
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 61 (75), 1997, 137{152

HOW TO GENERALIZE LOGIC PROGRAMMING

TO ARBITRARY SET OF CLAUSES

Slavi�sa B. Pre�si�c

Communicated by �Zarko Mijajlovi�c

Abstract. We state how one can extend Logic Programming to any set of
clauses.

Basic part of Logic programming, particularly Prolog, in fact deals with the
following two inference rules:

(1) F ; p ` p

(2) F ; p _ :q1 _ ::: _ :qk ` p � F ` q1; :::; qk

where F is a set of (positive) Horn formulas and p is any atom, i.e. a propositional
letter. Indeed, the informal meaning of rule (1) is: An atom p is a consequence of
a set of clauses if p is an element of that set. Similarly for rule (2) we have this
meaning: An atom p is a consequence of a set F ; p_:q1 _ :::_:qk (i.e. of the set
F ; q1 ^ ::: ^ qk) p), if q1; . . . ; qk are consequences of the set F . In the sequel
we use the following facts from mathematical logic (see [2]):

(3) The notion of formal proof in case of propositional logic (assuming we have
chosen some tautologies as axioms, and that modus ponens is the only inference
rule).

(4) The Deduction theorem1): F ; A ` B ! F ` A) B

where F is a set of propositional formulas, A;B are some such formulas.

(5) Completeness Theorem: Any propositional formula is a logical theorem

if and only if it is a tautology.

Also we use the symbols ?; > which can be introduced by the following de�nitions:
? stands for a ^ :a; > stands for a _ :a, where a is an atom (chosen arbitrarily).

AMS Subject Classi�cation (1991): Primary 68N17

Supported by Ministry of Science and Technology of Serbia, grant number 04M03/C
1)In fact, only �!-part is the deduction theorem. But, �-part is almost trivial.

138 Pre�si�c

Further, let F be any set of propositional formulas and a formula or one of the
symbols ?; >. Then a sequent is any expression of the form F ` , with the
meaning: is a logical consequence of F

Lemma 1. Let F be any set of propositional formulas not containing the atom
p, and let �1(p); �2(p); . . . be propositional formulas containing p. Then we have
the following equivalences

(6)
(i) F ; �1(p); �2(p); . . . ` p ! F ; �1(?); �2(?); . . . ` ?

(ii) F ; �1(p); �2(p); . . . ` :p ! F ; �1(>); �2(>); . . . ` ?

Proof. First we prove the �! part of (i). Then, we have the following
`implication-chain':

F ; �1(p); �2(p); . . . ` p

�! For some formulas f1; . . . ; fr of F and some formulas �i1(p); . . . ; �is(p)
we have: f1; . . . ; fr; �i1(p); . . . ; �is(p); . . . ` p (Finiteness of the propo-
sitional proof)

�! ` f1) � � �) fr) �i1(p)) � � �) �is(p)) p (By (4))

�! Formula f1) � � �) fr) �i1(p)) � � �) �is(p)) p is a tautology
(By (5))

�! Formula f1) � � �) fr) �i1(?)) � � �) �is(?)) ? is a tautology

�! Formula f1) � � �) fr) �i1(?)) � � �) �is(?)) ? is a logical
theorem (By (5))

�! Formula f1; . . . ; fr; �i1(?); . . . ; �is(?) ` ? holds. (By (4))

�! F ; �1(?); �2(?); . . . ` ?

which completes the proof. A proof of � part of (i) reads:

F ; �1(?); �2(?); . . . ` ?

�! For some formulas f1; . . . ; fr of F and some formulas �i1(?); . . . ; �is(?)
have: f1; . . . ; fr; �i1(?); . . . ; �is(?); . . . ` ? (Finiteness of every formal
proof)

�! ` f1) � � �) fr) �i1(?)) � � �) �is(?)) ? (By (4))

�! Formula f1) � � �) fr) �i1(?)) � � �) �is(?)) ? is a tautology
(By (5))

�! Formula f1) � � �) fr) �i1(p)) � � �) �is(p)) p is a tautology

�! Formula f1) � � �) fr) �i1(p)) � � �) �is(p)) p is a logical
theorem (By (5))

�! Formula f1; . . . ; fr; �i1(p); . . . ; �is(p) ` p holds. (By (4))

�! F ; �1(p); �2(p); . . . ` p

which completes the proof of (i). We omit a proof of (ii) because (ii) can be proved
in a similar way as (i).

