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Abstract. The properties of Riemannian manifolds admitting a semi-
symmetric metric connection were studied by many authors ([1], [2], [3], [4], [5],
[6]). In [4] an expression of the curvature tensor of a manifold was obtained under
assumption that the manifold admits a semi-symmetric metric connection with van-
ishing curvature tensor and recurrent torsion tensor. Also in [7] Prvanovi�c and Pu�si�c
obtained an expression for curvature tensor of a Riemannian manifold, locally de-
composable Riemannian space and the K�ahler space which admits a semi-symmetric
metric connection ~r with vanishing curvature tensor and torsion tensor Th

1m satis-

fying ~rk ~rjT
h
1m �

~rj ~rkT
h
1m = 0.

We study a type of semi-symmetric metric connection ~r satisfying ~R(X;Y )T

= 0 and !( ~R(X; Y )Z) = 0, where T is the torsion tensor of the semi-symmetric

connection, ~R is the curvature tensor corresponding to ~r and ! is the associated
1-form of T .

0. Introduction. Let (Mn; g) be an n-dimensional Riemannian manifold

with Levi-Civita connection r. A linear connection ~r on (Mn; g) is said to be a

semi-symmetric metric connection if the torsion tensor T of the connection ~r and
the metric tensor g of the manifold satisfy the following conditions:

(0.1) T (X;Y ) = !(Y )X � !(X)Y

for any vector �elds X , Y where ! is a 1-form associated with the torsion tensor
of the connection ~r and

( ~rZg)(X;Y ) = 0

Then we have [1] for any vector �elds X , Y , Z

~rXY = rXY + !(Y )X � g(X;Y )�
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where

(0.4) g(X; �) = !(X);

the 1-form ! and the vector �eld � are usually called 1-form and vector �eld asso-
ciated with torsion tensor T and

( ~rX!)(Y ) = (rX!)(Y )� !(X)!(Y ) + !(�)g(X;Y )

Also, we have [1]

(0.6) ~R(X;Y )Z = R(X;Y )Z � �(Y; Z)X + �(X;Z)Y � g(Y; Z)AX + g(X;Z)AY

where

(0.7) �(Y; Z) = g(AY;Z) = (rY !)(Z)� !(Y )!(Z) +
1

2
!(�)g(Y; Z);

~R and R are respective curvature tensor for the connections ~r and r, A being a
(1� 1) tensor �eld.

Now, let us suppose that the connection (1) satis�es the following conditions:

~R(X;Y )T = 0(0.8)

!( ~R(X;Y )Z) = 0(0.9)

where ~R(X;Y ) is considered as a derivation of the tensor algebra at each point of
the manifold for tangent vectors X , Y .

1. Expression for the curvature tensor of the semi-symmetric met-

ric connection. The condition (0.8) gives

(1.1) ~R(X;Y )T (U; V )� T ( ~R(X;Y )U; V )

� T (U; ~R(X;Y )V )� ( ~rT (X;Y )T )(U; V ) = 0:

Now

(1.2)

( ~rT (X;Y )T )(U; V ) = ( ~r!(Y )X�!(X)Y T )(U; V )

= !(Y )( ~rXT )(U; V )� !(X)( ~rY T )(U; V )

= !(Y )[(rX!)(V )U � (rX!)(U)V � !(�)fg(X;U)V � g(X;V )Ug]

� !(X)[(rY !)(V )U � (rY !)(U)V � !(�)fg(Y; U)V � g(Y; V )Ug]

From (1.1) and (1.2) we get

(1.3) !( ~R(X;Y )U)V � !( ~R(X;Y )V )U

� !(Y )[(rX!)(V )U � (rX!)(U)V ] + !(X)[(rY !)(V )U � (rY !)(U)V ]

+ !(�)[!(Y )fg(X;U)V � g(X;V )Ug � !(X)fg(Y; U)V � g(Y; V )Ug] = 0
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Now using the condition (0.9) it follows from (1.3)

(1.4) !(Y )[(rX!)(V )U � (rX!)(U)V ]� !(X)[(rY !)(V )U � (rY !)(U)V ]

� !(�)[!(Y )fg(X;U)V � g(X;V )Ug � !(X)fg(Y; U)V � g(Y; V )Ug] = 0

Contracting U in (1.4) we obtain

(1.5) !(X)(rY !)(V )� !(Y )(rX!)(V ) + !(�)[!(X)g(Y; V )� !(Y )g(X;V )] = 0

Putting Y = � in (1.5) we get

(1.6) (rX!)(Z) =
!(X)

!(�)
(r�!)(Z)� g(X;Z)!(�) + !(X)!(Z)

where we take V = Z. From (0.7) and (1.6) we get

�(X;Z) =
!(X)

