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ON NECESSARY CONDITIONS

IN THE CALCULUS OF VARIATIONS
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Communicated by Gradimir Milovanovi�c

Abstract. We consider weak and strong local solutions of the general isoperi-
metric problem. That problem di�ers from the classical calculus of variations in the
fact that among constraints both constraints of the equality and of the inequality
type appear. Necessary conditions (for both types of local solutions) are obtained,
with no assumptions on integrand's phase variable. In the case of the simplest prob-
lem of calculus of variations necessary condition for x̂(�) to be the weak local solution
reduces here to the following equation

d

dt
[L̂ _x(t) _̂x(t)(t) � L̂(t)] = L̂t(t); t 2 [t0; t1];

and necessary condition for x̂(�) to be the strong local solution reduces here to the
above di�erential equation together with the Weierstrass inequality.

1. Formulation of the problems and statements of theorems

1.1. General isoperimetric problem with weak local extreme. We
shall assume that [t0; t1] is a closed interval of the real line, x0 and x1 are two
points from Rn, V is an open set in R � Rn � Rn and Li(t; x; _x), i = 0; 1; . . . ;m,
are continuous integrands de�ned on V . We de�ne integral functionals on the set

D = fx(�) 2 C1([t0; t1]; R
n)j�1(x(�)) � V g;

where
�1(x(�)) = f(t; x(t); _x(t))jt 2 [t0; t1]g

is the extended graph of the function x(�), in the following way:

Ii(x(�)) =

Z t1

t0

Li(t; x(t); _x(t))dt; i = 0; 1; . . . ;m:
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The General isoperimetric problem is the following one:

I0(x(�)) ! inf; Ii(x(�)) � 0; i = 1; . . . ; k;(P )

Ii(x(�)) = 0; i = k + 1; . . . ;m;

x(t0) = x0; x(t1) = x1:

An admissible function x̂(�) is a weak local solution of the problem (P ), if
there exists an � > 0; such that I0(x(�)) � I0(x̂(�)) for each admissible function
x(�), satisfying kx(�)� x̂(�)kC1 < �.

Theorem 1. Suppose integrands Li, i = 0; 1; . . . ;m, are continuous and

have continuous partial derivatives in t and _x. If x̂(�) is weak local solution of the

problem (P ), then there exist Lagrange multipliers �̂i 2 R, i = 0; 1; . . . ;m, not all

of them equal to zero, such that

�̂i � 0; i = 0; 1; . . . ; k;

�̂iIi(x̂(�)) = 0; i = 1; . . . ; k;

the function t! [L̂ _xx(t); _̂x(t)� L̂(t)] is di�erentiable on [t0; t1], and

d

dt
[L̂ _x(t) _̂x(t)� L̂(t)] = �L̂t(t); t 2 [t0; t1];

where L(t; x; _x) =
mP
i=0

�̂iLi(t; x; _x).

In the sequel we shall use the following abbreviations:

L̂(t) = L(t; x̂(t); _̂x(t)); L̂t(t) = Lt(t; x̂(t); _̂x(t)); L̂ _x(t) = L _x(t; x̂(t); _̂x(t)); . . .

1.2. General isoperimetric problem with strong local extreme. We
shall assume that [t0; t1] is an interval of the real line, x0 and x1 are points from
Rn, G is an open set in R � Rn, K is a cone in Rn, U � K, and Li(t; x; _x),
i = 0; 1; . . . ;m, are continuous integrands de�ned on G �K. We de�ne integral

functionals on the set

�D = fx(�) 2 �C1([t0; t1]; R
n)j�(x(�)) � G; (8t 2 [t0; t1]) _x�(t); _x+(t) 2 Kg

where �C1([t0; t1]; R
n) is the set of piecewise smooth functions from [t0; t1] to Rn

and
�(x(�)) = f(t; x(t))jt 2 [t0; t1]g

is the graph of the function x(�), in the following way:

Ii(x(�)) =

Z t1

t0

Li(t; x(t); _x(t))dt; i = 0; 1; . . . ;m:
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We shall study the following variant of isoperimetric problem

I0(x(�)) ! inf; Ii(x(�)) � 0; i = 1; . . . ; k;( �P )

Ii(x(�)) = 0; i = k + 1; . . . ;m;

x(t0) = x0; x(t1) = x1;

_x(t) 2 U; t 2 T;

where T is the set of points in which x(�) is di�erentiable.