How to generalize logic programming to arbitrary set of clauses 139

Notice that Lemma 1 can be expressed by the following words: A literal2)

 is a logical consequence of the given set if and only if the corresponding set is
inconsistent. Now we prove the following lemma.

Lemma 2. The equivalence

(7) F ; p1 _ ::: _ pk ` ? ! F ` :p1; ::: ;F ` :pk (pi is any literal)

is true.

Proof. We have the following `equivalence chain':

F ; p1 _ ::: _ pk ` ?

 ! F ` (p1 _ ::: _ pk =) ?) (By (4))

 ! F ` (:p1 ^ ::: ^ :pk) (Using a well known tautology)

 ! F ` :p1; . . . ;F ` :pk

which completes the proof.

Besides (6) and (7) we emphasize the following obvious equivalences

(8) ` > ! F ;? ` ?

(9) F ;> ` A ! F ` A (A is a literal or the symbol ?)

Suppose now that F is a given set of clauses and is a literal or ?. Is it possible
that by using the equivalences (6), (7), (8), (9) one can establish whether or not
 is a logical consequence of F? In order to give the answer we introduce the
following inference rules3)

(R1) F ;? ` ? �` >

(R2) F ; �1(p); �2(p); . . . ` p � F ; �1(?); �2(?); ::: ` ?

F ; �1(p); �2(p); . . . ` :p � F ; �1(>); �2(>); ::: ` ?

(�i(p) is any clause containing p)

(R3) F ; p1 _ ::: _ pk ` ? � F ` :p1; :::; F ` :pk

(where pi is any literal; while :pi is its opposite literal)

(R4) F ;> ` A � F ` A (A is a literal or the symbol ?)

We emphasize that in the sequel for the set F we suppose that it does not
contain a clause of the form :::q_:q:::,where q is any atom. Namely, such a formula
is equivalent to >, consequently it should be omitted4). Similarly, if it happens that
by applying rule (R2) some clause becomes equivalent to >, then we also omit it.
Roughly speaking rules (R1), (R2), (R3), (R4) are used as follows:

We start with a question (a sequent) of the form F ` and apply several
times rules (R2), (R3), (R4). If at some step we can apply rule (R1) the procedure
halts with the conclusion that is a logical consequence of F . However, if at some

2)A literal is an atom or the negation of an atom
3)We point out that the set F may be also an empty set. Also, in rule (R3) k may be 1.
4)This is compatible with rule (R4)

140 Pre�si�c

step we obtain the sequent ` ? (then F is an empty set) the procedure halts with
conclusion that is not a logical consequence of F .

Example 1. Let p; q; r; s; t be atoms. Answer the following questions:

1) p ` p ? 2) p; q ` p? 3) ` p? 4) q ` p?

5) :q _ p; q _ p ` p? 6) p;:p _ q _ :r; p _ :q _ s; p _ s _ :t ` ??

Answers. 1) Applying (R2) we obtain the sequent ? ` ? and by (R1) we get
the sequent ` > so the answer is: Yes.

2) Applying (R2) we obtain a new question i.e. the sequent ?; q ` ?, and now
applying (R1) we obtain the sequent ` > so the answer is: Yes.

3) Applying (R2) we obtain the sequent ` ? so the answer is: No.

4) By (R2) we obtain the sequent q ` ? and after that by (R3) we obtain the
sequent ` :q. By (R2) we obtain the sequent ` ? such that the answer is: No.

5) By (R2) we obtain the sequent :q; q ` ?. Now by (R3) applied to the literal
:q we obtain the sequent q ` q, further by (R2) we obtain the sequent ? ` ? and
�nally by (R1) we obtain the sequent ` > so the answer is: Yes.

6) Now by (R3) applied to the clause p we obtain the sequent

:p _ q _ :r; p _ :q _ s; p _ s _ :t ` :p

By (R2) (and (R4) applied twice) we obtain the sequent q _ :r ` ?. At this step
applying (R3) we obtain two new sequents, i.e. questions ` :q? and ` r? The
answer to the �rst question is No, so the �nal answer is also: No.

Concerning rules (R1){(R4) we have the following lemma.

Lemma 3. (Soundness of rules (R1){(R4)). Let F be any set of clauses.
Suppose that we start with a sequent F ` , where is a literal or the symbol ?.
Then, if by use of rules (R1){(R4) we obtain the sequent ` > or the sequent ` ?,
then is / is not a logical consequence of the set F respectively.

Proof follows immediately from the fact that rules (R1){(R4) are based on
logical equivalences (6){(9).

