ON THE EXPONENTIAL DIVISOR FUNCTION

A. Smati and J. Wu

Communicated by Aleksandar Ivić

Abstract

We investigate the exponential divisor function and establish several asymptotic formulas involving this function.

1. Introduction

The notions of exponential divisor and exponential divisor function was introduced by Subbarao [10]. Let p, with or without subscript, denote a prime number. For $n=p_{1}^{\nu_{1}} \cdots p_{k}^{\nu_{k}}$ (canonical decomposition of the integer $n>1$), we call d an exponential divisor of n if $d=p_{1}^{\mu_{1}} \cdots p_{k}^{\mu_{k}}$ with $\mu_{j} \mid \nu_{j}(1 \leq j \leq k)$. Let $\tau^{(e)}(n)$ be the number of such divisors of n with convention $\tau^{(e)}(1)=1$ and we call it the exponential divisor function. This function is multiplicative and satisfies

$$
\begin{equation*}
\tau^{(e)}(n)=\prod_{p^{\nu} \| n} \tau(\nu) \tag{1.1}
\end{equation*}
$$

where $\tau(n)$ is the usual divisor function and $p^{\nu} \| n$ means that $p^{\nu} \mid n$, but $p^{\nu+1} \nmid n$. In particular, $\tau^{(e)}\left(p^{\nu}\right)=\tau(\nu)$ so that $\tau^{(e)}(n)$ is prime independent. Moreover $\tau^{(e)}(n)$ depends only on the squarefull kernel of n. More precisely, each integer $n>1$ has the unique representation $n=q s$ with $(q, s)=1$, where $q=q(n)$ is squarefree and $s=s(n)$ is squarefull, and we have

$$
\begin{equation*}
\tau^{(e)}(n)=\tau^{(e)}(s) \tag{1.2}
\end{equation*}
$$

Such a function is called an arithmetical function with squarefull kernel, or simply an s-function.

It seems interesting to make a systematic investigation of $\tau^{(e)}(n)$. For maximal order of $\tau^{(e)}(n)$, Erdős (cf. Theorem 6.2 of $[\mathbf{1 0}]$) showed

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log \tau^{(e)}(n) \log _{2} n}{\log n}=\frac{\log 2}{2} \tag{1.3}
\end{equation*}
$$

where $\log _{k}$ is the k-fold iterated logarithm. Recently Wu [12, Théorème 1] proved, by a simple convolution argument, the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x} \tau^{(e)}(n)=A_{1} x+A_{2} x^{1 / 2}+O\left(x^{2 / 9} \log x\right) \tag{1.4}
\end{equation*}
$$

where $A_{1}:=\prod_{p}\left(1+\sum_{\nu=2}^{\infty}\{\tau(\nu)-\tau(\nu-1)\} p^{-\nu}\right), A_{2}$ are two effective constants. This answers an open question in [10].

The aim of this paper is to consider further other analogues of some known results on $\tau(n)$ in the case of $\tau^{(e)}(n)$: Titchmarsh's exponential divisor problem, mean value of $\tau^{(e)}(n-1)$ over integers free of large prime factors, \cdots etc. Most of our results can be generalized to other prime-independent multiplicative s-functions f, only if $f^{*}(\nu):=f\left(p^{\nu}\right)$ does not increase too rapidly. To avoid unnecessary length, we restrict ourselves to the case of $\tau^{(e)}(n)$.

Acknowledgements. The authors are grateful to A. Ivić for his comments on an earlier version of this paper.

2. Exponential divisor problem of Titchmarsh

The Titchmarsh divisor problem consists of the evaluation of $T(x):=$ $\sum_{p \leq x} \tau(p-1)$. The best result known to date is due to Fouvry [4, Corollaire 1], Bombieri, Friedlander and Iwaniec [1, Corollary 2], who independently proved, by an application of a theorem of Bombieri-Vinogradov type, that for any fixed $A>0$, we have

$$
T(x)=B_{1} x+B_{2} \operatorname{li} x+O_{A}\left(x /(\log x)^{A}\right)
$$

where

$$
\operatorname{li} x:=\int_{2}^{x} \frac{\delta t}{\log t}, \quad B_{1}:=\prod_{p}\left(1+\frac{1}{p(p-1)}\right), \quad B_{2}:=\gamma-\sum_{p} \frac{\log p}{1+p(p-1)}
$$

and γ is the Euler constant.
We propose here to consider the exponential divisor problem of Titchmarsh, i.e. to evaluate the summatory function $T^{(e)}(x):=\sum_{p \leq x} \tau^{(e)}(p-1)$. Our result is as follows.