The admissible function x̂(�) is the strong local solution of the problem ( �P ), if
� > 0 exists, such that for every admissible function x(�), for which kx(�)� x̂(�)kC <
�, we have I0(x(�)) � I0(x̂(�)).

Theorem 2. Suppose integrands Li, i = 0; 1; . . . ;m, are continuous and have

continuous partial derivatives in t. If x̂(�) is strong local solution of the problem

( �P ), then there exist Lagrange multipliers �̂i 2 R, i = 0; 1; . . . ;m, not all of them

equal to zero, and piecewise continuous function r̂(�): [t0; t1]! R, such that

�̂i � 0; i = 0; 1; . . . ; k;

�̂iIi(x̂(�)) = 0; i = 1; . . . ; k;

_̂r(t) = L̂t(t); t 2 T;

L(t; x̂(t); _̂x(t)=w)w � L(t; x̂(t); _̂x(t))� r̂(t)(w � 1) � 0; t 2 T; w 2 W (t);

where T � [t0; t1] is the set of points in which x̂(�) is di�erentiable,

L(t; x; _x) =

mX
i=0

�̂iLi(t; x; _x);

W (t) = cl
[
Æ>0

\
t<s<t+Æ

fw > 0j _̂x(s)=w 2 Ug:

2. Comments

2.1. The equation

(E2)
d

dt
[L _x(t; x(t); _x(t)) _x(t)� L(t; x(t); _x(t))] = �Lt(t; x(t); _x(t))

is sometimes called the second Euler equation, and we shall use that name further
on.

2.2. In many books on calculus of variations the validity of the equation

d

dt
[L̂ _x(t) _̂x(t)� L̂(t)] = �L̂t(t); t 2 [t0; t1];
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is proved to be a necessary condition for weak local extreme in the simplest prob-
lem of the calculus of variations, case n = 1, providing that integrand L is twice
continuously di�erentiable and regular (L _x _x(t; x; _x) > 0). Under these assumptions
all extremals are twice continuously di�erentiable. It is not diÆcult to prove that
for every function x(�) 2 C2[t0; t1] the following equality holds

d

dt
[L _x(t; x(t); _x(t)) _x(t)� L(t; x(t); _x(t))] + Lt(t; x(t); _x(t))

= _x(t)

�
d

dt
L _x(t; x(t); _x(t))� Lx(t; x(t); _x(t))

�
; t 2 [t0; t1];

and mentioned necessary condition immediately follows from the above equality
and Euler condition.

From the equality above it is possible to obtain a sharper result: If the inte-
grand L is twice continuously di�erentiable then the second Euler equation (E2) is
equivalent to the (�rst) Euler equation

d

dt
L _x(t; x(t); _x(t)) = Lx(t; x(t); _x(t));

on the class of functions x(�) 2 C2[t0; t1] satisfying _x(t) 6= 0, t 2 [t0; t1].

2.3. The Pontryagin function H :V �Rn� �Rm+1� ! R in (P ) is given by

H(t; x; _x; p; �) = p _x�

mX
i=0

�iLi(t; x; _x):

Since p̂(t) = L̂ _x(t), then

Ĥ(t) = L̂ _x(t) _̂x(t)� L̂(t); Ĥt(t) = �L̂t(t):

The second Euler equation can be written in the form:

d

dt
Ĥ(t) = Ĥt(t); t 2 [t0; t1]:

It was proved in [2] that, assuming smoothness of all relevant functions, the pre-
ceding equation could be added to the Lagrange principle of the Lagrange problem
[1, x4.1]. When we apply that result from [2] to general isoperimetric problem
introduced in 1.1, we get the following proposition:

Proposition. Suppose integrands Li, i = 0; 1; . . . ;m, are continuously dif-

ferentiable. If x̂(�) is weak local solution of the problem (P ), then there exist La-

grange multipliers �̂i 2 R, i = 0; 1; . . . ;m, not all of them equal to zero, such

that

�̂i � 0; i = 0; 1; . . . ; k;

�̂iIi(x̂(�)) = 0; i = 1; . . . ; k;

the functions t! L̂ _x(t) and t! [L̂ _x(t) _̂x(t)� L̂(t)] are di�erentiable on [t0; t1], and
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d

dt
L̂ _x(t) = L̂x(t); t 2 [t0; t1];

d

dt
[L̂ _x(t) _̂x(t)� L̂(t)] = �L̂t(t); t 2 [t0; t1]:

One of our aims is to prove that the second Euler equation is the necessary
condition for weak local extremum, without the assumption that integrands Li
have partial derivatives in x { since those partial derivatives do not appear in the
second Euler equation. General isoperimetric problem is the most general problem
for which we succeeded to prove such a thing.

