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Abstract. It is well known that the Sine-Gordon equation (SGE) uxx�uyy =
sinu admits a geometric interpretation as the di�erential equation which determines
surfaces of constant negative curvature in the Euclidean space R3. This result
can be generalized to the elliptic space S3 and the hyperbolic space H3. These
results are analogous to the results of Chern that SGE also admits a geometric
interpretation as the di�erential equation which determines spacelike surfaces of
constant negative curvature in pseudo-Riemannian spaces V 3

1
of constant curvature,

that is in the pseudo-Euclidean space R3

1
, in the pseudoelliptic space S3

1
, and in the

pseudohyperbolic space H3

1
, and that the Sinh-Gordon equation (SHGE) uxx�uyy =

sinhu admits geometric interpretations as the di�erential equation which determines
timelike surfaces of constant positive curvature in the same spaces. In this paper
it is proved also that the Klein-Gordon equation (KGE) uxx � uyy = m2u admits
analogous geometric interpretations in the Galilean space �3, and in the pseudo-

Galilean space �3
1
, that is, in the aÆne space E3 whose plane at in�nity is endowed

with the geometry of the Euclidean plane R2 and of the pseudo-Euclidean plane R2

1
,

respectively, in the quasielliptic space S1;3, in the quasihyperbolic space H1;3, in the

quasipseudoelliptic space S
1;3

01
, and in the quasipseudohyperbolic space H

1;3

01
, that

is, in the projective space P 3 whose collineations preserve two conjugate imaginary
planes and two conjugate imaginary points on the line of their intersection, two
conjugate imaginary planes and two real points on the line of their intersection, two
real planes and two conjugate imaginary points on the line of their intersection, and
two conjugate imaginary planes and two real points on the line of their intersection,
respectively.

1. The Klein-Gordon, Sine-Gordon and Sinh-Gordon equations.

The relativistic wave equation of the motion of a free particle with zero spin, found
by physicists O. Klein and V. Gordon is called Klein-Gordon equation (KGE). In
the case when a particle is characterized by one space coordinate x the equation
has the form

(1) utt � uxx = m2u;
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where t is time, u = u(t; x) is a wave function, and m is the mass of the particle.
Note that the equation (1) for m = 0 is a classical one-dimensional wave equation
(the equation of a vibrating string) whose solution u(t; x) has the form f(x+ t) +
f(x� t), where f(t) is an arbitrary function.

By analogy with KGE the equations

utt � uxx = sinu(2)

utt � uxx = sinhu(3)

are called Sine-Gordon equation (SGE) and Sinh-Gordon equation (SHGE), respec-
tively. The equation (2) has also an important physical meaning: since the left-hand
side of this equation coincides with the left-hand sides of the equation of a vibrating
string and of the wave equation (1), this equation is also a wave equation, but, un-
like the equation (1), it is nonlinear and describes physical processes related to the
nonlinear waves, in particular solitary waves (solitons) which preserve their shape
under interaction (this theory is very important for the theory of plasm).

2. Surfaces of constant curvature in Euclidean, elliptic, hyperbol-

ic, pseudo-Euclidean, pseudoelliptic, and pseudohyperbolic spaces. The
equations (2) and (3) have well known geometric meaning. In 1878 Chebyshev
(Tchebyche�) in his lecture \The cutting out of clothes" [1] considered nets on
surfaces in Euclidean space R3 whose all net quadrilaterals have equal opposite
sides (now such nets are called \Chebyshev nets"). If these curves are coordinate
curves of such a surface, then the line element of the surface has the form

(4) ds2 = du2 + 2 cos'dudv + dv2;

where ' is the angle between curves of the net, u and v are lengths of arcs of
these curves. Chebyshev also found that the Gaussian curvature K of this surface
satis�es the di�erential equation

(5) 'uv +K sin' = 0:

This equation for surfaces of constant negative Gaussian curvature is a SGE.
In 1900 Hilbert in [2] proved that the Chebyshev net on this surface is formed by its
asymptotic curves, and therefore the angle u between asymptotic curves on these
surfaces satis�es a SGE.

Various authors found many concrete cases of surfaces of constant negative
curvature which describe motions of various types of solitons (see Pozniak [3, 4]).

