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Abstract. Algebraic structure count (ASC-value) of a bipartite graph G is

de�ned by ASCfGg =
p

jdetAj, where A is the adjacency matrix of G. In the case
of bipartite, plane graphs in which every face-boundary (cell) is a circuit of length
4s + 2 (s = 1; 2; . . . ), this number is equal to the number of the perfect matchings
(K-value) of G. However, if some of the circuits are of length 4s (s = 1; 2; . . . ),
then the problem of evaluation of ASC-value becomes more complicated. In this
paper the algebraic structure count of the class of cyclic hexagonal-square chains is
determined. An explicit combinatorial formula for ASC is deduced in the special
case when all hexagonal fragments are isomorphic.

Introduction. The algebraic structure count (ASC-value) of a bipartite
graph G is de�ned by

ASCfGg :=
p
j detAj;

where A is the adjacency matrix of G. In chemistry, the thermodynamic stability
of a hydrocarbon is related to the ASC-value of the graph which represents its
skeleton. In recent papers [3]{[7] formulas for ASC for some classes of bipartite,
plane graphs containing some circuits of length 4s (s = 1; 2; . . . ) are deduced.

A perfect matching (1-factor) of G is a selection of edges of G such that each
vertex of G belongs to exactly one selected edge. In chemistry, perfect matchings
are called the Kekul�e structures of the molecule whose skeleton is represented by
the graph G.

By a hexagonal (unbranched) chain H we mean a �nite, plane graph obtained
by concatenating m (m � 1) circuits of length 6 which we call hexagons in such a
way that any two adjacent hexagons (cells) have exactly one edge in common, each
cell is adjacent to exactly two other cells, except terminal cells which are adjacent
to exactly one other cell each and no one vertex belongs to more than two hexagons.
Figure 1 shows one of the possible hexagonal chains consisting of 15 hexagons.
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Fig. 1

There are several equivalent (di�erent) explicit formulas for the number K of
the hexagonal chains [8]{[10]. For example, it is known for a long time [2] that the
number of perfect matchings of the zig-zag chain of n hexagons (Fig. 2a) is equal
to the (n + 2)-th Fibonacci number (F0 = 0, F1 = 1; Fk+2 = Fk+1 + Fk , k � 0)
and the number of perfect matchings of the linear chain of n hexagons (Fig. 2b) is
n+ 1.

Fig. 2

The cyclic hexagonal-square chain Cn = Cn(H1; H2; . . . ; Hn) considered in
this paper is a connected, bipartite, plane graph which consists of n hexagonal
unbranched chains H1; H2; . . . ; Hn, cyclically concatenated by circuits of length 4
which we call squares (Fig. 3). Square �i connects two terminal cells (hexagons) of
Hi and Hi+1 for i = 1; 2; . . . ; n�1; n (Hn+1 := H1) in such a way that every vertex
of �i belongs to exactly one hexagon. Denote the edges of �i belonging to Hi and
Hi+1 by gi and fi+1 (f1 := fn+1) respectively and their end-vertices by ri, si and
pi+1, qi+1 (p1 := pn+1, q1 := qn+1) respectively, as it is shown in Fig. 3. Note that
the graph Cn contains two face-boundaries which are di�erent from squares and
hexagons (the one of their regions is in�nite). We call them external circuits. The
vertices of �i are denoted in such a way that vertices pi and ri (i = 1; . . . ; n) belong
to the boundary of the in�nite region and the vertices s1; q2; s2; q3; . . . ; qn; sn; q1
belonging to the other external circuit are cyclically arranged in a clockwise direc-
tion.

The graphs Hi and Hj are said to be isomorphic if there is a (1; 1)-mapping
y = '(x) of the vertex set of the graph Hi onto the vertex set of the graph Hj such
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that: (i) two vertices x and x0 are adjacent in Hi i� '(x) and '(x0) are adjacent
in Hj ; (ii) '(pi) = pj , '(qi) = qj , '(ri) = rj and '(si) = sj .

In what follows we denote the subgraph obtained from G by deleting the edge
e by G� e and the subgraph obtained from G by deleting both the edge e and its
terminal vertices by G� (e).