Theorem 1. For any fixed $A>0$, we have

$$
T^{(e)}(x)=C \operatorname{li} x+O_{A}\left(x /(\log x)^{A}\right)
$$

with $C:=\prod_{p}\left(1+\sum_{\nu=2}^{\infty}\{\tau(\nu)-1\} p^{-\nu}\right)$.
Proof. Here and in the sequel, the letters s and q denote respectively generic squarefull and squarefree integers. As usual, let $\mu(d)$ be the Möbius function and
$\varphi(d)$ the Euler function. Writing $p-1=q s$ with $(q, s)=1$ and in view of (1.2), we find that

$$
T^{(e)}(x)=\sum_{s \leq x} \tau^{(e)}(s) \sum_{\substack{q \leq(x-1) / s \\ q s+1=p,(q, s)=1}} 1=\sum_{s \leq x} \tau^{(e)}(s) \sum_{\substack{n \leq(x-1) / s \\ n s+1=p,(n, s)=1}} \mu(n)^{2}
$$

With the aid of the relation

$$
\begin{equation*}
\mu(n)^{2}=\sum_{d^{2} \mid n} \mu(d) \tag{2.1}
\end{equation*}
$$

we can show, by interchanging the summations and the Möbius inversion formula, that

$$
\begin{aligned}
T^{(e)}(x) & =\sum_{s \leq x} \tau^{(e)}(s) \sum_{\substack{d \leq \sqrt{(x-1) / s}}} \mu(d) \sum_{\substack{\ell \leq \leq(x-1) / d^{2} s \\
(d, s)=1 \\
d^{2} \ell s+1=p,(\ell, s)=1}} 1 \\
& =\sum_{s \leq x} \tau^{(e)}(s) \sum_{\substack{d \leq \sqrt{(x-1) / s} \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \sum_{\substack{n \leq(x-1) / d^{2} m s \\
d^{2} m s n+1=p}} 1 .
\end{aligned}
$$

Obviously, the last sum over n is equal to the number of primes not to exceed x and congruent to 1 modulo $d^{2} m s$. Defining $\pi(x ; a, \ell):=|\{p \leq x: p \equiv a(\bmod \ell)\}|$ for $(a, \ell)=1$, it follows

$$
\begin{equation*}
T^{(e)}(x)=\sum_{s \leq x} \tau^{(e)}(s) \sum_{\substack{d \leq \sqrt{(x-1) / s} \\(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \pi\left(x ; 1, d^{2} m s\right) \tag{2.2}
\end{equation*}
$$

Let $Y, Z \in\left[1,(\log x)^{10 A}\right]$ be two parameters to be chosen later. We divide the triple sums on the right-hand side of (2.2) into three parts:

$$
\begin{aligned}
T_{1}^{(e)}(x) & :=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{\substack{d \leq Z \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \pi\left(x ; 1, d^{2} m s\right) \\
T_{2}^{(e)}(x) & :=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{\substack{Z<d \leq \sqrt{(x-1) / s} \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \pi\left(x ; 1, d^{2} m s\right), \\
T_{3}^{(e)}(x) & :=\sum_{Y<s \leq x} \tau^{(e)}(s) \sum_{\substack{d \leq \sqrt{(x-1) / s} \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \pi\left(x ; 1, d^{2} m s\right)
\end{aligned}
$$

Using the trivial estimate

$$
\begin{equation*}
\pi\left(x ; 1, d^{2} m s\right) \leq x / d^{2} m s \tag{2.3}
\end{equation*}
$$

and noticing that

$$
\sum_{s \leq Y} \frac{\tau^{(e)}(s)}{\sqrt{s}} \sum_{m \mid s} \frac{|\mu(m)|}{m} \ll \prod_{p \leq Y}\left(1+\frac{2}{p}+O\left(\frac{1}{p^{3 / 2}}\right)\right) \ll(\log Y)^{2}
$$

we deduce, by Abel summation, that

$$
\begin{equation*}
T_{3}^{(e)}(x) \ll x \sum_{s>Y} \frac{\tau^{(e)}(s)}{s} \sum_{m \mid s} \frac{|\mu(m)|}{m} \ll x \frac{(\log Y)^{2}}{\sqrt{Y}} \tag{2.4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
T_{2}^{(e)}(x) \leq x \sum_{s \leq Y} \frac{\tau^{(e)}(s)}{s} \sum_{m \mid s} \frac{|\mu(m)|}{m} \sum_{d>Z} \frac{|\mu(d)|}{d^{2}} \ll \frac{x}{Z} \tag{2.5}
\end{equation*}
$$