Chern in 1978 in [5] proved that the angle between asymptotic curves on
spacelike surfaces of constant negative curvature in pseudo-Riemannian spaces V 3

1

of constant curvature, that is, in the pseudo-Euclidean space R3
1, in the pseudoellip-

tic space S31 , and in the pseudohyperbolic space H3
1 (see [6, p. 67]), and on timelike
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surfaces of constant positive curvature in the same spaces satisfy equations SGE
and SHGE, respectively.

On the surfaces in the spaces S3, H3, S31 and H3
1 there are two types of

curvature: the inner or Riemannian curvature K, that is, the curvature of the
surfaces regarded as the sectional curvature of a Riemannian space V 2 or a pseudo-
Riemannian space V 2

1 , and the exterior or Gaussian curvature Ke which is equal to
the product of principal geodesic curvatures of the surfaces, that is, normal geodesic
curvatures of the curvature lines on the surfaces). The curvatures K and Ke are
related by

K = Ks +Ke;

where Ks is the curvature of the space equal to 1=r
2 for S3 and �1=q2 for H3 and

H3
1 (see [7, p. 422]). Note that in the expressions \surface of constant negative or

positive curvature" the exterior curvature Ke is always meant, but in the equation
(5), which is valid for S3 and H3 since this equation follows only from the formula
(4) and can be written as K = R1212= sin', where R1212 is the unique coordinate
of the Riemann curvature tensor which is expressed only through the coordinates
of the metric tensor of a surface (in our case g11 = g22 = g12 = cos'), and their
�rst and second derivatives, the curvature K is the inner curvature.

For instance, consider a Cli�ord surface in S3, that is, an equidistant surface of
a straight line in this space. This surface is a ruled quadric [(x0)2+(x1)2] cos2 a=r�
[(x2)2 + (x3)2] sin2 a=r = 0 (a is the distance of points on this surface from its ax-
is and r is the radius of curvature of the space), whose rectilinear generators are
paratactic to its axis. The asymptotic lines in this surface are its rectilinear gen-
erators, the angle u between rectilinear generators of di�erent families is constant
and equal to 2a=r. Therefore uxx and uyy are equal to 0; this surface is isometric
to a rhombus with acute angle 2a=r in Euclidean plane R2 with clued opposite
sides, and therefore the curvature K of this surface is also equal to 0. The principal
geodesic curvatures of the curvature lines of this surface are equal to 1=r cot a=r
and �1=r tan a=r, therefore the curvature Ke of this surface is equal to �1=r2, and
Ks +Ke is also equal to 0.

3. Surfaces of constant curvature in Galilean and pseudo-Galilean

spaces. Consider the surfaces of constant curvature in the spaces �3 and �31.
This case was �rst considered by authors in [8]. The n-dimensional Galilean and
pseudo-Galilean spaces �n and �n1 can be de�ned as the aÆne space En whose
hyperplane at in�nity is endowed by the geometry of the Euclidean space Rn�1 or
the pseudo-Euclidean space Rn�1

1 (see [7, pp. 295{297]). If in the space En a system
of aÆne coordinates is chosen such that the basis vectors e2; e3; . . . ; en are directed
to the hyperplane at in�nity of Rn�1 or Rn�1

1 , the distance d between two points
X(x1; x2; . . . ; xn) and Y (y1; y2; . . . ; yn) is equal to jy1 � x1j, and if x1 = y1, when
d = 0, then these points have another distance d0 equal to the distance between
the points X 0(x2; x3; . . . ; xn) and Y 0(y2; y3; . . . ; yn) in Rn�1 or Rn�1

1 , respectively.
The motions in �n and �n1 have the form

0x1 = x1 + a1; 0xi = Ai
1x

1 +Ai
jx

j + ai (i; j = 2; 3; . . . ; n);
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where (Ai
j) is an orthogonal or pseudo-orthogonal (n � 1) � (n � 1)-matrix, re-

spectively (here the Einstein rule for summation is used). These formulas coincide
with the formulas of transformation of orthogonal coordinates in the n-dimensional
isotropic or pseudoisotropic spaces In or In1 , respectively, that is, the n-dimensional
aÆne space En whose hyperplane at in�nity is endowed with the geometry of the
co-Euclidean space (Rn�1)� or the copseudo-Euclidean space (Rn�1

1 )� correspond-

ing to Rn�1 and Rn�1
1 in the duality principle of the projective space Pn�1. The

motions in In and In1 have the form

0x1 = x1 +A1
ix

i + a1; 0xi = Ai
jx

j + ai (i; j = 2; 3; . . . ; n):