Fig. 3

Our aim is to prove the following result:

Theorem 1. If all the hexagonal chains Hi (i = 1; 2; . . . ; n) in the graph Cn

are mutually isomorphic, then

ASCfCng =
�
((L�D)n + (L+D)n)=2n; if n is odd;

((L�D)n + (L+D)n)=2n � 2; if n is even

where L = K2 +K3 +K4, D =
p
L2 + 4(K1K4 �K2K3) and:

K1 = KfHi � (fi)� (gi)g
K2 = KfHi � (fi)� gig
K3 = KfHi � fi � (gi)g
K4 = KfHi � fi � gig:
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Preliminaries. All the graphs considered are assumed to be connected,
planar, bipartite graphs whose all circuits are of even length. De�ne a binary
relation � in the set of all perfect matchings of G in the following way.

De�niion 1. Two perfect matchings P1 and P2 are �-related i� the union
of the sets of edges of P1 and P2 forms an even number of circuits of length 4s
(s = 1; 2; . . . ).

It can be proved that � is an equivalence relation and subdivides the set
of perfect matchings into two equivalence classes [2]. In [2] this relation is called
\being of the same parity" and the numbers of elements of these classes are denoted
by K+ and K�. We have the following theorem (Dewar and Longuet-Higgins [2]).

Theorem 2. For the determinant of the adjacency matrix A of the graph G
we have detA = (�1)n(K+ �K�)

2.

This theorem yields the following corollary

Corollary 1. For the algebraic structure count of the graph G there holds

ASCfGg = jK+ �K�j:

In the case of graphs in which every cell is a circuit of length of the form
4s + 2 (s = 1; 2; . . . ) (for example molecular graphs of benzenoid hydrocarbons),
all perfect matchings are in the same class [2]. This implies

(2) ASCfGg = KfGg;

whereKfGg is the number of perfect matchings of G. The enumeration ofK-values
for these graphs is well-known problem [1].

If some cells are allowed to be of length 4s (s = 1; 2; . . . ) (non-benzenoid
hydrocarbons) then (1) need not be true. In such a case the following theorem,
which follows directly from De�nition 1, can be useful for evaluating the ASC-value.

Theorem 3. Two perfect matchings are in distinct classes (of opposite parity)
if one is obtained from the other by cyclically rearranging of an even number edges
within a single circuit.

Consider the graph Cn. Let mi be the number of hexagons in Hi. Note that
the number of vertices in Hi and Cn are equal to 4mi + 2 and

Pn
i=1(4mi + 2) =

2n+ 4
Pn

i=1mi respectively. Denote lengths of external circuits by c1 and c2 (the
order is not important). The requirement for the graph Cn to be bipartite implies
that the numbers c1 and c2 must be even. Note that the union of the external
circuits represents the spanning subgraph of Cn, so:

(2) c1 + c2 = 2n+ 4

nX
i=1

mi
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In order to distinguish edges of �i we can represent them graphically by two
vertical and two horizontal lines as in Fig. 3. Consider now a perfect matching of
Cn. Observe that the edges belonging to the perfect matching can be arranged in
and around a square in seven di�erent ways (modes 1{7), as it is shown in Fig. 4
(these edges are marked by double lines).

Fig. 4

De�nition 2. The arrangement word of a perfect matching of the graph Cn

is the word u = u1u2 . . .un from f1; 2; . . . ; 6; 7gn; where ui is the mode (1{7) of
the arrangement of edges of the perfect matching in and around the square �i for
i = 1; . . . ; n.

For example, the arrangement words of the perfect matchings represented in
Figures 5a and 5b are u = 21322 and u = 77777 respectively. (We can imagine that
our position of observation of squares is inside the �nite region whose boundary is
the external circuit containing edges represented by lower horizontal lines and our
motion (rotation) is in a clockwise direction.)

Fig. 5

The modes 4 and 5 (Fig. 4) are interconverted by rearranging two (an even
number) edges of the considered perfect matching. Therefore, using Theorem 3, it
follows that the perfect matchings of Cn, with arrangement of edges in and around
a square �i (1 � i � n) of modes 4 and 5, can be divided into pairs of opposite
sign. It implies, by Corollary 1, that the perfect matchings in which the mode 4 or
5 appears for any �i (1 � i � n) can be excluded from the consideration, when the
algebraic structure count is evaluated.
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Good perfect matchings. De�nition 3. The perfect matchings are called
good if their arrangement words belong to f1; 2; 3gn.