Let F ` be any sequent. By Val(F `) we denote its truth value, de�ned
by: If is a logical consequence of the set F , then Val(F `) is true, otherwise
Val(F `) is false.

According to this de�nition and to rules (R1){(R4), i.e. to equivalences (6){(9) we
have the following equalities

(10) Val(` >)= true Val(F ;? ` ?)= true

Val(` ?)= false Val(F ;> ` psi)= Val(F `)

Val(F ; �1(p); �2(p); . . . ` p)= Val(F ; �1(?); �2(?); . . . ` ?)

Val(F ; �1(p); �2(p); . . . ` :p)= Val(F ; �1(>); �2(>); ::: ` ?)

(�i(p) is any clause containing p)

How to generalize logic programming to arbitrary set of clauses 141

Val(F ; p1 _ ::: _ pk ` ? = Val(F ` :p1) and . . . and Val(F ` :pk)

(where pi is any literal, i.e. an atom or the negation of an atom)

Suppose that F is a �nite set. Then, in fact, these equalities de�ne the function
Val recursively on cardinality of the set F . Consequently these equalities suggest
how to calculate Val(F `). In other words we have the following assertion:

(11) If F is a �nite set, then one can e�ectively calculate Val(`), i.e. to establish

whether or not is a logical consequence of the set F .

Next we will prove the following basic theorem.

Theorem 1. (Completeness) Let F be a set of clauses and a literal or the
symbol ?. Then: is a logical consequence of the set F if and only if starting with
F ` and applying the rules (R1){(R4) a �nite number of times one can obtain
the sequent ` >.

Proof. The if part follows immediately from Lemma 3. To prove only-if part
suppose now that is a logical consequence of the set F . Then is a logical
consequence of some �nite subset A of the set F (since every formal proof is �nite).
Next, by (11) we conclude that starting by the sequent A ` and applying the rules
(R1){(R4) a �nite number of times one can obtain the sequent ` >. Consequently,
also starting with the sequent F ` and applying the rules (R1){(R4) a �nite
number of times one can obtain the sequent ` >. The proof is complete.

Remark 1. Theorem 1 can be extended to the case when is some compound
disjunction, as :p_ q_:r. Namely, denoting F by F(p; q; r) we have the following
equivalence: F(p; q; r) ` :p _ q _ :r ! F(>;?;>) ` ?.

Now we are going step-by-step to describe a procedure, denoted by PL, by
which one can search for the answer to a question of the form F ` . Rules (R1){
(R4) are basic part of the procedure PL (some other rules will be introduced in the
sequel). In some cases, for instance if F is a �nite set, the procedure PL will be a
genuine algorithm. We emphasize that in general this procedure will be somewhat
similar to Prolog algorithm. Notice that the name of the procedure comes from
the initials of the words: `Prolog Like'. In the sequel we will give details of the
procedure PL.

First, if F is not a �nite set and is not a logical consequence of F how can
we infer the sequent ` ?? Obviously, this can be very diÆcult. Sometimes we can
use the following lemma.

Lemma 4. (?-answer) Let F be a consistent set of clauses, which does
not contain a literal , but may contain its negation : . Then is not a logical
consequence of F .

Proof. By assumption F has no clause of the form _ :::, but may have a
clause of the form : _ :::. Using this fact and the assumption F is consistent we
conclude that F has at least one model in which the literal has value false. Thus,
 cannot be a logical consequence of F . The proof is complete.

142 Pre�si�c

As we shall see now this lemma is used in Prolog algorithm. For instance, let
us calculate V al of the following clause

(*) a _ :b ` c

Applying (R2), i.e. equivalence (6), we obtain the clause a _ :b ` ?.

Was this step a necessary one? As we know, `seeing by Prolog eyes' we can put the
following question Does c follow from the Prolog clause a : � b ? and the answer
is No. The Prolog reason for that is: This c can not be uni�ed with `the head' of

that clause.

As a matter of fact, the genuine reason is implied by Lemma 4, since any set
of positive Horn formulas is consistent. So, by Lemma 4 the V al(�) is false.

Based on this remark and Lemma 4 we introduce the additional rule

(R5) ` ? � F ` , (F is consistent, is any literal not occurring in F)

As we have already said, the rule (R5) can be used if F is a set of positive
Horn formulas.

Second, let us pay attention to rule (R3). To justify its presence in the
procedure PL we will prove the following lemma.