Note that the space I4 can be regarded as the space-time of the classical
mechanics of Galilei-Newton, if the distance between two events E1(x1; y1; z1; t1)
and E2(x2; y2; z2; t2) is de�ned as the Euclidean distance between these events in
the system of reference in which these events are simultaneous, and as ijt2 � t1j in
the system of reference in which these events have coinciding space coordinates x,
y, z. The name of Galilean space is explained by the coincidence of the formulas of
motions in �4 with the formulas of transformation of orthogonal coordinates in I4.
Therefore Kotelnikov, who de�ned the space �4, believed that it is the space-time
of classical mechanics of Galilei-Newton, and this opinion was supported by many
geometricians (see, for instance, [7, pp. 295{297]; see also [9]).

The hyperplane at in�nity of Rn�1 and Rn�1
1 , that is, the (n�2)-plane x1 = 0

in the hyperplane x0 = 0, and the absolute imaginary or real hyperquadric in this
(n�2)-plane, which is the intersection of all hyperspheres in Rn�1 or Rn�1

1 , form the
absolutes of �n and �n1 . For �

3 and �31 the absolutes consist of the plane at in�nity,
line x1 = 0, and two imaginary conjugate or real points on this line. Depending on
a position relative to the absolute of �3 and �31 the lines and planes in these spaces
are divided into two classes: lines of general position which do not meet the line
x1 = 0, and special lines which meet this line: planes of general position which do
not contain the line x1 = 0 (the planes �2 or �21), and special planes which contain
this line (the planes R2 or R2

1).

At each point X in �3 or �31 we determine orthonormal frames which consist
of vectors e1, e2, e3 of length 1 or i such that the line Xe1 is a line of general
position, and the lines Xe2, Xe3 are special lines which divide harmonically the
lines joining X with two imaginary conjugate or real points of the absolute whose
equations will be written as

g22(x
2)2 + g33(x

3)3 = 0

where g22 = g33 = 1 for �3 and g22 = �g33 = �1 for �31.
If a point X is characterized by a position vector x, then the derivation

formulas for these frames are

dx = !iei; de1 = !u
1 eu; de2 = !32e3; de3 = !23e2; !23 = �Æ!32
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where i; j = 1; 2; 3, u; v = 2; 3, Æ = 1 for �3 and Æ = �1 for �31. Exterior di�erenti-
ation of these equations gives

(6) d!1 = 0; d!u = !i ^ !u
i ; d!u

1 = !v
1 ^ !u

v ; d!32 = 0:

Formulas (6) show that the linear forms !1 and !32 are locally exact di�eren-
tials, therefore

(7) !1 = du; !32 = dv:

Consider a curve C of general position in �3 or �31. If X is a point on this
curve, e1 is tangent vector to this curve at X , e2 is a special vector of the oscillating
plane of this curve at X , and e3 is the third vector of an orhonormal frame, the
derivation equations of this curve are

(8)
dx

dt
= e1;

de1
dt

= ke2;
de2
dt

= �e3;
de3
dt

= �Æ�e2;

where t is the natural parameter, k and � are the curvature and the torsion of this
curve.

Consider a surface S of general position in �3 or �31. Let us suppose that the
intersections of this surfaces with Euclidean or pseudo-Euclidean planes x1 = const
are not straight lines, that is, this surface has no special rectilinear generators. We
determine at a point X of this surface the orthonormal frame, whose vectors e1 and
e2 are tangent vectors to S at X and e3 is the normal vector to S at X , that is,
this vector is orthogonal to e2 (the vectors e2 and e3 of this are in a plane x1 = 0).
The di�erential equation of Pfa� of the surface S is

(9) !3 = 0:

The exterior di�erentiation of this equation gives

(10) !1 ^ !31 + !2 ^ !32 = 0;

hence by means of the Cartan lemma we obtain

(11) !31 = a!1 + b!2; !32 = b!1 + c!2:

The �rst fundamental forms of the surface S are

(12) I = ds2 = (!1)2

for curves of general position and

(13) I1 = (ds1)
2 = g22(!

2)2
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for special curves, that is, intersections of S with planes x1 = 0.

The second fundamental form of the surface S is

(14) II = (d2a; e3) = g33(!
1!31 + !2!32) = g22[a(!

