. Let �(s) be the gamma-
function and (s)n = �(s+ n)=�(s) for any integer n Pochhammer's symbol.

The simple relation
1X
n=2

f�(n)� 1g = 1

follows immediately from the inversion of the order of the double sum
1P
n=2

1P
m=2

m�n,

and was �rst mentioned (in a di�erent but an equivalent form) by Christian Gold-
bach in 1729 (see [Sr3, Section 1]). This is in fact derived as a special case of
Ramanujan's formula

(2.1) �(�; 1 + x) =
1X
n=0

(�)n
n!

�(� + n)(�x)n (jxj < 1)

for any complex � 6= 1, which gave a base of his various evaluations of sums in-
volving �(s) (see [Ram, Sections 5 and 6]). Noting the relations �(s; 1) = �(s)
and (@=@�)n�(s; �) = (�1)n(s)n�(s + n; �), we see that the right-hand side of
(2.1) is actually the Taylor series expansion of �(�; 1 + x) as a function of x near
x = 0. Srivastava [Sr1], [Sr2], [Sr3] derived various interesting summation formulae
related to (2.1), while Klusch [Kl] considered a generalization of (2.1) to the Lerch
zeta-function. The latter direction was further pursued by Yoshimoto, Kanemitsu
and the author [YKK]. On the other hand, Rane [Ran] recently applied (2.1) to
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study the mean square of Dirichlet L-functions. For related results and various
generalizations of (2.1), we refer to [Kl], [Sr3] and their references.

In order to describe a prototype of the following discussions, we shall prove
(2.1) as an application of Mellin-Barnes type integrals. Suppose �rst that Re � > 1
and set

(2.2) F�(x) =
1

2�i

Z
(b)

�(� + s)�(�s)
�(�)

�(� + s)xsds

for x > 0, where b is a constant �xed with 1 � Re � < b < 0 and (b) denotes the
vertical straight line from b� i1 to b+ i1. We can shift the path of integration
in (2.2) to the right, provided 0 < x < 1, since the order of the integrand is
OfxN (N + j Im sj)Re ��1e��j Im sjg on the vertical line Re s = N + 1

2 with N =
0; 1; 2; . . . . Collecting the residues of the poles at s = n (n = 0; 1; 2; . . . ), we see
that F�(x) is equal to the right-hand in�nite series in (2.1). On the other hand,
since �(� + s) =

P1
n=1 n

���s converges absolutely for Re s = b, the term-by-term
integration is permissible on the right-hand side of (2.2). Each term in the resulting
expression can be evaluated by

(n+ x)�� =
1

2�i

Z
(b)

�(�s)�(� + s)

�(�)
n���sxsds:

This is obtained by taking �z = x=n in the formula

�(a)(1� z)�a =
1

2�i

Z
(�)

�(�s)�(a+ s)(�z)sds

for j arg(�z)j < � and �Rea < � < 0, which is a special case of Mellin-Barnes
integral for Gauss' hypergeometric function F (a; b; c; z) (cf. [WW, p. 289, 14.51,
Corollary]). We therefore obtain

F�(x) =
1X
n=1

(n+ x)�� =
1X
n=0

(n+ 1 + x)�� = �(�; 1 + x);

from which (2.1) follows immediately by analytic continuation.

3. Exponential type series

In 1962, Chowla and Hawkins [CH] found that the sum

G0(x) =

1X
n=2

�(n)
(�x)n
n!

(jxj < +1)

has the asymptotic formula

(3.1) G0(x) = x logx+ (2
 � 1)x+
1

2
+O(e�A

p
x)
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as x! +1, where 
 is Euler's constant and A is a certain positive constant. They
conjectured at the same time that the error estimate in (3.1) cannot be essentially
sharpened. Let a be an arbitrarily �xed real parameter. Buschman and Srivastava
[BS] introduced a more general formulation

Ga(x) =
X

n>a+1

�(n� a)
(�x)n
n!