2.4. Suppose in ( �P ) integrands Li, i = 0; 1; . . . ;m are continuous and have
continuous partial derivatives in t and _x. If 1 2 intW (t), then in Theorem 2 we
have

�r̂(t) = L̂t(t) _̂x(t)� L̂(t); t 2 T:

Consequently, from _̂r(t) = L̂t(t); t 2 T , we get

d

dt

h
L̂ _x(t) _̂x(t)� L̂(t)

i
= �L̂t(t); t 2 T:

If, additionally, we assume that n = 1 and K = U = (0;+1), then the inequality

L(t; x̂(t); _̂x(t)=w)w � L(t; x̂(t); _̂x(t))� r̂(t)(w � 1) � 0; t 2 T; w 2W (t)

is equivalent to the Weierstrass inequality

L(t; x̂(t); v) � L(t; x̂(t); _̂x(t))� L _x(t; x̂(t); _̂x(t))(v � _̂x(t)) � 0; t 2 T; v > 0:

Note that the expression de�ning Weierstrass function contains partial deriv-
ative in _x of the integrand L, and does not contain its partial derivatives in t and x.
Here we get that Weierstrass inequality is the necessary condition for strong local
extremum under the assumption that integrand L has continuous partial deriva-
tives in t and _x Usually it is proved that Weierstrass inequality is the necessary
condition for strong local extremum under the assumption that integrand L has
continuous partial derivatives in x and _x (see [1, 1.4.4].

It would be interesting to investigate whether Weierstrass inequality is the
necessary condition for strong local solution only under the assumption that inte-
grand L has continuous partial derivative in _x.

2.5. Lack of smoothness on x is often the case in mathematical analysis,
approximation theory etc. For example, consider the classical Didona problem
(which is a variant of isoperimetric problem), written in the following way

Z 1

0

jx(t)jdt! sup;

Z 1

0

p
1 + _x(t)2dt � L; x(0) = x(1) = 0:
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2.6. When we solve problems of the isoperimetric type with integrands which
have partial derivatives in the phase variable, in some cases we obtain more by
applying theorems 1 and 2 than by classical theorems. Here is an example:

Z 1

0

[ _x(t)2 � x(t) _x(t)3]dt! inf; x(0) = 0; x(1) = 0:

Using conditions of second order it is easy to prove that the admissible extremal
x̂(�) = 0 is weak local solution of the above problem. Using Weierstrass condition
it is easy to prove that x̂(�) is not strong local solution. Using Theorem 1 we shall
prove that x̂(�) is the only weak local solution of that problem.

Necessary condition from Theorem 1 applied to our problem gives the follow-
ing di�erential equation

d

dt
[ _x(t)2 � 2x(t) _x(t)3] = 0;

which is equivalent to
_x(t)2[1� 2x(t) _x(t)] = const :

By Rolle's theorem the derivative of x(�) vanishes in at least one point of the interval
(0; 1). It follows that

_x(t)2[1� 2x(t) _x(t)] = 0:

Therefore we have _x(0) = _x(1) = 0. Suppose the derivative _x(�) is not identically
zero. Then there exists interval [a; b] � [0; 1], such that _x(a) = _x(b) = 0 and _x(t) 6=
0 for t 2 (a; b). Then 1�2x(t) _x(t) = 0; t 2 (a; b). It follows that limt!a+ x(t) _x(t) =
1=2. On the other hand, we have limt!a+ x(t) _x(t) = x(a) _x(a) = 0. Contradiction!
Therefore _x(�) = 0, i.e. the function x(�) is constant. Having in mind that x(0) = 0,
we obtain that x(�) = 0.

2.7. To prove Theorem 1 we shall �rst transform our problem by changing the
time variable. Then we shall apply Lagrange principle [1, x4.1] to the transformed
problem.

The �rst step in the proof of Theorem 2 will be the same transformation as
in the proof of Theorem 1. The second step will be an application of the maximum
principle to the transformed problem. In order to do that, we shall formulate
maximum principle for the optimal control problem with variable control set.