Note that the edge of a square which belongs to one of the external circuits
(horizontal lines in Fig. 4) is never in a good perfect matching. This means that
every good perfect matching of the graph Cn induces in every hexagonal chain Hi

(i = 1; . . . ; n) a perfect matching of Hi i.e., the edges of a good perfect matching
of Cn can be rearranged only within each fragment Hi (i = 1; 2; . . . ; n). Hence all
good perfect matchings are of equal parity.

In order to determine the value ASCfCng, determine at �rst the number of
all good perfect matchings of Cn using the so-called transfer matrix method [2].
Denote the graphs Hi � (fi)� (gi), Hi � (fi)� gi, Hi � fi � (gi) and Hi � fi � gi
(Fig. 3) by Hi;1, Hi;2, Hi;3, Hi;4 and their K-values by Ki;1, Ki;2, Ki;3 and Ki;4,
respectively. Observe that Ki;1 is the number of all perfect matchings of Hi which
contain both edges fi and gi; Ki;2 is the number of all perfect matchings ofHi which
contain fi and do not contain gi; Ki;3 is the number of all perfect matchings of Hi

which contain gi and do not contain fi; Ki;4 is the number of all perfect matchings
of Hi which do not contain any of edges fi and gi. In this way, the set of all perfect
matchings of Hi is divided into four disjointed classes. These classes (i.e., their
elements) are said to be assigned to the corresponding graphs Hi;j (j = 1; . . . ; 4).

Associate with each good perfect matching of Cn a word j1j2 . . . jn of the
alphabet f1; 2; 3; 4g in the following way: If the considered perfect matching induces
in Hi a perfect matching assigned to the graph Hi;j , then ji = j. For example, the
word j1j2 . . . jn for the perfect matching represented in Fig. 5a, is 44144. Note that
by choosing the edges of a perfect matching of Cn in Hi and Hi+1 (i = 1; . . . ; n;
Hn+1 := H1) we must not generate one of the modes 4 and 5 of arrangements of
the perfect matching in the square between Hi and Hi+1 i.e., the subwords jiji+1
(i = 1; . . . ; n � 1) and subword jnj1 must not belong to the set f11; 12; 31; 32g.
According to the foregoing we obtain the following statement.

Lemma 1. If we denote the number of all good perfect matchings of Cn by
�fCng, then

�fCng =
X

j1j2...jn2f1;2;3;4g
n

jnj1;jiji+1 =2f11;12;31;32g
1�i�n�1

K1;j1K2;j2 � � �Kn;jn �

Let

Mi =

2
64

0 0 Ki;3 Ki;4

Ki;1 Ki;2 Ki;3 Ki;4

0 0 Ki;3 Ki;4

Ki;1 Ki;2 Ki;3 Ki;4

3
75 where

Ki;1 = KfHi � (fi)� (gi)g
Ki;2 = KfHi � (fi)� gig
Ki;3 = KfHi � fi � (gi)g
Ki;4 = KfHi � fi � gig:

Then the previous lemma can be written in the following form.
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Lemma 2. The number of good perfect matchings of the graph Cn is equal to
the sum of entries of the main diagonal of the matrix M1 �M2 � � �Mn i.e.,

�fCng = tr(M1 �M2 � � �Mn)

Determination of the ASC-value for an arbitrary cyclic hexagonal-

square chain. In order to determine ASCfCng we shall consider the remaining
perfect matchings of Cn i.e., the ones whose arrangement words contain 6 and/or
7.

De�nition 4. The edges of the graph Cn are called internal if they do not
belong to the external circuits.

Lemma 3. Let the word u � u1u2 . . .un be the arrangement word of a perfect
matching M and ui 2 f6; 7g (1 � i � n). Then no internal edge of Cn is in M .