;

where n runs through all nonnegative integers with n > a + 1, and studied its
asymptotic behaviour as x! +1. The special cases where a = �2;�1 and 1 have
been investigated by Verma [Ve], Tennenbaum [Te], and Verma and Prasad [VP],
respectively.

Let � be an arbitrary complex parameter. It is in fact possible to treat a
slightly general series

(3.2) G�(x) =
X

n>Re �+1

�(n� �)
(�x)n
n!

;

based on the formula

(3.3) G�(x) =
1

2�i

Z
(c)

�(�s)�(s� �)xsds

for x > 0, where c is a constant �xed with Re � + 1 < c < [Re � + 2]. (Here
[�] for real � denotes the greatest integer not exceeding �.) Formula (3.3) can
be proved by shifting the path (c) to the right and collecting the residues of the
poles at s = n (n = [Re � + 2]; [Re � + 3]; . . . ), since the order of the integrand

is Of(ex=N)Ne�
1

2
�j Im sjg on the vertical line Re s = N + 1

2 with N = [Re � + 1];
[Re � + 2]; . . . . While the main method of [BS] is Euler-Maclaurin's summation
device, our treatment of (3.2) is due to a re�nement of the original argument of
[CH].

We �rst give a proof of

Theorem 3.1. The following formulae hold for all x � 2.

(i) If � =2 f�1; 0; 1; 2; . . .g,

(3.4) G�(x) = �(�� � 1)x�+1 �
[Re �+1]X
n=0

�(n� �)
(�x)n
n!

+ G�(x);

(ii) If � 2 f�1; 0; 1; 2; . . .g,

(3.5) G�(x) = (�1)� x�+1

(� + 1)!

 
logx+ 2
 �

�+1X
n=1

1

n

!
�

�X
n=0

�(n� �) (�x)
n

n!
+G�(x);
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where the empty sum is to be regarded as null. Here G�(x) is the error term

satisfying the estimate

(3.6) G�(x) = O(x�C)

for any C > 0, where the implied O-constant depends only on C and �.

Remark. This theorem re�nes the results in [BS].

Proof. We may restrict our consideration to the case of � =2 f�1; 0; 1; . . .g, since
other cases can be treated by taking limits in (3.4). Let C be a constant �xed
arbitrarily with �C < min(0;Re � + 1). Then we can shift the path of integration

in (3.3) from (c) to (�C), since the order of the integrand is O(j Im sjBe� 1

2
�j Im sj)

as Im s ! �1 (with a positive constant B depending only on Re s and Re �).
Collecting the residues of the poles at s = n (n = 0; 1; . . . ; [Re � + 1]) and � + 1,
we obtain (3.4) with

(3.7) G�(x) = 1

2�i

Z
(�C)

�(�s)�(s� �)xsds:

The estimate (3.6) follows immediately by noting that jxsj = x�C holds on the
path Re s = �C. This completes the proof of Theorem 3.1. �

Chowla and Hawkins suggested in [CH] that the error term in (3.1) is ex-
pressible in terms of certain 'almost' Bessel functions; however, it seems that the
functions in question have not been precisely determined. Let K�(z) be the modi-
�ed Bessel function of the third kind de�ned by

K�(z) =
�

2 sin��
fI��(z)� I�(z)g ;

where

I�(z) =
1X
m=0

1

m!�(m+ � + 1)

�z
2

�2m+�

is the Bessel function with purely imaginary argument (cf. [Er2, p. 5, 7.2.2 (12) and
(13)]). We can indeed show that G�(x) has the Vorono�� type summation formula
(cf. [Iv, Chapter 3]) involving K�+1(z).