Lemma 5. (Relevancy property) Let in the sequent

F ; p _ f1; p _ f2; . . . ;:p _ ff1;:p _ ff2; . . . ` p

p be a literal and fi, ffj, F do not contain p. Then the following implication holds

(*) F ; p_ f1; p_ f2; . . . ;:p_ ff1; :p_ ff2; . . . ` p �! F ; p_ f1; p_ f2; . . . ` p

Proof. The implication (*) follows from the fact that according to (6) we have
the following equivalences

F ; p _ f1; p _ f2; . . . ;:p _ ff1;:p _ ff2; . . . ` p ! F ; f1; f2; . . . ` ?

F ; p _ f1; p _ f2; . . . ; : ` p ! F ; f1; f2; . . . ` ?

The proof is complete.

Further, notice that rule (R3) is not deterministic. Namely, suppose that we
have a sequent F ; p _ f1; p _ f2; ::: :p _ ff1;:p _ ff2; . . . ` p where p, and :p
do not occur in F and that

(Æ) p _ f1; p _ f2; . . .

are all clauses containing p and suppose that they are arranged in the same order as
in (Æ). After applying rule (R2) we get the following new sequent F ; f1; f2; . . . ` ?.
Now we should apply rule (R3). The clauses f1; f2; . . . will be called relevant. We
introduce the following convention in the procedure PL:

(12) Rule (R3) will be �rst applied to the relevant clause5) f1, after that, if needed,
to the relevant clause f2, and so on.

5)But, if such a clause is ?, then we apply rule (R1)

How to generalize logic programming to arbitrary set of clauses 143

Example 2. Calculate the given sequent, written in Prolog style.6)

(�) a : � b; c: b : � c: a : � d: d : � e: e: ` a

Answer. Using rules (R1){(R4), i.e. equivalences (6){(9) we have the follow-
ing equivalence chain7)

a : � b; c: b : � c: a : � d: d : � e: e: ` a

 ! a _ :b _ :c; b _ :c; a _ :d; d _ :e; e ` a

(First we have translated Prolog clauses to the ordinary clauses)

(P) ! :b _ :c;:d; b_:c; d_:e; e ` ? (Using (6). We have underlined the

relevant clauses and put them at the very beginning)

 ! Cl1 and Cl2, where Cl1, Cl2 are the abbreviations for the following
clauses: :d; b _ :c; d _ :e; e ` b; :d; b _ :c; d _ :e; e ` c respectively.
Further, for the clause Cl1 we have

Cl1 ! :c; :d; d _ :e; e ` ? (Using (6)). Notice that we put the new
relevant clause :c in front of the old relevant clause.

(P') ! :d; d _ :e; e ` c (Using (7))

(P1) ! :d; d _ :e; e ` ? (Using (6))

 ! d _ :e; e ` d (Using (7))

 ! :e; e ` ? (Using (6))

 ! e ` e (Using (7))

 ! ? ` ? (Using (6))

(P1') ! > (Using (8))

So, V al(Cl1) is true. Consequently we should calculate V al(Cl2) too. We
have:

Cl2 ! :d; b _ :c; d _ :e; e ` c

(P2) ! :d; d _ :e; e ` ?

 ! d _ :e; e ` d

 ! :e; e ` ?

 ! e ` e

 ! ? ` ?

(P2') ! ` >

The V al(Cl2) is also true, such that V al(�) is true.

Notice that despite of the fact that we managed to calculate V al(�) by using
the procedure PL we had to repeat some steps (see parts from (P1) to (P1') and

6)Notice that the labels (P), (P'), (P1), (P1'), (P2), (P2') occurred in this example below
are used to mark some steps of `calculation'.

7)We use the equivalence ! symbol instead of the implication symbol � on purpose.
Notice that in the sequel we shall do it regularly.

144 Pre�si�c

from (P2) to (P2')). However, if we had �rst used the second relevant clause, i.e.
the clause :d, then we would have the following very short calculation:

a _ :b _ :c; b _ :c; a _ :d; d _ :e; e ` a

 ! :b _ :c;:d; b _ :c; d _ :e; e ` ?

 ! :b _ :c; b _ :c; d _ :e; e ` d

 ! :e;:b _ :c; b _ :c; e ` ?

 ! :b _ :c; b _ :c; e ` e

 ! :b _ :c; b _ :c; ? ` ?