1)2 + 2b!1!2 + c(!2)2]:

We call a surface in �31 spacelike if g22 = +1 and timelike if g22 = �1. The line
of the absolute determines on the surface S the Koenigs net consisting of special
curves which are intersections of S with the planes x1 = 0, and of curves of tangency
of cones with apices on the line of the absolute tangent to S. The curves of this
net are curvature lines of S, since normal lines to S along curves of this net form
developable surfaces.

At the points of the curvature lines of S of general position, vectors e2 of
moving frames have constant directions, since they are directed to the apices of
cones, therefore for curvature curves of general position !32 = 0 and, it follows from
(7), that the equations of curvature curves of S are u = const , v = const . The
coordinates u and v are called canonical coordinates on the surface S.

The principal curvatures of S, that is normal curvatures kn = II=I for curves
!1 = 0 and !32 = 0 are, respectively,

(15) k1 = Æc; k2 = g33
ac� b2

c
:

hence the curvature K = Ke = k1k2 of the surface S is

(16) K = k1k2 = Æg33(ac� b2):

Therefore the Gaussian curvature of a surface S in �3 and of a timelike surface
in �31 is equal to ac�b2 and of a spacelike surface in �31 is equal to b

2�ac. Note that
the condition for the surfaces S in �3 and �31 have no special rectilinear generators
is the equality c = 0.

The curves on a surface S which are determined by the equation II = 0
are asymptotic curves. Since the form II is expressed by the formula (14), the
condition for �nding asymptotic directions ' = !2=!1 of general position is

(17) a+ 2b'+ c'2 = 0:

In the case when vector e1 of the moving frame is �xed at every point A on
S, the moving frame is canonical and all other forms are principal, that is

(18) !21 = �!1 + �!2:

The exterior di�erentiation of the forms (11) and (18) and the substitution
of expressions (9), (11), (16) and (18) into (6) give

��2 + �1 + � = g33K;(19)

�a2 + 2b� + b1 � c� = 0;(20)

�b2 + c1 + c� = 0;(21)
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where the indices 1 and 2 mean PfaÆan derivatives determined by the formula

dp = p1!
1 + p2!

2:

Let the vector e1 be tangent to a curvature curve of general position, that is,
the coordinate system on the surface S is canonical system u, v, and let us �nd the
corresponding di�erential forms of moving frame. Since the curvature of a special
curvature curve is k1 = dv=ds1, where v is angle between tangent lines and s1 is
the length of special curve, formulas (13) and (15) imply that dv = c!2. Let us
denote the radius of curvature of this curve by

(22)  = k�11 = Æc�1;

then we have

(23) !2 = Ædv:

By the substitution (23) into the second formula (11), and by formulas (7)
and (29) we obtain

(24) b = 0:

Therefore the formulas (15) have the form

(25) k1 = Æc; k2 = g33a:

By formulas (7) and (23) we can express the PfaÆan derivatives p1 and p2
through the partial derivatives pu and pv in the form p1 = pu, p2 = cpv. Therefore
from the equations (20), (21), and (24) we obtain

� = �cu � u

; � = �av;

that is,
!21 = �av!1 + u

�1!2 = �avdu+ Æudv:

In this case formula (19) can be written as

(26) avv + Æuu = �Æa:

This formula shows that the conditions of integrability of the di�erential
equations of a surface S are reduced to single di�erential equation for its principal
curvatures k1 and k2.

Let a surface S have a curvature K = const = �m2 where � = �1.
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A) In the case when a surface S is referred to the canonical coordinates let us
show that the equation (26) can be reduced to the form (1). In this case formulas
(25) can be written as

k1 = Æc = �1; k2 = Kk�11 = �Æm2

and formula (26) can be written as

(27) �g33m
2vv + Æuu = �Æ�g33m2:

Let us set � = �1 for a surface in �3 and for a spacelike surface in �31; then
we obtain

uu �m2vv = m2;

that is, if we denote u by t, v=m by x, and the function  by u, we obtain an
equation KGE (1).

Let us set � = +1 for a timelike surface in �31; then the equation (27) gives
m2vv � uu = m2, that is, if we set v=m = x and u = t we obtain a KGE (1).