Theorem 3.2. For any x � 2 we have

G�(x) = 2
� x
2�

� 1

2
(�+1) 1X

n=1

n�
1

2
(�+1)

n
e�

1

4
(�+1)�iK�+1(2e

1

4
�i
p
2n�x)

+ e
1

4
(�+1)�iK�+1(2e

� 1

4
�i
p
2n�x)

o
:
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Proof. For the proof we �x C such as �C < min(0;Re �). Substituting the func-
tional equation �(s� �) = �(s� �)�(1� s+ �) (cf. [Iv, Chapter 1, p. 9, 1.2 (1.24)])
into the right-hand side of (3.7), we get

G�(x) = x�+1

2�i

Z
(�C)

�(�s)�(1� s+ �)2 cos
��
2
(s� � � 1)

�
(3.8)

� �(1� s+ �)(2�x)s���1ds:

Since �(1 � s+ �) =
P1

n=1 n
s���1 converges absolutely for Re s = �C, the term-

by-term integration is permissible on the right-hand side of (3.8), and this gives

G�(x) = x�+1
1X
n=1

n
g�(2n�xe

1

2
�i) + g�(2n�xe

� 1

2
�i)
o
;

where

(3.9) g�(z) =
1

2�i

Z
(�C)

�(�s)�(1� s+ �)zs���1ds

for j arg zj < �. Noting that the pair

x�K�(x); 2s+��2�( 12s)�(
1
2s+ �) (Re s > max(0;�2Re �))

is a pair of Mellin transforms (cf. [Ti, Chapter VII, p. 197, (7.9.12)]), we obtain

g�(z) = 2z�
1

2
(�+1)K�+1(2z

1

2 )

for j arg zj < �, by which the proof of Theorem 3.2 is complete. �

Let (�;m) = �( 12 +�+m)=m!�( 12 +��m) for any integer m � 0 be Hankel's
symbol. Applying the asymptotic expansion

(3.10) K�+1(z) =
� �
2z

� 1

2

e�z
(
M�1X
m=0

(� + 1;m)(2z)�m +O(jzj�M )

)

for j arg zj < 3�=2, jzj � 1 and any integer M � 0 (cf. [Er2, p. 24, 7.4.1 (4)]) to
Theorem 3.2, we can further prove

Corollary 3.1. The asymptotic formula

(3.11) G�(x) =
p
2
� x
2�

� 1

2
�+ 1

4

e�2
p
�x

�
�M�1X

m=0

(� + 1;m)(32�x)�
1

2
m cos

�
2
p
�x+

�

4

�
� +

3

2
+m

��
+O(x�

1

2
M )

�
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holds for all x � 2 and all integers M � 0, where the implied O-constant depends
only on � and M .

Remark. This corollary gives an aÆrmative answer to the conjecture of Chowla
and Hawkins [CH] mentioned at the beginning of this section (see (3.1) and below).

Proof. From (3.10) with M = 0, we have

(3.12) K�+1(2e
� 1

4
�i
p
2n�x) = Of(nx)� 1

4 exp(�2pn�x)g

for n � 1 and x � 1. Noting that the inequality
p
n � p2 �1 + 1

5

p
n� 2

�
holds for

all n � 2, from (3.12) we obtain

X
n�2

n�
1

2
(�+1)K�+1(2e

� 1

4
�i
p
2n�x) = Ofx� 1

4 exp(�2
p
2�x)g:

This, together with Theorem 3.2, yields

G�(x) = 2
� x
2�

� 1

2
(�+1) n

e�
1

4
(�+1)�iK�+1(2e

1

4
�i
p
2�x)(3.13)

+ e
1

4
(�+1)�iK�+1(2e

� 1

4
�i
p
2�x)

o
+Ofx 1

2
Re �+ 1

4 exp(�2
p
2�x)g;

where the implied O-constant depends only on �. The corollary now follows by
substituting (3.10) into the �rst term on the right-hand side of (3.13). �

4. A related sum

Let
�
s
n

�
= �(s+1)=�(s�n+1)n! for a nonnegative integer n be the binomial

coeÆcient. The second object of the study in Chowla and Hawkins [CH] is the sum

(4.1) H0(N) =

NX
n=2

(�1)n
�
N

n

�
�(n);

where N is a positive integer. Based on the study of the ratio
P

n�x(x�n)s(x=n�
[x=n])=

P
n�x(x� n)s, they showed the asymptotic formula

(4.2) H0(N) = N logN + (2
 � 1)N + o(1)

as N ! +1. The error term in (4.2) was sharpened as O(N�1) by Verma [Ve],
who applied Euler-Maclaurin's summation formula to evaluate (4.1).