3. Proof of Theorem 1

Suppose the function x̂(�) is extended beyond [t0; t1] so that its smoothness
is preserved. Together with (P ) we shall consider the problem

I�0 (z(�))! inf; I�i (z(�)) � 0; i = 1; . . . ; k;(P �)

I�i (z(�)) = 0; i = k + 1; . . . ;m;

z(t0) = t0; z(t1) = t1;
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where integral functionals are de�ned by

I�i (z(�)) =

Z t1

t0

Li(z(t); x̂(t); _̂x(t)= _z(t)) _z(t)dt; i = 0; 1; . . . ;m:

In that problem the integrands

L�i (t; z; _z) = Li(z; x̂(t); _̂x(t)= _z) _z; i = 0; 1; . . . ;m;

are de�ned and continuous on the open set

V � = f(t; z; _z) 2 R �R�Rj(z; x̂(t); _̂x(t)= _z) 2 V; _z > 0g:

Lemma 1. If the function x̂(�) is a weak local solution of the problem (P ),
then ẑ(�), ẑ(t) = t, is a weak local solution of the problem (P �).

Proof of the lemma. There exists an � > 0 such that weak �-neighborhood of
x̂(�) belongs to D and on that neighborhood x̂(�) is global solution of the problem
(P ). There exists Æ such that the following inequalities are valid

0 < Æ < 1; !(x̂(�); Æ) < �; kx̂(�)k
Æ

1� Æ
+ !( _̂x(�); Æ) < �:

Let z(�) 2 C1[t0; t1], kz(�) � ẑ(�)kC1 < Æ, be an admissible function for the
problem (P �). Since _z(t) > 0, t 2 [t0; t1], there exists inverse function z�1(�). Put
x(�) = x̂Æz�1(�). Obviously x(�) belongs to C1([t0; t1]; R

n). For t 2 [t0; t1], we have

jz�1(t)� tj = jẑ(z�1(t)) � z(z�1(t))j < Æ;

j _z(t)� 1j = j _z(t)� _̂z(t)j < Æ:

Using these inequalities, we get

kx(t)� x̂(t)k = kx̂(z�1(t)) � x̂(t)k � !(x̂(�); Æ) < �;

k _x(t)� _̂x(t)k = k _̂x(z�1(t))= _z(z�1(t))� _̂x(t)k

� k _̂x(z�1(t))= _z(z�1(t))� _̂x(z�1(t))k+ k _̂x(z�1(t)) � _̂x(t)k

= k _̂x(z�1(t))k
j1� _z(z�1(t))j

j _z(z�1(t))j
+ k _̂x(z�1(t)) � _̂x(t)k

� kx̂(�)k
Æ

1� Æ
+ !( _̂x(�); Æ) < �:

It follows that kx(�)� x̂(�)kC1 < �, and therefore x(�) 2 D. Since

Ii(x(�)) =

Z t1

t0

Li(t; x(t); _x(t))dt

=

Z t1

t0

Li(t; x̂(z
�1(t)); _̂x(z�1(t))= _z(z�1(t)))dt

=

Z t1

t0

Li(z(s); x̂(s); _̂x(s)= _z(s)) _z(s)ds

= I�i (z(�));
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for i = 0; 1; . . . ;m, then

Ii(x(�)) = I�i (z(�)) � 0; i = 1; . . . ; k;

Ii(x(�)) = I�i (z(�)) = 0; i = k + 1; . . . ;m:

We also have
x(t0) = x̂(z�1(t0)) = x̂(t0) = x0;

x(t1) = x̂(z�1(t1)) = x̂(t1) = x1:

Therefore x(�) is admissible for the problem (P ). It follows that

I�0 (z(�)) = I0(x(�)) � I0(x̂(�)) = I�0 (ẑ(�)): �

Integrands L�i , i = 0; 1; . . . ;m, have continuous partial derivatives in z and _z.
We can apply the Lagrange principle for the Lagrange problem [1, x4.1] on (P �).

Consequently, there exist Lagrange multipliers �̂i 2 R, i = 0; 1; . . . ;m, not all of
them equal to zero, such that

�̂i � 0; i = 0; 1; . . . ; k;

�̂iI
�

i (ẑ(�)) = �̂iIi(x̂(�)) = 0; i = 1; . . . ; k;

d

dt
L̂�_z(t) = L̂�z(t); t 2 [t0; t1]:

From
L�z(t; z; _z) = Lt(z; x̂(t); _̂x(t)= _z) _z;

L�_z(t; z; _z) = �L _x(z; x̂(t); _̂x(t)= _z) _̂x(t)= _z + L(z; x̂(t); _̂x(t)=ẑ)

it follows that
L̂�z(t) = L̂t(t); L̂�_z(t) = �L̂ _x(t) _̂x(t) + L̂(t):

