PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 61 (75), 1997, 90-96

ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON A RIEMANNIAN MANIFOLD

U.C. De and S.C. Biswas

Communicated by Mileva Prvanović

Abstract. The properties of Riemannian manifolds admitting a semisymmetric metric connection were studied by many authors ([1], [2], [3], [4], [5], [6]). In [4] an expression of the curvature tensor of a manifold was obtained under assumption that the manifold admits a semi-symmetric metric connection with vanishing curvature tensor and recurrent torsion tensor. Also in [7] Prvanović and Pušić obtained an expression for curvature tensor of a Riemannian manifold, locally decomposable Riemannian space and the Kähler space which admits a semi-symmetric metric connection $\tilde{\nabla}$ with vanishing curvature tensor and torsion tensor T_{1m}^h satisfying $\tilde{\nabla}_k \tilde{\nabla}_j T_{1m}^h - \tilde{\nabla}_j \tilde{\nabla}_k T_{1m}^h = 0$.

We study a type of semi-symmetric metric connection $\tilde{\nabla}$ satisfying $\tilde{R}(X,Y)T = 0$ and $\omega(\tilde{R}(X,Y)Z) = 0$, where T is the torsion tensor of the semi-symmetric connection, \tilde{R} is the curvature tensor corresponding to $\tilde{\nabla}$ and ω is the associated 1-form of T.

0. Introduction. Let (M^n, g) be an *n*-dimensional Riemannian manifold with Levi-Civita connection ∇ . A linear connection $\tilde{\nabla}$ on (M^n, g) is said to be a semi-symmetric metric connection if the torsion tensor T of the connection $\tilde{\nabla}$ and the metric tensor g of the manifold satisfy the following conditions:

(0.1)
$$T(X,Y) = \omega(Y)X - \omega(X)Y$$

for any vector fields $X,\,Y$ where ω is a 1-form associated with the torsion tensor of the connection $\tilde{\nabla}$ and

$$(\tilde{\nabla}_Z g)(X, Y) = 0$$

Then we have $[\mathbf{1}]$ for any vector fields X, Y, Z

$$\tilde{\nabla}_X Y = \nabla_X Y + \omega(Y)X - g(X,Y)\rho$$

AMS Subject Classification (199?): Primary 53C05.

where

(0.4)
$$g(X,\rho) = \omega(X),$$

the 1-form ω and the vector field ρ are usually called 1-form and vector field associated with torsion tensor T and

$$(\tilde{\nabla}_X \omega)(Y) = (\nabla_X \omega)(Y) - \omega(X)\omega(Y) + \omega(\rho)g(X,Y)$$

Also, we have [1]

$$(0.6) \quad \tilde{R}(X,Y)Z = R(X,Y)Z - \alpha(Y,Z)X + \alpha(X,Z)Y - g(Y,Z)AX + g(X,Z)AY$$

where

(0.7)
$$\alpha(Y,Z) = g(AY,Z) = (\nabla_Y \omega)(Z) - \omega(Y)\omega(Z) + \frac{1}{2}\omega(\rho)g(Y,Z),$$

 \tilde{R} and R are respective curvature tensor for the connections $\tilde{\nabla}$ and ∇ , A being a (1-1) tensor field.

Now, let us suppose that the connection (1) satisfies the following conditions:

(0.9)
$$\omega(\tilde{R}(X,Y)Z) = 0$$

where $\tilde{R}(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y.