Let � be an arbitrary complex parameter. Corresponding to (3.2), we intro-
duce the series

(4.3) H�(x) =
X

n>Re �+1

(�1)n
�
x

n

�
�(n� �);
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which converges absolutely for x > 0, since (�1)n�xn� = O(n�x�1) as n ! +1.
Note that (4.1) is a terminating case of (4.3). The formula

(4.4) H�(x) =
1

2�i

Z
(c)

�(x+ 1)�(�s)
�(x+ 1� s)

�(s� �)ds

for x > 0 (c is a constant �xed with Re � + 1 < c < [Re � + 2]) is essential in the
following derivation. This can be proved by shifting the path (c) to the right and
collecting the residues of the poles at s = n (n = [Re � + 2]; [Re � + 3]; . . . ), since
the order of the integrand is O(jN + i Im sj�x�1) on the vertical line Re s = N + 1

2
with N = [Re � + 2]; [Re � + 3]; . . . .

Let 	(a; c; z) be the con
uent hypergeometric function de�ned by

(4.5) 	(a; c; z) =
1

�(a)

Z 1ei�

0

e�z��a�1(1 + �)c�a�1d�

for Re a > 0, �� < � < � and ��=2 < � + arg z < �=2, where the path of
integration is taken as a half-line from the origin to 1ei� (cf. [Er, p. 256, 6.5 (3)]).
Then we can prove

Theorem 4.1. The following formulae hold for all x � jRe �j+ 2.

(i) If � =2 f�1; 0; 1; 2; . . .g,

(4.6) H�(x) =
�(x+ 1)�(�� � 1)

�(x� �)
�

[Re �+1]X
n=0

(�1)n
�
x

n

�
�(n� �) +H�(x);

(ii) If � 2 f�1; 0; 1; 2; . . .g,

H�(x) = (�1)�
�

x

� + 1

��
�0

�
(x� �) + 2
 �

�+1X
n=1

1

n

�
(4.7)

�
�X

n=0

(�1)n
�
x

n

�
�(n� �) +H�(x);

where the empty sum is to be regarded as null. Here H�(x) is the error term which

can be expressed as

H�(x) = �(x+ 1)

1X
n=1

n
	(x+ 1; � + 2; 2n�e

1

2
�i)(4.8)

+ 	(x+ 1; � + 2; 2n�e�
1

2
�i)
o
:

Remark. Using (4.8), we shall prove an upper-bound estimate for H�(x) in Corol-
lary 4.1.
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Proof. As in the proof of Theorem 3.1, we restrict our consideration to the case
of � =2 f�1; 0; 1; . . .g. Let �0 = min(0;Re �) � 1

2 . Then we can shift the path of
integration in (4.4) from (c) to (�0), since the order of the integrand for Re s � �0
is O(j Im sj�x+jRe �j) as Im s ! �1. Collecting the residues of the poles at s = n
(n = 0; 1; . . . ; [Re � + 1]) and � + 1, we obtain (4.6) with

H�(x) =
1

2�i

Z
(�0)

�(x+ 1)�(�s)
�(x+ 1� s)

�(s� �)ds:

Substituting the functional equation �(s��) = �(s��)�(1�s+�) and integrating
term-by-term as in the proof of Theorem 3.1, we get

H�(x) =

1X
n=1

n
h�(x; 2n�e

1

2
�i) + h�(x; 2n�e

� 1

2
�i)
o
;

where

(4.9) h�(x; z) =
1

2�i

Z
(�0)

�(x+ 1)�(�s)�(1� s+ �)

�(x+ 1� s)
zs���1ds

for j arg zj � �=2 and z 6= 1. Here the region of convergence of (4.9) is ensured by

the fact that the order of the integrand is Ofj Im sj�x+jRe �je�( 12��j arg zj)j Im sjg as
Im s ! �1. (Notice that x � jRe �j + 2.) The proof of Theorem 4.1 is therefore
complete by showing

Lemma 4.1. We have

h�(x; z) = e�z�(x+ 1)	(x+ 1; � + 2; z)

for j arg zj � �=2 and z 6= 0.