 ! ` >

Let us again pay attention to steps (P1){(P1') and (P2){(P2'). In step (P1)
we have the sequent :d; d _ :e; e ` ?, which is by (6) equivalent to a _ :d; d _
:e; e ` a. The use of this sequent practically means the following. We have failed
to prove a by the clauses a : �b; c: and b : �c: and consequently we want to apply
the new a-clause (i.e. a clause of the form a : �:::). In other words we are going
to apply the new relevant clause, i.e. the clause :d. Accordingly instead of making
steps (P1){(P1') and (P2){(P2') it would be better to do the following in the spirit
of general Prolog algorithm:

(13) First we should �nd the place8) at which the previous relevant clause9) was
activated. Second, this clause should be omitted, third from this place we
should continue the procedure PL by employing the new relevant clause.

The place in question is P', i.e. the place in which we have introduced the
abbreviations Cl1, Cl2. According to (13) and assuming that we have done the
previous calculation up to the place P', from this place we continue the calculation
as follows:

(P') ! :d; d _ :e; e ` c

In fact at this place we leave the sequent :d; d_:e; e ` c, and consequently
we also leave the whole and-expression C1 and C2 (that is very important
to emphasize).

 ! b _ :c; d _ :e; e ` d

Execution of the second require in (13) can be imagined in the following way.
Suppose that we use a stack10) whose `members' are the sequents which are
`links' in the equivalence chain. Then in such a stack we should go to its
member which is :b _ :c;:d; b _ :c; d _ :e; e ` ? and replace it by the
following one :d; b _ :c; d _ :e; e ` ?

 ! :e; b _ :c; e ` ?

 ! b _ :c; e ` e

8)Notice, that in general this is not a trivial problem. In Example 3 we will explain an idea
by which one can solve the problem.

9)Here this is the clause :b _ :c
10)Such an idea is typical for Computer Science.

How to generalize logic programming to arbitrary set of clauses 145

 ! b _ :c; ? ` ?

 ! ` >

But, how can we know at which step we may apply (13)? In order to give an
answer, suppose that in certain step we have a sequent � ` , where � is a set of
some clauses and is a literal. Then we introduce the following de�nition

(14) The sequent � ` psi is replaceable if does not occur11) in �, and also at
least one clause of � is a relevant clause.

The sequents a; b _ :c ` :d; a; b _ d; c _ d ` :d and a; b _ :d ` d are
examples of replaceable sequents, supposing that the left hand side of them contains
at least one relevant clause. Further, if we, for instance, have to calculate Val of
the sequent a; b _ c ` d, then this sequent is not a replaceable sequent. But if the
same sequent appears during a calculation of some other sequent and a or b _ c
became a relevant clause, then the sequent a; b _ c is a replaceable sequent.

In connection with (14) we have the following criterion for applying (13):

(15) In the procedure PL we apply (13) just in case when in certain step we have
a replaceable sequent

However, in the opposite case, i.e. when we do not have a replaceable clause,
then we �rst apply equivalence (6) and after that we perform the following:

(16) We put each new relevant clause in front of the old relevant clauses

For instance, suppose that we want to �nd Val of the sequent

(*) a : �b: b : �c: c: a : �d: ` a

i.e., of the sequent a _ :b; b _ :c; c; a _ :d ` a. Then we have the following
calculation (i.e. equivalence chain)

(*) ! :b;:d; b _ :c; c ` ?

 ! :d; b _ :c; c ` b

 ! :c;:d; c ` ?

We apply (16). The reason, stated in Prolog style, reads: Until now in the
attempt to prove a we followed this way. To prove a we want �rst to prove b. But
to prove b we should prove c. Just for that reason the relevant clause :c should be
put at the very beginning, i.e., before the clause :d.

 ! :d; c ` c

 ! :d; ? ` ?

 ! ` >

So, the �nal result is: V al(�) is true.

In the following Example we will mainly explain more details how to use rule
(13), i.e. how to �nd the corresponding place. For this purpose we shall use two
things: labels like [1]; [2]; . . . to mark some clauses.

11)However, : may occur in �

146 Pre�si�c

Example 3. Calculate the given sequent, where some of them are written in
Prolog style.

1) p : �q: p : �r: p : �s: s: ` p

2) p : �a; b: a : �c: a : �d: d: p : �r; d: r : �d: ` p

3) p : �q: p : �r: q : �a: r : �b: a _ b ` p

4) p : �q; r: q : �a: q : �b; r: r : �s: s: p : �t: t: ` p

Solution. 1) We have the following equivalence chain

1) ! p _ :q; p _ :r; p _ :s; s ` p

 ! [1]:q; [1]:r; [1]:s; s ` ?

(We have three relevant clauses: :q;:r and :s. In front of them we
put [1]. This serves `as an address' by which one memorizes the place at
which these clauses are involved. In general, for such a place we will say
that it is origin-place of the related address. Notice also that we have
not underlined the relevant clauses, for they are enough marked by the
related addresses. In the sequel we will do in the same way.)