1. Expression for the curvature tensor of the semi-symmetric metric connection. The condition (0.8) gives

(1.1)
$$\hat{R}(X,Y)T(U,V) - T(\hat{R}(X,Y)U,V) - T(U,\tilde{R}(X,Y)V) - (\tilde{\nabla}_{T(X,Y)}T)(U,V) = 0.$$

Now

(1.2)

$$\begin{aligned}
(\tilde{\nabla}_{T(X,Y)}T)(U,V) &= (\tilde{\nabla}_{\omega(Y)X-\omega(X)Y}T)(U,V) \\
&= \omega(Y)(\tilde{\nabla}_XT)(U,V) - \omega(X)(\tilde{\nabla}_YT)(U,V) \\
&= \omega(Y)[(\nabla_X\omega)(V)U - (\nabla_X\omega)(U)V - \omega(\rho)\{g(X,U)V - g(X,V)U\}] \\
&- \omega(X)[(\nabla_Y\omega)(V)U - (\nabla_Y\omega)(U)V - \omega(\rho)\{g(Y,U)V - g(Y,V)U\}]
\end{aligned}$$

From (1.1) and (1.2) we get

(1.3)
$$\omega(\tilde{R}(X,Y)U)V - \omega(\tilde{R}(X,Y)V)U - \omega(Y)[(\nabla_X \omega)(V)U - (\nabla_X \omega)(U)V] + \omega(X)[(\nabla_Y \omega)(V)U - (\nabla_Y \omega)(U)V] + \omega(\rho)[\omega(Y)\{g(X,U)V - g(X,V)U\} - \omega(X)\{g(Y,U)V - g(Y,V)U\}] = 0$$

Now using the condition (0.9) it follows from (1.3)

(1.4)
$$\omega(Y)[(\nabla_X\omega)(V)U - (\nabla_X\omega)(U)V] - \omega(X)[(\nabla_Y\omega)(V)U - (\nabla_Y\omega)(U)V] - \omega(\rho)[\omega(Y)\{g(X,U)V - g(X,V)U\} - \omega(X)\{g(Y,U)V - g(Y,V)U\}] = 0$$

Contracting U in (1.4) we obtain

(1.5)
$$\omega(X)(\nabla_Y\omega)(V) - \omega(Y)(\nabla_X\omega)(V) + \omega(\rho)[\omega(X)g(Y,V) - \omega(Y)g(X,V)] = 0$$

Putting $Y = \rho$ in (1.5) we get

(1.6)
$$(\nabla_X \omega)(Z) = \frac{\omega(X)}{\omega(\rho)} (\nabla_\rho \omega)(Z) - g(X, Z)\omega(\rho) + \omega(X)\omega(Z)$$

where we take V = Z. From (0.7) and (1.6) we get

$$\alpha(X,Z) = \frac{\omega(X)}{\omega(\rho)} (\nabla_{\rho}\omega)(Z) - \frac{1}{2}\omega(\rho)g(X,Z)$$

Now putting the value of $\alpha(X, Z)$ in (0.6) we obtain

(1.8)

$${}^{\prime}\tilde{R}(X,Y,Z,U) = {}^{\prime}R(X,Y,Z,U) - \frac{1}{\omega(\rho)} [\omega(Y)g(X,U)(\nabla_{\rho}\omega)(Z) \\ - \omega(X)g(Y,U)(\nabla_{\rho}\omega)(Z) + \omega(X)g(Y,Z)(\nabla_{\rho}\omega)(U) \\ - \omega(Y)g(X,Z)(\nabla_{\rho}\omega)(U)] + \omega(\rho)[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)]$$

where ${}^{\prime}\tilde{R}(X,Y,Z,U) = g(\tilde{R}(X,Y)Z,U)$. Thus we can state:

THEOREM 1. Let a Riemannian manifold admits a semi-symmetric metric connection (0.1) satisfying (0.8) and (0.9). Then the curvature tensor of the semi-symmetric metric connection has the form (1.8). If, in particular, $\tilde{R} = 0$, then from (0.6) we get

$${}^{\prime}R(X,Y,Z,U)$$

= $\alpha(Y,Z)g(X,U) - \alpha(X,Z)g(Y,U) + g(Y,Z)\alpha(X,U) - g(X,Z)\alpha(Y,U)$