B) In the case when a surface S is referred to the asymptotic curves let us
show that the function  satis�es the equation

(28) u�� = m2u:

This equation coincides with the equation (1) referred to its characteristics

� =
x� tp

2
; � =

x+ tp
2
:

We consider a surface in �3 and a spacelike surface in �31 of constant nega-
tive Gaussian curvature and a timelike surface in �31 of constant positive Gaussian
curvature. Formula (16) implies that in the cases ac � b2 < 0. Since in the case
ac � b2 < 0 the equation (17) has two distinct real roots, then at every point A
on S there are two distinct asymptotic directions. If the vector e1 is the tangent
vector at A in one of these directions, since ' = 0 is a root of the equation (17),
we obtain that

(29) a = 0:

Therefore formulas (11) and (16) give !31 = b!1 and K = �Æg33b2, and, since
K = const , we obtain that

(30) b = const :

Formula (14) implies that the equations of the asymptotic curves can be
written as

!2 = 0; 2b!1 + c!2 = 0:
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Therefore formulas (6) imply that

(30) d(c!2) = d(2b!1 + c!2) = (c1 + c�)!1 ^ !2 = 0:

Therefore the condition (21) has the form c1+ c� = 0 and the forms c!2 and
2b!1 + c!2 are locally exact di�erentials. We denote

c!2=b = d�; 2!1 + c!2=b = d�:

Now we refer the moving frames to the local coordinates �, �. The parametric
curves are asymptotic curves of general position, therefore we call the coordinates
�, � Chebyshev coordinates. The PfaÆan derivatives are expressed through partial
derivatives as follows

p1 = 2p�; p2 =
c

b
(p� + p�):

The substitution of p1 and p2 into (20) and (21) gives

(31) � = 2�1�; � = 4Æb�;

that is,

(32) !21 = Æb�:

Formulas (18) imply that

(33) �4�� = Æb2:

If we denote b2 = m2 and  = u, we obtain the equation (28).

C) Now we will show that the principal curvature k2 (of the curve v = const ),
the angle between asymptotic curves of general position, and the curvatures of
asymptotic curves also satisfy a KGE in the form (28).

From (15), (28) and (22) we obtain k2 = �g33Æb2. Using (28) we �nd roots
of the equation (17) for asymptotic directions of general position

'1 = 0; '2 = �2Æb:

Therefore the angle between asymptotic directions is equal to ' = '2�'1 = �2Æb.
From (B) and (29) it is clear that the functions k2 and ' satisfy the equation (33).

Let us consider the asymptotic curve � = const , that is !2 = 0 from (30),

and let us �nd the curvature ~k1 and the torsion �1 of this curve by formulas (7).
In this case we �nd

!21 = �!1; !31 = 0; !32 = b!1;

and hence
~k1 = �; �1 = b:
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Therefore from (31), (30), and (B) we obtain that the curvature ~k1 satis�es equation
(33). The tangent vector ~e1 to the asymptotic curve � = const is ~e1 = e1� 2Æbe2.
Using (29) we obtain from (11) and (32)

!21 = 0; !31 = �2Æb2!1; !32 = �b!1:

Therefore for the curve � = const we have

d~e1
dt

= 4Æb�e2;
de2
dt

= �be3:

Comparing these formulas with formulas (8) we �nd the curvature and the
torsion of the curve � = const:

~k2 = 4Æb�; �2 = �b:

It is evident that the curvature of this curve also satis�es the equation (33).

Thus for a surface S in �3 and for a spacelike surface S in �31 of constant
negative Gaussian curvature and for a timelike surface S in �31 of constant positive
Gaussian curvature which have no special rectilinear generators the radius of curva-
ture  of special curves on S, the principal curvature k2 of S, the angle ' between
asymptotic curves, and curvatures ~k1 and ~k2 of asymptotic curves satisfy equations
KGE, and the torsions of asymptotic curves of the surface S with constant Gaussian
curvature �b2 in �3 and g33b

2 in �31 are equal to b and �b.