It remains to evaluate $T_{1}^{(e)}(x)$. For this, we write $T_{1}^{(e)}(x)=P_{1}(x, y)+R_{1}(x, y)$, where

$$
\begin{aligned}
& P_{1}(x, y):=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{\substack{d \leq Z \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \frac{\operatorname{li} x}{\varphi\left(d^{2} m s\right)}, \\
& R_{1}(x, y):=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{\substack{d \leq Z \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m)\left\{\pi\left(x ; 1, d^{2} m s\right)-\frac{\operatorname{li} x}{\varphi\left(d^{2} m s\right)}\right\} .
\end{aligned}
$$

Since $d^{2} m s \leq(d s)^{2} \leq(\log x)^{20 A}$, Siegel-Walfisz' theorem [11, Theorem II.8.5] gives us

$$
\begin{aligned}
R_{1}(x, y) & \ll x e^{-c_{1} \sqrt{\log x}} Z \sum_{s \leq Y} \tau^{(e)}(s) 2^{\omega(s)} \ll x e^{-c_{1} \sqrt{\log x}} Z \sqrt{Y} \sum_{s \leq Y} \tau^{(e)}(s) 2^{\omega(s)} / \sqrt{s} \\
& \ll x e^{-c_{1} \sqrt{\log x}} Z \sqrt{Y} \prod_{p \leq Y}\left(1+4 p^{-1}+O\left(p^{-3 / 2}\right)\right) \ll x e^{-\frac{c_{1}}{2} \sqrt{\log x}}
\end{aligned}
$$

where c_{1} is an absolute positive constant.
For $(d, s)=1$ and $m \mid s$, we easily show that $\varphi\left(d^{2} m s\right)=d \varphi(d) m \varphi(s)$. Recalling the relation $\sum_{m \mid s} \mu(m) / m=\varphi(s) / s$, we have

$$
P_{1}(x, y)=\operatorname{li} x \sum_{s \leq Y} \frac{\tau^{(e)}(s)}{s} \sum_{\substack{d \leq Z \\(d, s)=1}} \frac{\mu(d)}{d \varphi(d)}=C \operatorname{li} x+O\left(\frac{(\log Y)^{2}}{\sqrt{Y}} \operatorname{li} x+\frac{1}{Z} \operatorname{li} x\right),
$$

where we have used the following identities

$$
\begin{gathered}
\sum_{s} \frac{\tau^{(e)}(s)}{s} \sum_{(d, s)=1} \frac{\mu(d)}{d \varphi(d)}=\prod_{p}\left(1-\frac{1}{p(p-1)}\right) \sum_{s} \frac{\tau^{(e)}(s)}{s} \prod_{p \mid s}\left(1-\frac{1}{p(p-1)}\right)^{-1} \\
=\prod_{p}\left(1-\frac{1}{p(p-1)}\right)\left(1+\left(1-\frac{1}{p(p-1)}\right)^{-1} \sum_{\nu=2}^{\infty} \frac{\tau(\nu)}{p^{\nu}}\right)=C
\end{gathered}
$$

These estimates imply that

$$
\begin{equation*}
T_{1}^{(e)}(x)=C \operatorname{li} x+O\left(\frac{(\log Y)^{2}}{\sqrt{Y}} \operatorname{li} x+\frac{1}{Z} \operatorname{li} x+x e^{-\frac{c_{1}}{2} \sqrt{\log x}}\right) \tag{2.6}
\end{equation*}
$$

Combining (2.4)-(2.6) with (2.2), we obtain that

$$
T^{(e)}(x)=C \operatorname{li} x+O\left(\frac{x}{Z}+\frac{x(\log Y)^{2}}{\sqrt{Y}}+x e^{-\frac{c_{1}}{2} \sqrt{\log x}}\right)
$$

Now the required result follows from on taking $Y=(\log x)^{3 A}$ and $Z=(\log x)^{A}$. The proof of Theorem 1 is finished.