Now putting $X = U = e_i$ in the above expression where $\{e_i\}$ is an orthonormal basis of the tangent space at any point and taking summation over $i \leq i \leq n$, we get

$$S(Y,Z) = (n-1)\alpha(Y,Z) + \sum_{i} \alpha(e_i, e_i)g(Y,Z) - \alpha(Y,Z)$$
$$= (n-2)\alpha(Y,Z) + \sum_{i} \alpha(e_i, e_i)g(Y,Z).$$

92

Since S is symmetric, we get $\alpha(Y, Z) = \alpha(Z, Y)$. Hence from (0.7) we get $(\nabla_Y \omega)(Z) = (\nabla_Z \omega)(Y)$. Therefore $(\nabla_\rho \omega)(Y) = (\nabla_Y \omega)(\rho)$. From (1.6) we have

(1.10)
$$(\nabla_X \omega)(\rho) = \beta \omega(X)$$

where $\beta = (\nabla_{\rho}\omega)(\rho)/\omega(\rho)$. Now taking $\tilde{R} = 0$ and using (1.10) in (1.8) we get

where

$$\nu = \frac{(\nabla_{\rho}\omega)(\rho)}{\omega(\rho)\omega(\rho)}$$

The expression (1.11) has been obtained by Prvanović and Pušić in [7].

According to Smaranda [8] a Riemannian manifold whose curvature tensor R is of the form (1.11) is said to be of almost constant curvature. In view of this we can state the following:

THEOREM 2. If a Riemannian manifold admits a semi-symmetric metric connection (0.1) whose curvature tensor vanishes and satisfies the condition (0.8), then the manifold is of almost constant curvature.

Remarks. The conditions (0.8) and (0.9) of our paper are weaker than the conditions of [4] and also of [7], since it is known that in a Riemannian manifold $(\tilde{\nabla}_X T)(Y, Z) = B(X)T(Y, Z)$ where B is a 1-form, implies $\tilde{R}(X, Y).T = 0$ and $\tilde{R} = 0$ implies $\omega(\tilde{R}(X, Y)Z) = 0$, but the converse is not necessarily true in general. From (1.8) it can be easily seen that ' \tilde{R} satisfies the properties

$${}^{\prime}\tilde{R}(X,Y,Z,U) = -{}^{\prime}\tilde{R}(Y,X,Z,U)$$
 and ${}^{\prime}\tilde{R}(X,Y,Z,U) = -{}^{\prime}\tilde{R}(X,Y,U,Z)$

Also we get

(1.12)
$$\hspace{1.1cm} {}^{\prime} \tilde{R}(X,Y,Z,U) = {}^{\prime} \tilde{R}(Z,U,X,Y),$$

(1.13)
$${}'\tilde{R}(X,Y,Z,U) + {}'\tilde{R}(Y,Z,X,U) + {}'\tilde{R}(Z,X,Y,U) = 0$$

if and only if

(1.14)
$$\omega(Y)(\nabla_{\rho}\omega)(Z) = \omega(Z)(\nabla_{\rho}\omega)(Y)$$

2. Symmetry condition of the Ricci tensor of $\tilde{\nabla}$. In this section necessary and sufficient conditions for the symmetry of the Ricci tensor of the semi-symmetric metric connection are obtained by proving the following:

THEOREM 3. A necessary and sufficient condition for the Ricci tensor of the semi-symmetric metric connection $\tilde{\nabla}$ to be symmetric is that the (0.4)-curvature tensor ' \tilde{R} of the connection $\tilde{\nabla}$ satisfies either of the following two conditions:

- (i) ${}^{\prime}\tilde{R}(X, Y, Z, U) = {}^{\prime}\tilde{R}(Z, U, X, Y)$
- (ii) ${}^{\prime}\tilde{R}(X, Y, Z, U) + {}^{\prime}\tilde{R}(Y, Z, X, U) + {}^{\prime}\tilde{R}(Z, X, Y, U) = 0$