4. Surfaces of constant curvature in quasielliptic, quasihyperbolic,

quasipseudoelliptic, and quasipseudohyperbolic spaces. The quasielliptic
space Sm;n, the quasihyperbolic space Hm;n, the quasipseudoelliptic space Sm;n

kl ,
and the quasipseudohyperbolic space Hm;n

kl can be de�ned as projective space Pn

with the absolute consisting of an imaginary or real cone of second order C with
equation which can be reduced to the form gaa(x

a)2 = 0 (a = 0; 1; . . . ;m) and of
an imaginary or real nondegenerate quadric Q on the real (n�m�1)-plane xa = 0,
which plays the role of an apex A of this cone, and the equation of the quadric
Q can be reduced to the form guu(x

u)2 = 0 (u = m + 1; . . . ; n). If the projective
coordinates of the points x and y in these spaces are normalized by the condition
gaa(x

a)2 = �1, the distance ! between these points is determined by the formula
cos!=r = gaax

aya (for Hm;n and Hm;n

kl r�qi and cos!=r = cosh!=q) and if ! = 0

the points x and y are located in the space Rn�m or Rn�m
i and the distance d

between them is equal to the distance between them in these (n �m)-spaces (see
[7, pp. 283{288]).

In the spaces S1;3, H1;3, S1;301 and H1;3
01 the role of the cone C is played by

the couple of conjugate imaginary or real planes

(34) g00(x
0)2 + g11(x

1)2 = 0
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and the role of the quadric Q is played by the couple of conjugate imaginary or real
points

(35) g22(x
2)2 + g33(x

3)2 = 0

on the line x0 = x1 = 0. For S1;3: g00 = g11, g22 = g33; for H
1;3: g00 = �g11,

g22 = g33, for S
1;3
01 : g00 = g11, g22 = �g33; for H1;3: g00 = �g11, g22 = �g33.

In these spaces we will consider such frames fEig (I; J = 0; 1; 2; 3) such that
the points E0 and E1 do not belong to the absolute and divide harmonically the
points of meeting of the line E0E1 with the planes (34) and the points E2 and
E3 lie on the line A and divide harmonically the points (35). These frames are
orthogonal, that is, the vectors ei in quasi-Euclidean and quasipseudo-Euclidean
4-spaces R2;4, R2;4

10 , R
2;4
01 and R2;4

11 , which represent the points Ei are orthogonal
i.e. gij = eiej = 0 for i 6= j. We normalize these vectors by the conditions

g00 = e20 = 1; g11 = e21 = � = �1; g22 � g33 = e22 � e23 = Æ = �1;

that is, for S1;3: g00 = g11 = g22 = g33 = � = Æ = 1; for H1;3: g00 = 1,
� = g11 = �1, g22 = g33 = Æ = 1; for S1;301 : � = g00 = g11 = 1, g22 = �g33 = �1,
Æ = �1; for H1;3

01 : g00 = 1, � = g11 = �1, g22 = �g33 = �1, Æ = �1.
The derivation formulas for these frames are

(36) dea = !i
aei; deu = !v

u (a; b = 0; 1; u; v = 2; 3; I; J = 0; 1; 2; 3);

where the di�erential forms !j
i satisfy the conditions

!i
i = 0; !01 = �!10 ; !23 = Æ!32 :

Let us denote the curvature radius of S1;3 and S1;301 by � and the curvature

radius of H1;3 and H1;3
01 by i�, and the curvature �=�2 of these spaces by Ks.

Exterior di�erentiation of formulas (36) gives the structure equations of these spaces

(37) d!10 = d!32 = 0; d!u
a = � �

�2
!a
0 ^ !u

0 + !i
a ^ !u

i (i; j = 1; 2; 3):

We consider a surface S of arbitrary position (the lines and planes of arbitrary
position are de�ned as in Section 3). We suppose that all sections of S by planes
which do not contain the line A are not straight lines. At any point X on S we
de�ne an orthonormal frame so that its point E0 coincides with X , the lines E0E1

and E0E2 are tangent to S at X and the line E0E3 is normal to S at X (that is,
E0E3 meets the line A at a point which together with the meeting point of A with
the plane E0E1E2 divides harmonically the points Q). The di�erential equation of
Pfa� of the surface S is

(38) !30 = 0:
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Let us denote the forms !i
0 by !

i. Then the equation (37) coincides with (9).
Exterior di�erentiation of this equation, as in Section 3, gives formulas (10) and
(11). Now, the formula (12) has the form

I = ds2 = (!1)2e21 = �(!1)2

and the formula (13) is valid for special lines !1 = 0. The second fundamental form
of S coincides with (14).

