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RESTRICTED CONVERGENCE AND p-MAX STABLE LAWS

Slobodanka Jankovi�c

Communicated by Zoran Ivkovi�c

Abstract. Nondegenerate limit laws for maxima of iid random variables with
power normalization are called p-max stable laws. We prove that if maxima of iid
random variables with power normalization converge weakly on a bounded interval,
they converge for every x 2 R.

The class of p-max stable laws, obtained as limiting for maxima of iid random
variables under power normalization, was introduced by Pancheva (1985). Namely,
let fXn; n � 1g be an iid sequence of random variables with common distribution
F (x). Put Mn = max1�i�nXi. Suppose that for each n 2 N there exist �n > 0,
�n > 0, such that under power normalization Tn = �njxj

�n sgn(x), we have

(1) PfT�1n (Mn) � xg = Fn(Tn(x)) = Fn(�njxj
�n sgn(x))! G(x)

weakly as n ! 1, where G is assumed nondegenerate. It has been shown by
Pancheva that then G is of the power type of one of the following six distributions
(We say that two distribution functions V1 and V2 are of the same power type
(p-type) if for some A > 0 and B > 0 V1(x) = V2(Ajxj

B sgn(x))) for all x 2 R):

(2)

H1;�(x) = exp(�(logx)��); x � 1; for some � > 0

H2;�(x) = exp(�(� logx)�); 0 � x � 1; for some � > 0

H3;�(x) = exp(�(� log(�x))��); �1 � x � 0; for some � > 0

H4;�(x) = exp(�(log(�x))�); x � �1; for some � > 0

�1(x) = exp(�x�1); x � 0

	1(x) = exp(x); x � 0:
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The class of p-max stable laws contains all laws of the p-type (2).

When in (1) normalization is linear, Tn(x) = anx+ bn, an > 0, bn 2 R, then
we obtain as limiting the well known class of extreme value distributions (or l�max
stable laws) which consists of the following three types

��(x) = exp(�x��); x � 0; for some � > 0

	�(x) = exp(�(�x)�); x < 0; for some � > 0

�(x) = exp(�e�x); x 2 R:

Various properties of the class of p-max stable laws, parallel to those of l-max
stable laws, were investigated by Mohan and Ravi (1989), (1992a), (1992b), and
Ravi (1991), (1992). The fact shown by Mohan and Ravi (1992a) which makes
p-max stable laws interesting is the following:

Let us �rst introduce the notion of the domain of attraction for p-max sta-
ble laws: We say that F belongs to the domain of attraction of G under power
normalization (and denote that by F 2 Dp(G)) if there exist constants �n > 0,
�n > 0, n � 1 such that (1) holds. The notion of the domain of attraction for
l-max stable laws is the usual one: we say that F belongs to the domain of at-
traction of G (F 2 Dl(G)) if there exist constants an > 0 and bn 2 R such that
PfMn � anx+ bng = Fn(anx+ bn)! G(x) weakly as n!1.

Mohan and Ravi compared domains of attraction of l-max stable laws with
those of p-max stable laws and showed that every probability distribution attracted
to an l-max stable law is also attracted to some p-max stable law and that strict
inclusion Dl(G) � Dp(G) holds.

On initiative of V.M. Zolotarev the theory of sums of independent random
variables was considered from the new point of view. He gave a conjecture con-
cerning Central Limit Theorem with necessary and suÆcient conditions of quite
another type than the usual ones. The conjecture was that the restricted conver-
gence of sums of iid random variables on the half line (�1; �) � R continues to R
and the limit df is the normal df. Various results of that kind can be found in the
monograph of Rossberg, Jesiak and Siegel (1985) and in Rossberg (1994).

Theorem of that type concerned with the restricted convergence of extreme
values under linear normalization has been proved by Gnedenko and Senusi-Bereksi
(1983).

Our aim is to prove the following theorem about the restricted convergence of
maxima of iid random variables under power normalization, namely to prove that
from the convergence of maxima with power normalization on a bounded interval
to some of the p-max stable laws - follows the convergence on the whole line.