Proof. Let S and \tilde{S} denote the Ricci tensors of the Levi-Civita connection and the semi-symmetric connection respectively. Putting $X = U = e_i$ in (1.8) we get

(2.1) $\tilde{S}(Y,Z) = S(Y,Z) - a(n-2)\omega(Y)(\nabla_{\rho}\omega)(Z) - ag(Y,Z)(\nabla_{\rho}\omega)(\rho) + (n-1)\omega(\rho)g(Y,Z)$

where $a = 1/\omega(\rho)$. From (2.1) it follows that $\tilde{S}(Y,Z) = \tilde{S}(Z,Y)$ if and only if $\omega(Y)(\nabla_{\rho}\omega)(Z) = \omega(z)(\nabla_{\rho}\omega)(Y)$. But from (1.12), (1.13) and (1.14) we see that (1.12) and (1.13) hold if and only if (1.14) holds. Hence \tilde{S} is symmetric if and only if either of the two conditions (1.12) and (1.13) hold. This completes the proof.

Using the above theorem we now prove the following:

THEOREM 4. If a Riemannian manifold (M^n, g) admits a semi-symmetric metric connection $\tilde{\nabla}$ satisfying (0.8) and (0.9) whose curvature tensor is recurrent with associated 1-form C and symmetric Ricci tensor, then either $C(\rho) = 2\omega(\rho)$ or $\tilde{R}(X, Y)Z = 0$.

Proof. Since $\omega(\tilde{R}(X,Y)Z) = 0$, we get

Also since \tilde{S} is symmetric, we get from Theorem 3

(2.3)
$${}^{\prime}\tilde{R}(X,Y,Z,U) = {}^{\prime}\tilde{R}(Z,U,X,Y)$$

Putting $U = \rho$ in (2.3) and using (2.2) we get $\tilde{R}(Z, \rho, X, Y) = 0$, that is

$$(2.4) R(Z,\rho)X = 0$$

Applying the Bianchi Second identity for the curvature tensor \tilde{R} of the connection $\tilde{\nabla}$ we obtain

$$(2.5) \quad \tilde{R}(T(U,X),Y)Z + \tilde{R}(T,(X,Y),U)Z + \tilde{R}(T(Y,U),X)Z + (\tilde{\nabla}_U\tilde{R})(X,Y)Z + (\tilde{\nabla}_X\tilde{R})(Y,U)Z + (\tilde{\nabla}_Y\tilde{R})(U,X)Z = 0$$

Since the curvature tensor is recurrent with associated 1-form C, then

(2.6)
$$(\tilde{\nabla}_X \tilde{R})(Y, Z)U = C(X)\tilde{R}(Y, Z)U$$

Now using (0.1) and (2.6) in (2.5), we find that (2.7) $[C(U)-2\omega(U)]\tilde{R}(X,Y)Z+[C(Y)-2\omega(Y)]\tilde{R}(U,X)Z+[C(X)-2\omega(X)]\tilde{R}(Y,U)Z = 0$

for the vector fields X, Y, Z and U.

Putting $U = \rho$ in (2.7) and using (2.4) we find

$$[C(\rho) - 2\omega(\rho)]\tilde{R}(X,Y)Z = 0$$

Thus either $C(\rho) = 2\omega(\rho)$ or $\tilde{R}(X,Y)Z = 0$. This completes the proof of the theorem.

If, in particular, the 1-form C = 0, then it follows from (2.7) that $\tilde{R}(X, Y)Z = 0$ or $\omega(\rho) = 0$. If $\omega(\rho) = 0$, then from (0.4) it follows that $\rho = 0$, since g is positive definite. But $\rho = 0$ would mean that $\tilde{\nabla} = \nabla$ and hence $\tilde{\nabla}$ would not be semi-symmetric. Hence $\tilde{R}(X, Y)Z = 0$. But it is known [1] that if a Riemannian manifold (M^n, g) (n > 3) admits a semi-symmetric metric connection whose curvature tensor vanishes, then the manifold is conformally flat. Hence we can state the following corollary.