 ! [1]:r; [1]:s; s ` [1] q

(Notice, that because q originates from the relevant clause [1]:q we put
the address in front of it. Further, we have a replaceable sequent; so we
apply (13) going to the origin-place of the address [1]. This is just the
previous `link' in the equivalence chain.)

 ! [1]:s; s ` [1] r

(Again we have a replaceable sequent; so we apply (13) going again to
the origin-place of the address [1].)

 ! s ` [1] s

 ! ? ` ?

 ! ` >

So, we have: V al(1)) = true.

2) We have the following equivalence chain

2) ! p _ :a _ :b; a _ :c; a _ :d; d; p _ :r _ :d; r _ :d ` p

 ! [1]:a _ :b; [1]:r _ :d; a _ :c; a _ :d; d; r _ :d ` ?

(We have two relevant clauses: :a_:b and :r _:d. In front of them we
put the address [1].)

 ! [1]:r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] a

and [1] :r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] b

(Notice, that because a and b originate from [1]:a_:b we put the address
[1] in front of both of them.)

 ! [2]:c; [2]:d; [1]:r _ :d; d; r _ :d ` ?

(We have two new relevant clauses, for which we use a new address [2].)

How to generalize logic programming to arbitrary set of clauses 147

and [1] :r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] b

 ! [2]:d; [1]:r _ :d; d; r _ :d ` [2] c

(Here c is replaceable. We go to the origin-place of the address [2] and
apply (13).)

and [1] :r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] b

 ! [1]:r _ :d; d; r _ :d ` [2] d

and [1] :r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] b

 ! ? ` ? and [1] :r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] b

 ! ` > and [1] :r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] b

 ! [1]:r _ :d; a _ :c; a _ :d; d; r _ :d ` [1] b

(Here b is replaceable. We go to the origin place of the address [1], i.e., to the
sequent [1]:a _ :b; [1]:r _:d; a_ :c; a_ :d; d; r _ :d ` ? and after omitting
the clause [1]:a _ :b we apply (6) to the relevant clause [1]:r _ :d.)

 ! a _ :c; a _ :d; d; r _ :d ` [1] r

and a _ :c; a _ :d; d; r _ :d ` [1] d

 ! [3]:d; a _ :c; a _ :d; d ` ?

(We have a new relevant clause :d. We gave to it the address [3].)

and a _ :c; a _ :d; d; r _ :d ` [1] d

 ! a _ :c; a _ :d; d ` [3] d

and a _ :c; a _ :d; d; r _ :d ` [1] d

 ! a _ :c; ? ` ? and a _ :c; a _ :d; d; r _ :d ` [1] d

 ! ` > and a _ :c; a _ :d; d; r _ :d ` [1] d

 ! a _ :c; a _ :d; d; r _ :d ` [1] d

 ! a _ :c; ? ` ?

 ! ` >

So, the �nal result is V al(2)) = true.

3) We have the following equivalences

3) ! p _ :q; p _ :r; q _ :a; r _ :b; a _ b ` p

 ! [1]:q; [1]:r; q _ :a; r _ :b; a _ b ` ?

(We have two relevant clauses, in front of them we put [1].)

 ! [1]:r; q _ :a; r _ :b; a _ b ` [1] q

 ! [2]:a; [1]:r; r _ :b; a _ b ` ?

(We have a new relevant clause. We gave to it the address [2]
and also put it in front of the old relevant clauses)12)

 ! [1]:r; r _ :b; a _ b ` [2] a

 ! [3] b; [1]:r; r _ :b ` ?

12)The reason is obvious: to prove q we employ the clause q : �a, i.e. q _ :a.

148 Pre�si�c

(Again a new relevant clause. New address is [3].)

 ! [1]:r; r _ :b ` [3]:b

 ! [4] r; [1]:r;` ?

(Notice that the clause r (with the new address) is the �rst one.)

 ! [1]:r;` [4]:r

 ! ? ` ?

 ! ` >

So, the answer is: V al(2)) is true.

4) We have the following equivalence chain

4) ! p _ :q _ :r; q _ :a; q _ :b _ :r; r _ :s; s; p _ :t; t ` p

 ! [1]:q _ :r; [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` ?

 ! [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [1] q

and [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [1] r

 ! [2]:a; [2]:b _ :r; [1]:t; r _ :s; s; t ` ?