Consequently,

d

dt
[L̂ _x(t) _̂x(t)� L̂(t)] = �L̂t(t); t 2 [t0; t1]: �

4. Optimal control problem with variable control set

Let G be an open set in R�Rn, W an open set in Rn �Rn, Y a topological
space, and [t0; t1] an interval of the real line. We say that function �(t; x; u),
mapping the set G� Y into a topological space, is piecewise continuous if

a) there exists a �nite set S � R such that the function � is continuous in every
point (�t; �x; �u) 2 G� Y , where �t 62 S;

b) there exist limits of the function �, as t! �t�, x ! �x, u! �u and as t! �t+,
x! �x, u! �u for every point (�t; �x; �u) 2 G� Y .



On necessary conditions in the calculus of variations 69

We say that �t 2 R is a continuity point of the function � if � is continuous in
every point (t; x; u) 2 G� Y , such that t = �t.

Suppose f :G�Y ! Rn is a piecewise continuous function, integrands Li:G�
Y ! R, i = 0; 1; . . . ;m, are piecewise continuous and terminants li:W ! R,
i = 0; 1; . . . ;m, are continuous. Let U(�) be a multivalued mapping of the set of
real numbers into a topological space Y .

The pair (x(�), u(�)) is called a process if x(�) is a piecewise smooth function
mapping [t0; t1] into Rn, such that �(x(�)) � G, (x(t0); x(t1)) 2 W , and u(�) is
piecewise continuous function mapping [t0; t1] into Y . Bolza functionals are de�ned
on the set of processes in the following way:

Bi(x(�); u(�)) =

Z t1

t0

Li(t; x(t); u(t))dt + li(x(t0); x(t1)); i = 0; 1; . . . ;m:

We consider the following optimal control problem

B0(x(�); u(�)) ! inf; Bi(x(�); u(�)) � 0; i = 1; . . . ; k;

Bi(x(�); u(�)) = 0; i = k + 1; . . . ;m;

_x(t) = f(t; x(t); u(t)); t 2 T;

u(t) 2 U(t); t 2 [t0; t1];

where T � [t0; t1] is the set of continuity points of control u(�), of functions f and
of integrands Li, i = 0; 1; . . . ;m.

An admissible process (x̂(�); û(�)) is called optimal in the strong sense if there
exists � > 0; such that for each admissible process (x(�); u(�)), with kx(�)� x̂(�)kC <
�, the inequality B0(x(�); u(�)) � B0(x̂(�); û(�)) is valid.

Functions H : G � Y � Rn� � Rm+1� ! R, l : W � Rm+1� ! R and
�U(�) : R! PY are de�ned by

H(t; x; u; p; �) = pf(t; x; u)�

mX
i=0

�iLi(t; x; u);

l(x0; x1; �) =
mX
i=0

�ili(x0; x1);

�U(t) = cl
[
Æ>0

\
t<s<t+Æ

U(s):

Theorem 3. Suppose that the function f , integrands Li, i = 0; 1; . . . ;m,

and their partial derivatives in x are piecewise continuous, and that terminants li,
i = 0; 1; . . . ;m, are continuously di�erentiable. If the process (x̂(�); û(�)) is optimal

in the strong sense, then there exist Lagrange multipliers �̂ 2 R, i = 0; 1; . . . ;m,
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not all of them equal to zero and piecewise smooth function p̂(�) : [t̂0; t̂1]! R�, such
that

�̂i � 0; i = 0; 1; . . . ; k;

�̂iB̂i = 0; i = 1; . . . ; k;

_̂p(t) = �Ĥx(t); t 2 T;

H(t; x̂(t); u; p̂(t); �̂) � Ĥ(t); t 2 T; u 2 �U(t);

p̂(t̂0) = l̂x0 ;

p̂(t̂1) = �l̂x1 ;

where T � [t0; t1] is the set of continuity points of the function f , integrands Li,
i = 0; 1; . . . ;m, their partial derivatives in x and of the control û(�).

Theorem 3 can be proved in the same way as the maximum principle from
[1, x4.2].