Since the absolutes of all four spaces S1;3, H1;3, S1;301 and H1;3
01 contain a

straight line A, this line determines the Koenigs net on these surfaces. As in �3

and �31 we can prove that the equations of lines of this set are !
1 = 0 and !32 = 0 and

the �rst two formulas (36) imply that the forms !1 and !32 are exact di�erentials,
that is formulas (7) are valid. As in Section 3 we call u and v canonical coordinates

on S. Let us relate the surface S to the canonical coordinate frame; it is equivalent
to the condition (24), that is b = 0. Since the lines of Koenigs net are curvature
lines of the surface, the principal curvatures of S are the values for normal curvature
kn = II=I for these lines k1 = Æc; k2 = �g33a. Therefore the Gaussian curvature
Ke of the surface is

Ke = k1k2 = �Æg33ac = �g22ac:

Let us introduce the notation (16) for the curvature radius of special lines on
S and write the form !21 as (18). Then exterior di�erentiation of relations (24),
!31 = a!1, and !32�c!2 in terms of these relations and formulas (24) and (36) gives
the following relations analogous to (19{21):

��2 + �1 + �2 = ��(1=�2 + g22Ke)(39)

�c+ a2 = 0;(40)

c1 + c� = 0:(41)

If we �nd � and � from (38) and (39) and substitute them in (37) and replace
Pfa� derivatives by partial ones, we obtain

(41) Æavv + uu = ��
�
1

�2
+ g22Ke

�


analogous to (26).

Let the surface S be of constant Gaussian curvature Ke = �1m
2 (�1 = �1).

Then the relation (41) is reduced to

(42) Æ��1g33m
2vv + uu = ��(1=�2 + g33�1m

2):

In the case of the space S1;3 for a surface S with Gaussian curvature Ke =
�m2 < 0, we set "1 = �1, x = v=m, t = u. Then the equation (41) is reduced to

(43) xx � tt = (1=�2 �m2);
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that is, a KGE of the form (1). Note, that for Ke = �m2 = 1=�2 = �Ks the right-
hand side of (43) is equal to 0, and the surfaces in S1;3 with Gaussian curvature
Ke = �Ks = �1=�2 are analogous to Cli�ord surfaces in S3.

In the case of the space H1;3 for a surface S with Ke = m2 > 0, we set �1 = 1,
x = v=m, t = u and obtain a KGE

(44) xx � tt = (1=�2 +m2):

In H1;3 also the surfaces with Ke = �Ks and K = Ks +Ke = 0, analogous
to Cli�ord surfaces in S3, are possible.

In the case of S1;301 for a spacelike surface S (g22 = 1, g33 = �1) with Ke =
m2 < 0, we set �1 = �1, x = v=m, T = u and for a timelike surface S (g22 = �1,
g33 = 1) with Ke = m2 > 0 we set �1 = 1, x = v=m, t = u and for both these

surfaces we obtain a KGE (44). In S1;301 spacelike surfaces with Ke = �Ks and
K = Ks +Ke = 0, analogous to Cli�ord surfaces in S3, are possible.

In the case of H1;3
01 for a spacelike surface S (g22 = �1, g33 = 1) with Ke =

�m2 < 0 we set �1 = �1, x = v=m, t = u and for a timelike surface S (g22 = 1,
g33 = �1) with Ke = m2 > 0 we set �1 = 1, x = v=m, t = u and for both cases we

obtain a KGE (42). In H1;3
01 timelike surfaces withKe = �Ks andK = Ks+Ke = 0

analogous to Cli�ord surfaces in S3 are possible.

5. Surfaces of constant curvature in isotropic, pseudoisotropic, and

ag spaces. In the co-Euclidean and copseudo-Euclidean spaces (R3)� and (R3
1)

�

dual to R3 and R3
1, respectively, in the isotropic and pseudoisotropic spaces I3 and

I31 which can be de�ned as aÆne space E3 whose plane at in�nity is endowed with
the geometry of the planes (R2)� and (R2

1)
� dual to R2 and R2

1, respectively, and
in the ag space F 3 which can be de�ned as E3 whose plane at in�nity is endowed
with the geometry of the plane �2, all surfaces are isometric to the planes of these
spaces (therefore, in I3 regarded as an isotropic hyperplane in R4

1, its intersection
with the sheets of a hypersphere of imaginary radius isometric to H3, which can
interpreted as horospheres in H3, are isometric to the plane R2, see [7, pp. 156{
158]); that is, all surfaces of these spaces are surfaces of constant curvature; the
spaces I3, I31 , and F 3 are cases of the isotropic spaces In, pseudoisotropic spaces
Ini , and ag spaces Fn (see [7, pp. 297{312]).
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