(Notice that now in front of :t we put two new relevant clauses.)

and [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [1] r

 ! [2]:b _ :r; [1]:t; r _ :s; s; t ` [2] a

(This a is replaceable. We should go to origin place of the ad-
dress [2], and apply (13). Notice that after omitting the clause :a at
the origin place of [2] the following and-expression

[2]:b _ :r; [1]:t; r _ :s; s; t ` ?

and [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [1] r

holds.)

and [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [2] r

 ! [1]:t; r _ :s; s; t ` [2] b and [1]:t; r _ :s; s; t ` [2] r

and :t; q _ :a; q _ :b _ :r; r _ :s; s; t ` r

(Consider the �rst clause [1]t; r _ :s; s; t ` [2]b. This b is re-
placeable. Therefore we go to the origin place of [2] at which the
expression

[2]:b _ :r; [1]:t; r _ :s; s; t ` ?

and [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [1] r

stands. Now we �rst omit the clause [2]:b _ :r and apply (7) to the
relevant clause [1]:t. So, we obtain the next `link':)

 ! r_:s; s; t ` [1] t and [1]:t; q_:a; q_:b_:r; r_:s; s; t ` [1] r

 ! r_:s; s; ? ` ? and [1]:t; q_:a; q_:b_:r; r_:s; s; t ` [1] r

 ! ` > and [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [1] r

 ! [1]:t; q _ :a; q _ :b _ :r; r _ :s; s; t ` [1] r

How to generalize logic programming to arbitrary set of clauses 149

 ! [3]:s; [1]:t; q _ :a; s; t ` ?

 ! [1]:t; q _ :a; s; t ` [3] s

 ! [1]:t; q _ :a;?; t ` ?

 ! ` >

So the result is: V al(4)) = true.

Let us now consider the following Prolog program

(17) �(f(X)) : ��(X):
�(a):

(a and f are symbols representing a constant, a function respectively, while � and
� represent relations) and put the question ? � �(Y). The answer is yes. Using a
and f we can build the corresponding Herbrand universe [1], whose elements are
ground terms, as

a; f(a); f(f(a)); f(f(f(a))); . . .

Denote by Prop((17)) (`Propositional set of (17)') the set of all clauses of
the form (17) where X is replaced by various elements of the Herbrand universe.
This set is a set of propositional clauses, whose atoms have the following forms:
�(t1); �(t2) where t1; t2 can be any elements of Herbrand universe. Prolog algo-
rithm in fact deals with such a set Prop((17)). In connection with this we point
out that the meaning of the question ?� �(Y) is the following:

Can one using Prolog algorithm infer a consequence of the form �(Y),
where Y may be some element of the Herbrand universe. Notice that Y has
a status of an unknown, while X is a variable (whose value comes from the
Herbrand universe)

As it is well known, in search of such a Y one uses a uni�cation algorithm.
Similarly, in the procedure PL we also use such an algorithm. Here we explain how
by PL one can treat the above Prolog question. Namely, we have the following
equivalence chain

�(f(X)) : ��(X); �(a) ` �(Y)

(It is supposed that X `runs' over the Herbrand universe, i.e. that the
left hand side of this sequent is Prop((17))).

 ! �(f(X)) _ :�(X); �(a) ` �(Y0)

(X runs over Herbrand universe. We replaced Y by Y0 in order to
emphasize that Y is not a variable, but an unknown.)

 ! [1]:�(X0); �(f(X)) _ :�(X); �(a) ` ?)

(Y0 obtains the value f(X0), where X0 is a new unknown, X runs
over Herbrand universe. Notice that we have rewritten the clauses
�(f(X)) _ :�(X); �(a) (see Remark 2 below))

 ! �(f(X)) _ :�(X); �(a) ` [1]�(X0)

150 Pre�si�c

(X0 obtains the value a, consequently the value of Y0 is f(a), X runs
over Herbrand universe)

 ! �(f(X)) _ :�(X); ? ` ?

 ! ` >

Thus, the answer is true, and the desired value of Y , i.e. of Y0 is f(a).

Remark 2. In Lemma 1 we have the equivalence (6) (i):

F ; �1(p); �2(p); . . . ` p ! F ; �1(?); �2(?); ::: ` ?

It is interesting that besides this equivalence we also have another one

F ; �1(?); �2(?); . . . ` ? ! F ; �1(p); �2(p); . . . �r1(?); �r2(?); . . . ` ?
where r1; r2; . . . 2 f1; 2; . . .g

which can be easily proved.

