
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 61 (75), 1997, 41{43
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Abstract. Applying the Frobenius criterion for p-nilpotency we �nd a rela-
tively large class of �nite solvable groups as semidirect products of two of their Hall
subgroups.

If P is a �nite group, then we shall denote by d(P ) the minimal number of
generators of P . Let n be a positive integer and p a prime. We say that n has
the (p;m)-property if for each prime divisor q of n, q does not divide pk � 1 for
1 � k � m.

The following theorem is well known:

Theorem (Frobenius). Let G be a �nite group and P its Sylow p-subgroup. If
any subgroup P is generated by at most d elements and jGj has the (p; d)-property,
then G is p-nilpotent [2, p. 437].

Remark: The theorem is used with d equal to the maximal exponent m of p
in jGj, since d(H) � m for any subgroups H < P .

Theorem 1. Let G be a �nite solvable group and jGj = ab, where (a; b) = 1.
Let A have the (p; d)-property, for any prime p dividing b and d maximal exponent

of p in b. Then G is a semidirect product of two normal Hall's subgroups: one of

order a and one of order b.

Proof. Note that if G is a solvable �nite group and A its subgroup of order
a, than the order of NG(A) depends only on a since conjugate subgroups have
conjugate normalizers. Therefore, we shall put jNGA j = n(a). Let b = pa11 . . . pamm
be the prime factorization of b. Choose any subgroupK of order apaii . Such a group
exists by Hall's theorem. By the theorem of Frobenius, K has a normal subgroup
A of order a. Since K < NG(A), by Lagrange's theorem we have that jKj divides
n(a) and so paii divides n(a) for all i. Hence, b divides n(a) and so n(a) = ab, i.e.,

AMS Subject Classi�cation (1991): Primary 20D60.



42 Baki�c

A is normal in G. Therefore, G is a semidirect product of two Hall subgroups of
orders a and b.

Remark 1. The above theorem can be proved by induction, in the usual
manner for solvable groups, without using the theorem of Frobenius, but we �nd
the given proof more elegant.

Remark 2. If G is not solvable, then the Theorem 1 need not be true. For
example we can take G = A5. Then a = 5 and b = 12, and one can see that the
5-Sylow subgroup is not normal in A5.

As a special case of Frobenius theorem we have:

Theorem (Burnside). If G is a �nite group with a cyclic p-Sylow subgroup

and if for all primes q dividing jGj, q does not divide p� 1, then G is p nilpotent.

Now we prove the following:

Theorem 2. Let G be a �nite group and H its subgroup of index p, where
p is a prime and (p� 1; jGj) = 1. Then H is normal in G.

Proof. By induction on jGj. If p does not divide jH j, then Theorem 2 is
a special case of the theorem of Frobenius. Let p divide jGj. Then there exists a
homomorphism h:G! Sp, where Sp is the symmetric group on p elements. Since
p2 divides jGj and p2 does not divide p!, we have H1 = ker(h) 6= f1g, and H1 < H .
Then H=H1 is a subgroup of G=H1 of index p, so by the induction hypothesis,
H=H1 is normal in G=H1 and so is H in G.

We continue with two (known) characterizations of nilpotency of �nite groups.

Lemma 1. A �nite group G is nilpotent i� any two of its elements having

relatively prime orders commute.

Lemma 2. A �nite group G is nilpotent i� it is p-nilpotent for any prime p
dividing jGj.

We only sketch the proofs of (() parts.

For Lemma 1: if P is Sylow subgroup of G, then P is centralized by all Sylow
subgroups of G with orders not equal to jP j. Therefore, N(P ) has Sylow subgroups
of all possible prime divisors of jGj, and they are of the same size as those in G.
By Lagrange's theorem, jNP j = G, and P is normal in G.

For Lemma 2: each Sylow subgroup of G has a normal complement. Let GP

be a normal complement of a p-Sylow subgroup. If P is the intersection of all Gq 's
where q 6= p, then P is a Sylow subgroup of G and P is normal since Gq 's are
normal.

In [1] Pazderski proved the following two theorems; here we give di�erent
proofs.

Theorem 3. All the groups of order n are p-nilpotent i� n has the (p;m)-
property where n = pmb, (p; b) = 1.
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Proof. Let n = pmb where (p; b) = 1. Suppose q j pk�1, where qpk divides n
and p1 is prime. We shall construct a group of order n which is not p-nilpotent. By
assumption, q divides jAut ((CP )

m)j = pm(m�1)=2(pm�1) � � � (pk�1) � � � (p�1), and
so in Aut ((CP )

m) we have a subgroup H isomorphic to Cq . Now we can construct
a semidirect product K = (Cp)

m �I H where I is the inclusion homomorphism
I :H ! Aut ((CP )

m). If we take any h 2 H such that h 6= 1, then we can �nd some
g 2 (CP )

m with h(g) 6= g. Two elements (g; 1) and (1; h) of k, have relatively prime
orders, but do not commute, and so by Lemma 1, K is not nilpotent. Therefore, H
is not normal in K since H is a q-Sylow subgroup. Then K must contain at least
two subgroups of order q, and G = K �Ct (where t = n=jKj) contains at least two
subgroups of order b. Hence, G is not p-nilpotent.

Theorem 4. Each group of order n is nilpotent i� n has the (p;m)-property
for any prime p, such that n = pmt and (p; t) = 1.

Proof. Direction ()) follows from Theorem 3 and Lemma 2, and direction
(() follows from the Frobenius theorem and Lemma 2.
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