Proof of Lemma 4.1. It is suÆcient to prove the lemma for j arg zj < �=2, since the
remaining case follows by continuity. Substituting the formula

zs���1�(1� s+ �) =

Z 1

0

e�z���s+�d�

for j arg zj < �=2 and Re s < Re � + 1 into the right-hand integral in (4.9), and
changing the order of integrations (by Fubini's theorem), we �nd

h�(x; z) =

Z 1

1

e�z���(1� ��1)xd� = e�z
Z 1

0

e�z��x(1 + �)��xd�:

Here we used the fact that the resulting inner s-integral is equal to 0 for 0 < � < 1,
and (1 � ��1)x for � > 1, respectively (cf. [Er3, p. 349, (20)]). The lemma now
follows by noting (4.5). �

We next prove
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Corollary 4.1. The estimate

H�(x) = O
n
x

1

2
max(Re �;0)+ 1

2 exp(�Dx 1

3 )
o

holds for x � jRe �j+ 2, where D = 3
2 (4�

2 log 2)
1

3 = 4:5201 . . . :.

Remark 1. Theorem 4.1 with this corollary re�nes the result of Verma [Ve] men-
tioned at the beginning of this section (see (4.2) and below), since (�0=�)(x) =
logx� (2x)�1 +O(x�2) as x! +1.

Remark 2. It is known that the asymptotic behaviour of the con
uent hypergeo-
metric function 	(a; c; z) for large a and large z is complicated (see [Er1, p. 280,
6.13.3]). Hence it seems diÆcult to deduce from (4.8) a full asymptotic expansion,
such as (3.11), for H�(x).

Proof. Taking � = ��=2 and z = 2n�e��i=2 in (4.5), and changing the variable �
into e��i=2� , we have

�(x+ 1)	(x+ 1; � + 2; 2n�e�
1

2
�i)�

Z 1

0

e�2n���x(1 + �2)
1

2
(��x)d�;

where (also in what follows) the implied �-constant depends on �, and we set
� = Re � for simplicity. Hence

�(x+ 1)

1X
n=1

	(x+ 1; � + 2; 2n�e�
1

2
�i)

�
Z 1

0

e�2��

1� e�2��
�x(1 + �2)

1

2
(��x)d�

�
Z 1

0

expf�(x� 1)'(�)gd� +
Z 1

1

�� expf�2�� � x'(�)gd�
= I1 + I2;

say, where '(�) = 1
2 log(1 + �2) � log � . Since the function '(�) is monotone

decreasing for � 2]0; 1], the estimate

(4.10) I1 � exp(�x log
p
2)

follows. Next note that the inequality '(�) = 1
2 log(1 + ��2) � (log

p
2)��2 holds

for all � 2 [1;+1[. De�ning  (�) = 2�� + (log
p
2)x��2 for � 2 [1;+1[, we have

I2 �
Z 1

1

�� expf� (�)gd�

=

 Z dx1=2

1

+

Z 1

dx1=2

!
�� expf� (�)gd� = I2;1 + I2;2;
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say, where d = (log 2=2�)
1

3 . Since the function  (�) attains its minimum value

Dx
1

3 (with the constant D given in the corollary) at � = dx
1

3 , we obtain

(4.11) I2;1 � x
1

2
max(�;0)+ 1

2 exp(�Dx 1

3 ):

On the other hand, it can be seen the estimates

(4.12) I2;2 �
Z 1

dx1=2
��e�2��d� � x

1

2
� exp(�2�dx 1

2 );

where the last inequality for � � 0 follows immediately, and that for � > 0 reduces
to the preceding case by integrating by parts repeatedly. The proof of the corollary
is now complete by summing up the estimates (4.10), (4.11) and (4.12). �

5. Generating functions of �(s)

Let a and � be complex parameters with � =2 f1; 0;�1;�2; . . .g. We de�ne

f�(a; z) =
1X
n=0

(a)n
n!