!(�)
(r�!)(Z)�

1

2
!(�)g(X;Z)

Now putting the value of �(X;Z) in (0.6) we obtain

(1.8)

0 ~R(X;Y; Z; U) = 0R(X;Y; Z; U)�
1

!(�)
[!(Y )g(X;U)(r�!)(Z)

� !(X)g(Y; U)(r�!)(Z) + !(X)g(Y; Z)(r�!)(U)

� !(Y )g(X;Z)(r�!)(U)] + !(�)[g(Y; Z)g(X;U)� g(X;Z)g(Y; U)]

where 0 ~R(X;Y; Z; U) = g( ~R(X;Y )Z;U). Thus we can state:

Theorem 1. Let a Riemannian manifold admits a semi-symmetric metric
connection (0:1) satisfying (0:8) and (0:9). Then the curvature tensor of the semi-

symmetric metric connection has the form (1:8). If, in particular, ~R = 0, then
from (0:6) we get

0R(X;Y; Z; U)

= �(Y; Z)g(X;U)� �(X;Z)g(Y; U) + g(Y; Z)�(X;U)� g(X;Z)�(Y; U)

Now putting X = U = ei in the above expression where feig is an orthonor-
mal basis of the tangent space at any point and taking summation over i � i � n,
we get

S(Y; Z) = (n� 1)�(Y; Z) +
X

i

�(ei; ei)g(Y; Z)� �(Y; Z)

= (n� 2)�(Y; Z) +
X

i

�(ei; ei)g(Y; Z):
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Since S is symmetric, we get �(Y; Z) = �(Z; Y ). Hence from (0.7) we get
(rY !)(Z) = (rZ!)(Y ). Therefore (r�!)(Y ) = (rY !)(�). From (1.6) we have

(1.10) (rX!)(�) = �!(X)

where � = (r�!)(�)=!(�). Now taking ~R = 0 and using (1.10) in (1.8) we get

(1.11)

0R(X;Y; Z; U) = �[g(X;U)!(Y )!(Z)� g(Y; U)!(X)!(Z)

+ g(Y; Z)!(X)!(U)� g(X;Z)w(Y )!(U)]

+ !(�)[g(X;Z)g(Y; U)� g(Y; Z)g(X;U)]

where

� =
(r�!)(�)

!(�)!(�)

The expression (1.11) has been obtained by Prvanovi�c and Pu�si�c in [7].

According to Smaranda [8] a Riemannian manifold whose curvature tensor
0R is of the form (1.11) is said to be of almost constant curvature. In view of this
we can state the following:

Theorem 2. If a Riemannian manifold admits a semi-symmetric metric con-
nection (0:1) whose curvature tensor vanishes and satis�es the condition (0:8), then
the manifold is of almost constant curvature.

Remarks. The conditions (0.8) and (0.9) of our paper are weaker than the
conditions of [4] and also of [7], since it is known that in a Riemannian manifold

( ~rXT )(Y; Z) = B(X)T (Y; Z) where B is a 1-form, implies ~R(X;Y ):T = 0 and
~R = 0 implies !( ~R(X;Y )Z) = 0, but the converse is not necessarily true in general.

From (1.8) it can be easily seen that 0 ~R satis�es the properties

0 ~R(X;Y; Z; U) = �0 ~R(Y;X;Z; U) and 0 ~R(X;Y; Z; U) = �0 ~R(X;Y; U; Z)

Also we get

0 ~R(X;Y; Z; U) = 0 ~R(Z;U;X; Y );(1.12)

0 ~R(X;Y; Z; U) + 0 ~R(Y; Z;X;U) + 0 ~R(Z;X; Y; U) = 0(1.13)

if and only if

(1.14) !(Y )(r�!)(Z) = !(Z)(r�!)(Y )

2. Symmetry condition of the Ricci tensor of ~r. In this section nec-
essary and suÆcient conditions for the symmetry of the Ricci tensor of the semi-
symmetric metric connection are obtained by proving the following:
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Theorem 3. A necessary and suÆcient condition for the Ricci tensor of the
semi-symmetric metric connection ~r to be symmetric is that the (0:4)-curvature

tensor 0 ~R of the connection ~r satis�es either of the following two conditions:

(i) 0 ~R(X;Y; Z; U) = 0 ~R(Z;U;X; Y )

(ii) 0 ~R(X;Y; Z; U) + 0 ~R(Y; Z;X;U) + 0 ~R(Z;X; Y; U) = 0

Proof. Let S and ~S denote the Ricci tensors of the Levi-Civita connection
and the semi-symmetric connection respectively. Putting X = U = ei in (1.8) we
get

(2.1) ~S(Y; Z) =

S(Y; Z)� a(n� 2)!(Y )(r�!)(Z)� ag(Y; Z)(r�!)(�) + (n� 1)!(�)g(Y; Z)

where a = 1=!(�). From (2.1) it follows that ~S(Y; Z) = ~S(Z; Y ) if and only if
!(Y )(r�!)(Z) = !(z)(r�!)(Y ). But from (1.12), (1.13) and (1.14) we see that

(1.12) and (1.13) hold if and only if (1.14) holds. Hence ~S is symmetric if and only
if either of the two conditions (1.12) and (1.13) hold. This completes the proof.