Theorem. If for suitably chosen constants an > 0, bn > 0, n � 1

(3) Fn(�njxj
�n sgn(x)) ! G(x); n!1;

for all x from the interval J � R, where G is strictly monotone and continuous,

G(x) 6= 0, G(x) 6= 1 for x 2 J , then (3) holds for all x 2 R and the limit distribution

is of the p-type (2).
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Proof. The proof consists of two parts. First, we establish limit behaviour of
constants �n and �n. Then we use that fact in proving that the convergence holds
for all x 2R. From (1) we get that for any t > 0

(4) F [nt](�[nt]jxj
�[nt] sgn(x))! G(x)

as n!1, and also that

(5) F [nt](�njxj
�n sgn(x)) = (Fn(�njxj

�n sgn(x)))[nt]=n ! Gt(x)

where [t] is, as usual, greatest integer less than or equal to t.

De�ne F (y) = inffs : F (s) � yg. According to the Theorem 25.7 of
Billingsley (1979), see also Resnick (1987), relations (4) and (5) can be inverted so
that for J = [c; d], y 2 (G(c); G(d))

(6)

�
F [nt] (y) sgn(y)

�[nt]

���1
[nt]

�!
n!1

G (y) y 2 (G(c); G(d))

and

(7)

�
F [nt] (y) sgn(y)

�n

���1
n

�!
n!1

Gt (y); y 2 (Gt(c); Gt(d)):

There exists a subinterval J0 of J such that for t suÆciently close to 1,
t 2 [1 � s; 1 + s], all points of continuity of Gt for y 2 J0 are also points of
continuity of G .

Let y1, y2, y1 < y2 be continuity points of both Gt and G . Then from (6)
and (7) we have

�
F [nt] (yi) sgn(yi)

�[nt]

���1
[nt]

�!
n!1

G (yi); i = 1; 2(8)

�
F [nt] (yi) sgn(yi)

�n

���1
n

�!
n!1

Gt (yi); i = 1; 2:(9)

Divide two relations in (8) by each other and do the same in (9) to obtain:

�
F [nt] (y1) sgn(y1)

F [nt] (y2) sgn(y2)

���1
[nt]

�!
n!1

G (y1)

G (y2)
(10)

�
F [nt] (y1) sgn(y1)

F [nt] (y2) sgn(y2)

���1
n

�!
n!1

Gt (y1)

Gt (y2)
:(11)

Taking logarithms of both sides of (10) and (11) and dividing we get

(12)
�n
�[nt]

�!
n!1

logG (y1)� logG (y2)

logGt (y1)� logGt (y2)
:= �(t)
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for t 2 I = [1� s; 1 + s]. In this case all conditions of Lemma 1.5 of Seneta (1976)
are ful�lled, according to which the relation (12) holds for all t > 0 and �(t) = t�,
� 2 R.

If we divide (6) by (7) for y = y1 we get

�
�n
�[nt]

���1
[nt]

�!
n!1

G (y1)

(Gt (y1))�(t)
:= �(t):

Logarithming both sides we get

log�n � log�[nt]

�[nt]
�!
n!1

log�(t):

From Theorem 2.10 of Seneta (1976) it follows that log�(t) is of the form log�(t) =
c log t when � = 0 and log�(t) = c(t� � 1) when � 6= 0. Therefore �(t) = tc when
� = 0 and �(t) = exp(c(t� � 1)) when � 6= 0. We shall write � in the case when
� 6= 0 in the form used by Mohan and Ravi (1992b), namely, put exp(�c) = d, then

exp(c(t� � 1)) = d1�t
�

, so

(13) �(t) = t�; � 2 R; �(t) = d1�t
�

; � 6= 0; �(t) = tc; � = 0:

According to the Helley's selection theorem, it is possible to select a convergent
subsequence from the sequence Fn(�njxj

�n sgn(x)), which converges to a nonde-
creasing function, say H(x). So

(14) H(x) = lim
k!1

Fnk (�nk jxj
�n

k sgn(x)):

From the convergence of the p-types theorem (see Mohan and Ravi 1989 and 1992b)
we can replace constants �nk and �nk in (14) by equivalent ones ank and bnk ,
satisfying

�nk
bnk

! 1;

�
�nk
ank

�b�1
n
k

! 1; k !1;

without changing the limit in (14). From (13) it follows that

lim
n!1

�nt
��

�[nt]
= 1

lim
n!1

�
�nt
�c�[nt]

�[nt]

���1
[nt]

= 1 when � = 0;

lim
n!1

�
�nd

�(1�t�)�[nt]

�[nt]

���1
[nt]

= 1 when � 6= 0:
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So �nt
�� are equivalent to �[nt], �nt