�(� + n)zn (jzj < 1);

e�(z) =

1X
n=0

1

n!
�(� + n)zn (jzj < +1):

Since �(� + n) ! 1 uniformly for n = 0; 1; 2; . . . , as Re � ! +1, we see that
f�(a; z)! (1� z)�a and e�(z)! ez as Re � ! +1. This suggests us to de�ne the
hypergeometric type generating functions of �(s) as

F�(a; b; c; z) =
1X
n=0

(a)n(b)n
(c)nn!

�(� + n)zn (jzj < 1);(5.1)

F�(a; c; z) =
1X
n=0

(a)n
(c)nn!

�(� + n)zn (jzj < +1);(5.2)

where a, b and c are arbitrarily �xed complex parameters with c =2 f0;�1;�2; . . .g.
Then we can observe, when Re � ! +1, that

F�(a; b; c; z) �! F (a; b; c; z);

F�(a; c; z) �! F (a; c; z);

where F (a; b; c; z) and F (a; c; z) denote hypergeometric functions of Gauss and
Kummer, respectively.

Substituting the series expression �(� + n) =
P1

m=1m
���n for Re � > 1 and

n � 0 into (5.1) and (5.2), and changing the order of summations, respectively, we
get
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Theorem 5.1. The Dirichlet series expressions

(5.3) F�(a; b; c; z) =
1X
m=1

F
�
a; b; c;

z

m

�
m�� ;

and

(5.4) F�(a; c; z) =
1X
m=1

F
�
a; c;

z

m

�
m��

hold for Re � > 1, respectively.

Recall that the hypergeometric functions have Euler's integral formulae (cf.
[Er1, p. 59, 2.1.3, (10) and p. 255, 6.5, (1)]). Corresponding to these, from the
term-by-term integrations we can deduce

Theorem 5.2. It follows that

(5.5) F�(a; b; c; z) = �(c)

�(b)�(c� b)

Z 1

0

� b�1(1� �)c�b�1f�(a; �z)d�

for 0 < Re b < Re c and jzj < 1, and

(5.6) F�(a; c; z) = �(c)

�(a)�(c� a)

Z 1

0

�a�1(1� �)c�a�1e�(�z)d�

for 0 < Re a < Re c and jzj < +1.

Recall further that the hypergeometric functions have Mellin-Barnes integral
formula (cf. [Er1, p. 62, 2.1.3, (15) and p. 256, 6.5, (4)]). By the similar argument
of moving the path of integratrion as in Section 2, we can show

Theorem 5.3. For Rea > 0, Re b > 0 and Re � > 1 we have

(5.7) F�(a; b; c; z) = 1

2�i

�(c)

�(a)�(b)

Z
(�1)

�(a+ s)�(b+ s)�(�s)
�(c+ s)

�(� + s)(�z)sds;

for j arg(�z)j < �, where �1 is �xed with max(�Re a;�Re b; 1� Re �) < �1 < 0;
and

(5.8) F�(a; c; z) = 1

2�i

�(c)

�(a)

Z
(�2)

�(a+ s)�(�s)
�(c+ s)

�(� + s)(�z)sds

for j arg(�z)j < �=2, where �2 is �xed with max(�Rea; 1�Re �) < �2 < 0.

Formulae (5.1){(5.8) are fundamental in deriving various properties of F�(a; b;
c; z) and F�(a; c; z). Further investigations will be given in forthcoming papers.
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