Fig. 6

Proof. Consider an internal edge p0q0 of Cn and denote the part of Cn between
the edges pi+1qi+1 and p0q0 (one of two possible hexagonal-square chains which
contain both edges pi+1qi+1 and p0q0) by L0 (Fig. 6). Note that exactly one of the
vertices pi+1 and qi+1 is connected in M to a vertex which does not belong to the
subgraph L0. Since the number of vertices in L0 is even, exactly one of the vertices
p0 and q0 is connected in M to a vertex which does not belong to L0. Consequently,
the edge p0q0 cannot be in M . �

Lemma 4. If an arrangement word u contains 6 and/or 7, then this word
belongs to f6; 7gn i.e., all its letters are 6 and/or 7. There are exactly two perfect
matchings of Cn with such arrangement words.

Proof. The proof of Lemma 3 implies the �rst part of the lemma. Moreover,
if the colours of the vertices pi+1 and ri+1 (Fig. 6) are di�erent, then ui+1 = ui i.e.,
uiui+1 2 f66; 77g; if the colours of the vertices pi+1 and ri+1 are identical, then
uiui+1 2 f67; 76g. Further, for each arrangement of the word u � u1u2 . . .un there
is another one u � u1u2 . . .un which is \complementary" in the sense that

ui =

�
6; if ui = 7

7; if ui = 6
for i = 1; . . . ; n:

For each of these two only possible arrangement words (u and u) from the set
f6; 7gn there exists exactly one perfect matching because no internal edge of Cn
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can be in it (Lemma 3). Consequently, there are exactly two perfect matchings (we
shall denote them by U and U) with arrangement words from the set f6; 7gn. �

In order to examine the parities of U and U (refer to De�nition 1) note that
we can obtain one of them from the other by cyclically rearranging the edges at
�rst within one of external circuits and then within the other external circuit.

Further, if the number n is odd, then the length of one of external circuits
is � 0 (mod 4) and the length of the other one is � 2 (mod 4). According to
the foregoing and Theorem 3 we obtain that the perfect matchings U and U are
of opposite parity. Consequently, ASCfCng = �fCng. A graph Cn presented in
Fig. 5 is an example of such a case.

Consider now the case when the number n is even. The length of both of
the external circuits is c1 � c2 � 0 (mod 4) or c1 � c2 � 2 (mod 4). For both of
these two subcases we obtain that U and U are of equal parity. We distinguish two
possibilities.

Possibility I: words u and u consist of the same letters i.e., u = 66 . . . 6 and
u = 77 . . . 7. If we cyclically rearrange the edges of U within one of the external
circuits which contains vertices p1; r1; p2; r2; . . . ; pn; rn (Figure 9), we obtain a good
perfect matching. The number of rearranged edges is even for the case c1 � c2 � 0
(mod 4) and odd for the case c1 � c2 � 2 (mod 4). This implies (Theorem 3) that
the perfect matchings U and U are of opposite parity with good perfect matchings
of Cn in the �rst case and of the equal parity with good perfect matchings of Cn

in the second case. So we obtain

(3) ASCfCng =
�
�fCng � 2; if c1 � c2 � 0 (mod 4);

�fCng+ 2; if c1 � c2 � 2 (mod 4)

Possibility II: Both the letters 6 and 7 appear in the word u. Let i1; i2 . . . ; ik
(i1 � i2 � . . . � ik) be indices of letters 7 in arrangement word u. Observe the
external circuit which contains vertices p1; r1; p2; r2; . . . ; pn; rn. If we remove edges
rijpij+1 for j = 1; . . . ; k (pn+1 := p1) and add edges rij sij ; sijqij+1 and qij+1pij+1
(j = 1; . . . ; k), then we obtain a new circuit of length c + 2k (indicated by bold
lines in Fig. 7 and Fig. 8). Rearranging edges of the perfect matching U in this
circuit we obtain a good perfect matching. The number (c + 2k)=2 of rearranged
edges can be even, as in example in Fig. 7 or odd, as in example in Fig. 8. This
implies

(4) ASCfCng =
�
�fCng � 2; if c+ 2k � 0 (mod 4);

�fCng+ 2; if c+ 2k � 2 (mod 4):

Note that the relation (3) is just a special case of (4) for k = 0. According to
the foregoing we can state the following theorem.