5. Proof of Theorem 2

Suppose x̂(�) is extended beyond [t0; t1] in such a way that piecewise smooth-
ness is preserved. Together with ( �P ) we shall study the problem

I�0 (z(�))! inf; I�i (z(�)) � 0; i = 1; . . . ; k;( �P �)

I�i (z(�)) = 0; i = k + 1; . . . ;m;

z(t0) = t0; z(t1) = t1;

_z(t) 2 U�(t);

where integral functionals are de�ned by

I�i (z(�)) =

Z t1

t0

Li(z(t); x̂(t); _̂x(t)= _z(t)) _z(t)dt; i = 0; 1; . . . ;m:

The integrands in ( �P �)

L�i (t; z; _z) = Li(z; x̂(t); _̂x(t)= _z) _z; i = 0; 1; . . . ;m;

are de�ned and piecewise continuous on the set G� �K�, where

G� = f(t; z) 2 R�Rj(z; x̂(t)) 2 Gg; K� = (0;+1);

U�(t) = f _z > 0j _̂x(t)= _z 2 Ug:

Lemma 2. If x̂(�) is a strong local solution of ( �P ), then ẑ(�), ẑ(t) = t, is a

strong local solution of ( �P �).
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Proof of the lemma. There exists � > 0 such that �-neighborhood of the set
�(x̂(�)) belongs to G and x̂(�) is a global solution of the problem ( �P ) on the strong
�-neighborhood of x̂(�). There exists Æ > 0 such that !(x̂(�); Æ) < �.

Suppose z(�) 2 �C1[t0; t1], kz(�)� ẑ(�)kC < Æ, is an admissible function for the
problem ( �P �). Since _z(t) > 0; there exists inverse z�1(�). Set x(�) = x̂Æz�1(�). The
function x(�) obviously belongs to the space �C1([t0; t1]; R

n). For every t 2 [t0; t1]
the following inequality is valid

jz�1(t)� tj = jẑ(z�1(t)) � z(z�1(t))j < Æ:

Using the inequality above we get

kx(t)� x̂(t)k = kx̂(z�1(t))� x̂(t)k � !(x̂(�); Æ) < �:

Therefore kx(�) � x̂(�)kC < �. Consequently, �(x(�)) � G. Besides, for every
t 2 [t0; t1]

_x�(t) = _̂x�(z
�1(t))= _z�(z

�1(t)) 2 K:

It follows that x(�) 2 �D. Since

Ii(x(�)) =

Z t1

t0

Li(t; x(t); _x(t))dt

=

Z t1

t0

Li(t; x̂(z
�1(t)); _̂x(z�1(t))= _z(z�1(t)))dt

=

Z t1

t0

Li(z(s); x̂(s); _̂x(s)= _z(s)) _z(s)ds

= I�i (z(�));

for i = 0; 1; . . . ;m, then

Ii(x(�)) = I�i (z(�)) � 0; i = 1; . . . ; k;

Ii(x(�)) = I�i (z(�)) = 0; i = k + 1; . . . ;m:

Moreover,
x(t0) = x̂(z�1(t0)) = x̂(t0) = x0;

x(t1) = x̂(z�1(t1)) = x̂(t1) = x1:

_x(t) = _̂x(z�1(t))= _z(z�1(t)) 2 U;

provided _̂x(z�1(t)) and _z(z�1(t)) exist. Therefore x(�) is admissible for ( �P ). It
follows that

I�0 (z(�)) = I0(x(�)) � I0(x̂(�)) = I�0 (ẑ(�)): �

We �nish the proof of Theorem 2 by applying to the problem ( �P �) the maxi-

mum principle from Section 4. We get that there exist Lagrange multipliers �̂i 2 R,
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i = 0; 1; . . . ;m, not all of them equal to zero, and piecewise smooth function
r̂(�) : [t0; t1]! R, such that

�̂i � 0; i = 0; 1; . . . ; k;

�̂iI
�

i (ẑ(�)) = �̂iIi(x̂(�)) = 0; i = 1; . . . ; k;

_̂r(t) = L̂�z(t); t 2 T;

L�(t; ẑ(t); w) � L�(t; ẑ(t); _̂z(t))� r̂(t)(w � _̂z(t)) � 0; t 2 T; w 2 �U�(t):

From
L�z(t; z; _z) = Lt(z; x̂(t); _̂x(t)= _z) _z;

it follows that L̂�z(t) = L̂t(t). Consequently _̂r(t) = L̂t(t); t 2 T . From

L�(t; ẑ(t); w) = L(t; x̂(t); _̂x(t)=w)w;

L�(t; ẑ(t); _̂z(t)) = L(t; x̂(t); _̂x(t));

W (t) = �U�(t);

we have

L(t; x̂(t); _̂x(t)=w)w � L(t; x̂(t); _̂x(t))� r̂(t)(w � 1) � 0; t 2 T; w 2 W (t): �
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