Now we are going to generalize the idea applied in the above example. So,
let 	 be a set of clauses ([1]) and � a clause. How by use of PL one can:

(18) Find V al(` �)

We allow that � contains some unknowns denoted for instance by X0; Y0;
But what to do if � contains some variables? One such example is the following:
a(X) ` a(X) where X is a variable. In this particular example we can solve
problem (18) as follows

a(X) ` a(X)

 ! a(X) ` a(c)

(Here c is a new constant symbol in respect with a(X) ` a(X), which
means that c does not occur in the sequent a(X) ` a(X). See Remark
3 below. Notice that now Herbrand universe is the singleton fcg.)

 ! ?; a(X) ` ?

(The substitution X �� > c uni�es the atoms a(c) and a(x))

Remark 3. In general, if c is a new constant with respect to 	 and �, then
the following logical equivalence 	 ` �(X) ! 	 ` �(c) holds.

Having in mind this Remark any problem of the type (18) can be reduced to
some problem of the type (18), but where � does not contain any variable. Further,
according to Remark 1 the obtained problem can be reduced to a problem of type
(18) in which � is ?. So �nally we conclude that in the study of problems of type
(18) we may suppose that � is a literal or the symbol ?.

What is the genuine reason for the use of the notion of an `unknown'? To see
that consider this example:

Assume: a(1); a(2) hold, and then put the question: ? (9X) a(X) (In
words: Is there an X such that a(X) is true). As a matter of fact in this question
we encounter the unknown X0, whose value must be an element of the Herbrand

How to generalize logic programming to arbitrary set of clauses 151

universe, i.e. of the set f1; 2g. In other words the question reduces to a problem of
type (18), with: 	 is a(1); a(2), and � is a(X0).

As it is well known in Prolog algorithm one of the most important components
is the backtracking procedure. A similar fact holds for the procedure PL. Why does
Prolog use the backtracking idea? The essential reason is the following one:

It may happen that at some step certain unknown, say X, gets a value
which is not a good one. Consequently, roughly said, we should go back to
the place, where this unknown got this value, and try to �nd a new value for
it. After that we continue the Prolog algorithm.

In the procedure PL we proceed just in such a way. Here is an example:

Example 4. Find the truth value of the given sequent

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` c(X0)

Solution. In order to make the use of a backtracking idea possible, we will
mark the places in which unknowns get their values. Accordingly we have the
following equivalence chain:

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` c(X0)

(The �rst value-place for X0. Here we will connect c(X0)
with the clause c(X) _ :a(X) _ b(X), i.e., to unify c(X0) with c(X).
Another possibility is to connect c(X0) with c(77), which means that
X0 will get the value 77.)

 ! [1]:a(X0) _ b(X0); a(1); a(2); b(1);:b(2),

c(X) _ :a(X) _ b(X); c(77) ` ?

 ! a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1] a(X0)

(The second value-place for X0. Now X0 will get the value 1)

and

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

 ! ?; a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` ?)

and

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

 ! ` > and

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

 ! a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

 ! a(1); a(2);:b(2); c(X) _ :a(X) _ b(X); c(77) ` ?

(It is not diÆcult to see that the last sequent is false. Maybe the value 1 for
X0 is not an appropriate value? Therefore we will go to the last value-place of X0,
i.e. to the second value-place, in order to give X0 some new value. To be clearer
we will �rst rewrite the `link' in that place.)

 ! a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1] a(X0)

152 Pre�si�c

and

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

(Now X0 will take the value 2).

 ! a(1); ?; b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1] ?

and

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

 ! ` > and

a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

 ! a(1); a(2); b(1);:b(2); c(X) _ :a(X) _ b(X); c(77) ` [1]:b(X0)

(Now X0 has the value 2)

 ! a(1); a(2); b(1); ?; c(X) _ :a(X) _ b(X); c(77) ` ?

 ! ` >

So, �nally we have result true and the unknown X0 has the value 2. Suppose
the contrary, i.e. that the result was false. In such a case in the second value-place
of X0 there is no new value for X0, and consequently we would go back to the �rst
value-place of X0 and then X0 would get the value 77, etc.

References

1. J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1984

2. E. Mendelson, Introduction to Mathematical Logic, Van Nostrand, Princeton, 1979.

3. S.B. Pre�si�c, Generalizing logic programming to arbitrary set of clauses, Sci. Rev. Belgrade
19/20 (1996), 75{81

Matemati�cki fakultet (Received 08 09 1996)
Studentski trg 16 (Revised 27 12 96)
11001 Beograd, p.p. 550
Yugoslavia