Theorem 4. We have

ASCfCng =

8><
>:

�fCng; if n is odd;

�fCng � 2; if n is even and c+ 2k � 0 (mod 4);

�fCng+ 2; if n is even and c+ 2k � 2 (mod 4)
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where c is the length of an external circuit; k is the number of letters 6 (or 7) in
the arrangement word u (or u) and �fCng is determined by Lemma 2. �

Fig. 7

Proof of Theorem 1. Let now all hexagonal chains Hi be mutually isomor-
phic in such a way that all edges fi, i = 1; . . . ; n are mutually corresponded and all
edges gi, i = 1; . . . ; n are mutually corresponded too. We introduce the following
notions:

m := m1 = m2 = . . . = mn

M :=M1 =M2 = . . . =Mn

Kj := K1;j = K2;j = . . . = Kn;j ; j = 1; . . . ; 4:

We can obtain both a recurrence relation and an explicit formula for the number
of good perfect matchings of Cn.

Lemma 5. In the case of isomorphic hexagonal chains Hi (i = 1; . . . ; n) we
have

�fCng = (K2 +K3 +K4)�fCn�1g+ (K1K4 �K2K3)�fCn�2g
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with initial conditions

�fC1g = K2 +K3 +K4

�fC2g = (K2 +K3 +K4)
2 + 2(K1K4 �K2K3)

Proof. The characteristic equation of M is

(5) �4 � (K2 +K3 +K4)�
3 + (K2K3 �K1K4)�

2 = 0:

Using the Cayley-Hamilton theorem we obtain

Mn � (K2 +K3 +K4)M
n�1 + (K2K3 �K1K4)M

n�2 = 0

for n � 2: Consequently,

tr(Mn)� (K2 +K3 +K4) tr(M
n�1) + (K2K3 �K1K4) tr(M

n�2) = 0

for n � 2. Using Lemma 2 we obtain the desired recurrence relation for �fCng. �

Fig. 8

The eigenvalues of the matrix M are �1 = �2 = 0, �3 = (L � D)=2 and
�4 = (L+D)=2, where

(6) L = K2 +K3 +K4 and D =
p
L2 + 4(K1K4 �K2K3)

Since tr(Mn) =
P4

i=1 �
n
i we obtain the following statement.
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Lemma 6. For �fCng we have �fCng = [(L�D)n + (L+D)n]=2n, where L
and D are given by (6). �

Fig. 9

Example 1. For the graph C5 from Fig. 5 we obtain K1 = 1, K2 = K3 = 0,
K4 = 1. Using Lemma 6 we get �fC5g = 11.

Example 2. The graph C6 from Fig. 9 consists of six isomorphic hexagonal
zig-zag chains for which K1 = F3 = 2, K2 = F2 = 1, K3 = F4 = 3, K4 = F3 = 2.
Using Lemma 6 we get �fC6g = ((6� 2

p
10)6 + (6 + 2

p
10)6)=26 = 54758.

Fig. 10
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Example 3. The graph C4 from Fig. 10 consists of four isomorphic linear
chains for which K1 = 2, K2 = K3 = 1, K4 = 0. Using Lemma 6 again, we get
�fC4g = 2.

In order to complete the proof of Theorem 1 consider the perfect matchings
U and U again. The graph Cn is bipartite in the case when all hexagonal chains are
isomorphic is equivalent to the following one: If pi and ri are of the same colour,
then n must be even. In the case when pi and ri are of the same colour (Fig. 10) we
have u = 6767 . . . 67 and n = 2k. The number of edges of the external circuit from
pi to ri is even; so we obtain c+ 2k � 0 (mod 4). In another case, when pi and ri
are of di�erent colours (Fig. 9) we get u = 66 . . . 6 and k = 0. The number of edges
in the external circuit from pi to ri is odd. So, if n is even, then we obtain again
that c+ 2k � 0 (mod 4). Using Theorem 4 and Lemma 6 we obtain the assertion
of Theorem 1. �

Example 4. The graph in Fig. 5 (Example 1) is an example for the case n-odd
and the graphs in Fig. 9 and Fig. 10 (Examples 2 and 3) are examples for the case
n-even. In the �rst case we get ASCfC5g = �fC5g = 11 and in the second two
cases ASCfC6g = �fC6g � 2 = 54756 and ASCfC4g = �fC4g � 2 = 2� 2 = 0.
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