COROLLARY. If a Riemannian manifold (M^n, g) (n > 3) admits a semisymmetric metric connection satisfying (0.8) and (0.9) whose curvature tensor is covariant constant and Ricci tensor is symmetric, then the manifold is conformally flat.

3. Existence of a torse-forming vector field. In this section we consider a Riemannian manifold (M^n, g) (n > 3) that admits a semi-symmetric metric connection $\tilde{\nabla}$ whose Ricci tensor is symmetric and satisfies the conditions (0.8) and (0.9). It is shown that if a Riemannian manifold admits such a connection, then the manifold admits a torse-forming vector field [9].

If the connection (0.1) satisfies the conditions (0.8) and (0.9), then we get from (1.6)

(3.1)
$$(\nabla_X \omega)(Y) = \frac{\omega(X)}{\omega(\rho)} (\nabla_\rho \omega)(Y) - g(X, Y)\omega(\rho) + \omega(X)\omega(Y)$$

Since \tilde{S} is symmetric we get from Theorem 3

(3.2)
$$\omega(Y)(\nabla_{\rho}\omega)(X) = \omega(X)(\nabla_{\rho}\omega)(Y)$$

Putting $Y = \rho$ in (3.2) we get

(3.3)
$$(\nabla_{\rho}\omega)(X) = \beta\omega(X)$$

where $\beta = (\nabla_{\rho}\omega)(\rho)/\omega(\rho)$. Using (3.3) in (3.1) we obtain

$$(\nabla_X \omega)(Y) = (\nu + 1)\omega(X)\omega(Y) - g(X, Y)\omega(\rho)$$

De and Biswas

Hence $(\nabla_X \omega)(Y) = f\omega(X)\omega(Y) + hg(X,Y)$ where f and h are scalars. Thus we get the following:

THEOREM 5. If a Riemannian manifold admits a semi-symmetric metric connection $\tilde{\nabla}$ with symmetric Ricci tensor and satisfies the conditions (8) and (9), then the manifold always admits a torse-forming vector field.

References

- K. Yano, On semi-symmetric connection, Rev. Roumaine Math. Pure Appl. 15 (1970), 1479– 1586.
- [2] K. Yano and T. Imai, On semi-symmetric metric F-connection, Tensor 29 (1975), 134-138.
- [3] O.C. Andonie, Sur Une connexion semi-symtrique qui laisse invariant la tenseur de Bochner, Ann. Fac. Sci. Kuishawa Zaire 1 (1976), 247-253.
- M.C. Chaki and A. Konar, On a type of semi-symmetric connection on a Riemannian manifold, J. Pure Math. 1 (1981), 77-80.
- [5] M. Prvanović, Product semi-symmetric connection of the locally decompossible Riemannian space, Bull. Acad. Serbe Sci. Art. Cl. Sci. Math. Natur. 64 (1979), 17–27.
- [6] U.C. De, On a type of semi-symmetric metric connection on a Riemannian manifold, An. Ştiinţ. Univ. "Al. I. Cuza" laşi Secţ. I a Math. 38 (1991), 105-108.
- M. Prvanović and N. Pušić, On manifolds admitting some semi-symmetric metric connection, Indian J. Math. 37 (1995), 37-67.
- [8] D. Smaranda, Pseudo Riemannian recurrent manifolds with almost constant curvature, The XVIII Int. Conf. on Geometry and Topology (Oradea, 1987) 4-7, Preprint 88-2 Univ. "Babes Balyai" Cluj-Napoca, 1988. 175-180.
- [9] J.A. Schouten, Ricci Calculus, Springer-Verlag, Berlin, 1954.

Department of Mathematics University of Kalyani Kalyani 741235 West Bengal, India (Received 17 09 1996)