�c�[nt] are equivalent to �[nt] when � = 0 and

�nd
�(1�t�)�[nt] are equivalent to �[nt] when � 6= 0:

Suppose � 6= 0. Choose arbitrary point x0 2 J , x0 6= 0;�d; d. Point x0
belongs to one of the intervals I1 = (d;+1), I2 = (0; d), I3 = (�d; 0), I4 =
(�1;�d). For any other point x from the same interval Ik there exists tx > 0,

tx =

�
log jx=dj

log jx0=dj

���1

so that

(15) jxj = d1�t
�

x jx0j
t�
x :

Note that x and x0 are of the same sign. Then we have from (14)

H(x) = lim
k!1

F [nktx](�[nktx]jxj
�[n

k
tx] sgn(x))

= lim
k!1

F [nktx](�nkd
�(1�t�

x
)�n

k
t��
x (d1�t

�

x jx0j
t�
x)�nk t

��

x sgn(x0))

= lim
k!1

F [nktx](�nkd
�(1�t�

x
)�n

k
t��
x (d(1�t

�

x
)�n

k
t��
x jx0j

�n
k sgn(x0))

= lim
k!1

F [nktx](�nk jx0j
�n

k sgn(x0)) = Gtx(x0)

= exp

�
logG(x0)

�
log jx=dj

log jx0=dj

���1�
:(16)

When x 2 I1 = (d;+1), put

(17)
logG(x0)

(log jx0=dj)�
�1 = �g; g > 0:

Then

H(x) = exp(�g(log jx=dj)�
�1

) = exp(�(g� log jx=dj)�
�1

)

= exp(�(log(d�g
�

xg
�

))�
�1

);

which is the law of the p-type H1;1=� for � < 0. Here g = � logH(de). From (17)
it follows that

G(x0) = exp(�(log(d�g
�

xg
�

0 ))�
�1

);

and starting from another point di�erent from x0 from the interval J , we would
obtain the same function H which coincides on J with G.

The remaining cases when x 2 Ik, k = 2; 3; 4 are analogous. Starting from
(16), if x 2 I2, put

� logG(x0)

(� log jx0=dj)�
�1 = g; g > 0;
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then
H(x) = exp(�(� log(d�g

�

xg
�

))�
�1

); � > 0;

where g = � logH(d=e) and H is of the p-type H2;1=�. If x 2 I3, put

� logG(x0)

(� log jx0=dj)�
�1 = g; g > 0;

then
H(x) = exp(�(� log(d�g

�

(�x)g
�

))�
�1

); � < 0

where g = � logH(�d=e) and H is of the p-type H3;1=�. If x 2 I4, put

logG(x0)

(log jx0=dj)�
�1 = �g; g > 0;

then
H(x) = exp(�(log(d�g

�

(�x)g
�

))�
�1

); � > 0;

where g = � logH(�de) and H is of the p-type H4;1=�.

When � = 0, �x arbitrary 0 6= x0 2 J . Then for any x of the same sign as
x0 there exists tx > 0 (tx = jx=x0j

1=c) such that x can be written as jxj = jx0jt
c
x.

As in the previous case we select a convergent subsequence from the sequence
Fn(�njxj

�n sgn(x)) and replace constants �n and �n by equivalent ones. We have:

H(x) = lim
k!1

F [nktx](�[nktx]jxj
�[n

k
tx] sgn(x))

= lim
k!1

F [nktx](�nk t
�c�n

k

x jx0t
cj�nk sgn(x0))

= lim
k!1

F [nktx](�nk jx0j
�n

k sgn(x0)) = Gtx(x0)

= exp(logG(x0)jx=x0j
1=c):(18)

When x > 0 put
� logG(x0)

jx0j1=c
= g

Then (18) is equal to

H(x) = exp(�gxc
�1

); c < 0;

g = � logH(1) and H is of the p-type �. When x < 0 put
� logG(x0)

jx0j1=c
= g. Then

H(x) = exp(�g(�x)c
�1

), c > 0, g = � logH(�1) and H is of the p-type 	.

Since H depends on the value G(x0), x0 2 J , every other convergent subse-
quence of Fn(�njxj

�n sgn(x)), would have the same limit (14).

Hence, we proved that weak convergence of maxima with power normalization
to one of the p-max stable laws (2) on a restricted interval J implies the convergence
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on I, where I is the interval on which that law takes values di�erent from 0 and
from 1. Because of the continuity, the convergence holds also in the left and right
end points. The proof is completed.
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