Using the above theorem we now prove the following:

Theorem 4. If a Riemannian manifold (Mn; g) admits a semi-symmetric

metric connection ~r satisfying (0:8) and (0:9) whose curvature tensor is recurrent
with associated 1-form C and symmetric Ricci tensor, then either C(�) = 2!(�) or
~R(X;Y )Z = 0.

Proof. Since !( ~R(X;Y )Z) = 0, we get

(2.2) ~R(X;Y; Z; �) = 0

Also since ~S is symmetric, we get from Theorem 3

(2.3) 0 ~R(X;Y; Z; U) = 0 ~R(Z;U;X; Y )

Putting U = � in (2.3) and using (2.2) we get 0 ~R(Z; �;X; Y ) = 0, that is

(2.4) ~R(Z; �)X = 0

Applying the Bianchi Second identity for the curvature tensor ~R of the connection
~r we obtain

(2.5) ~R(T (U;X); Y )Z + ~R(T; (X;Y ); U)Z + ~R(T (Y; U); X)Z

+ ( ~rU
~R)(X;Y )Z + ( ~rX

~R)(Y; U)Z + ( ~rY
~R)(U;X)Z = 0

Since the curvature tensor is recurrent with associated 1-form C, then

(2.6) ( ~rX
~R)(Y; Z)U = C(X) ~R(Y; Z)U
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Now using (0.1) and (2.6) in (2.5), we �nd that
(2.7)

[C(U)�2!(U)] ~R(X;Y )Z+[C(Y )�2!(Y )] ~R(U;X)Z+[C(X)�2!(X)] ~R(Y; U)Z = 0

for the vector �elds X , Y , Z and U .

Putting U = � in (2.7) and using (2.4) we �nd

[C(�)� 2!(�)] ~R(X;Y )Z = 0

Thus either C(�) = 2!(�) or ~R(X;Y )Z = 0. This completes the proof of the
theorem.

If, in particular, the 1-form C = 0, then it follows from (2.7) that ~R(X;Y )Z =
0 or !(�) = 0. If !(�) = 0, then from (0.4) it follows that � = 0, since g is positive

de�nite. But � = 0 would mean that ~r = r and hence ~r would not be semi-
symmetric. Hence ~R(X;Y )Z = 0. But it is known [1] that if a Riemannian manifold
(Mn; g) (n > 3) admits a semi-symmetric metric connection whose curvature tensor
vanishes, then the manifold is conformally at. Hence we can state the following
corollary.

Corollary. If a Riemannian manifold (Mn; g) (n > 3) admits a semi-
symmetric metric connection satisfying (0:8) and (0:9) whose curvature tensor is
covariant constant and Ricci tensor is symmetric, then the manifold is conformally
at.

3. Existence of a torse-forming vector �eld. In this section we consider
a Riemannian manifold (Mn; g) (n > 3) that admits a semi-symmetric metric

connection ~r whose Ricci tensor is symmetric and satis�es the conditions (0.8)
and (0.9). It is shown that if a Riemannian manifold admits such a connection,
then the manifold admits a torse-forming vector �eld [9].

If the connection (0.1) satis�es the conditions (0.8) and (0.9), then we get
from (1.6)

(3.1) (rX!)(Y ) =
!(X)

!(�)
(r�!)(Y )� g(X;Y )!(�) + !(X)!(Y )

Since ~S is symmetric we get from Theorem 3

(3.2) !(Y )(r�!)(X) = !(X)(r�!)(Y )

Putting Y = � in (3.2) we get

(3.3) (r�!)(X) = �!(X)

where � = (r�!)(�)=!(�). Using (3.3) in (3.1) we obtain

(rX!)(Y ) = (� + 1)!(X)!(Y )� g(X;Y )!(�)
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Hence (rX!)(Y ) = f!(X)!(Y ) + hg(X;Y ) where f and h are scalars. Thus we
get the following:

Theorem 5. If a Riemannian manifold admits a semi-symmetric metric con-
nection ~r with symmetric Ricci tensor and satis�es the conditions (8) and (9), then
the manifold always admits a torse-forming vector �eld.
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