Remark 1. (i) The relation (1.4) and Theorem 1 show that the integers n and $p-1$ possess respectively A_{1} and C exponential divisors, in the average sense. The fact of $C>A_{1}$ attests to the bad distribution of prime numbers p in the corresponding congruence class.
(ii) It is worth indicating that we use only Siegel-Walfisz' theorem and the trivial estimate (2.3) instead of the Bombieri-Vinogradov theorem and BrunTitchmarsh's inequality, as in the classical divisor problem of Titchmarsh.

3. Mean value of $\tau^{(e)}(n-1)$ over integers free of large prime factors

Let $P(n)$ be the largest prime factor of the integer $n>1$ with the convention $P(1)=1$. For $x \geq y \geq 2$, we define $u:=(\log x) / \log y$ and
$S(x, y):=\{n \leq x: P(n) \leq y\}, \quad \Psi(x, y):=|S(x, y)|, \quad T(x, y):=\sum_{n \in S(x, y)} \tau(n-1)$.
Fouvry and Tenenbaum [6] proved that there exists a positive constant η such that the asymptotic formula (see (1.16) of [6])

$$
T(x, y)=\Psi(x, y) \log x\left\{1+O\left(\frac{\log (u+1)}{\log y}\right)\right\}
$$

holds uniformly in the region: $x \geq 3, x^{\eta \log _{3} x / \log _{2} x} \leq y \leq x$.
In this section, we shall consider an analogue: $T^{(e)}(x, y):=\sum_{n \in S(x, y)} \tau^{(e)}(n-1)$. We have the following result.

Theorem 2. Let A_{1} be defined as in (1.4). For any $\varepsilon>0$, the asymptotic formula

$$
T^{(e)}(x, y)=A_{1} \Psi(x, y)\left\{1+O_{\varepsilon}\left(\left(\log _{2} y\right)^{2} / \log y\right)\right\}
$$

holds uniformly for

$$
x \geq 3, \quad \exp \left\{(\log x)^{2 / 3+\varepsilon}\right\} \leq y \leq x
$$

Proof. Let $\Psi(x, y ; a, \ell):=|\{n \in S(x, y): n \equiv a(\bmod \ell)\}|$. As before, we can prove that

$$
\begin{equation*}
T^{(e)}(x, y)=\sum_{s \leq x} \tau^{(e)}(s) \sum_{\substack{d \leq \sqrt{(x-1) / s} \\(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \Psi\left(x, y ; 1, d^{2} m s\right) \tag{3.1}
\end{equation*}
$$

Let $Y, Z \in\left[1, x^{1 / 10}\right]$ be two parameters to be chosen later. We divide the triple sums on the right-hand side of (3.1) into three parts:

$$
\begin{aligned}
T_{1}^{(e)}(x, y) & :=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{\substack{d \leq Z \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \Psi\left(x, y ; 1, d^{2} m s\right) \\
T_{2}^{(e)}(x, y) & :=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{\substack{Z<d \leq \sqrt{(x-1) / s} \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \Psi\left(x, y ; 1, d^{2} m s\right) \\
T_{3}^{(e)}(x, y) & :=\sum_{Y<s \leq x} \tau^{(e)}(s) \sum_{\substack{d \leq \sqrt{(x-1) / s} \\
(d, s)=1}} \mu(d) \sum_{m \mid s} \mu(m) \Psi\left(x, y ; 1, d^{2} m s\right)
\end{aligned}
$$

Using the inequality $\Psi(x, y ; 1, \ell) \leq x / \ell+1$, we can prove, as in the proof of Theorem 1, that

$$
\begin{equation*}
T_{2}^{(e)}(x, y) \ll x / Z, \quad T_{3}^{(e)}(x, y) \ll x(\log Y)^{2} / \sqrt{Y} \tag{3.2}
\end{equation*}
$$

It remains to evaluate $T_{1}^{(e)}(x, y)$. For this, we write

$$
\begin{equation*}
T_{1}^{(e)}(x, y)=P_{1}(x, y)+R_{1}(x, y) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{1}(x, y):=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{d \leq Z,(d, s)=1} \mu(d) \sum_{m \mid s} \mu(m) \frac{\Psi_{d^{2} m s}(x, y)}{\varphi\left(d^{2} m s\right)} \\
& R_{1}(x, y):=\sum_{s \leq Y} \tau^{(e)}(s) \sum_{d \leq Z,(d, s)=1} \mu(d) \sum_{m \mid s} \mu(m) E\left(x, y ; 1, d^{2} m s\right) \\
& \Psi_{\ell}(x, y):=|\{n \in S(x, y):(n, \ell)=1\}|, \quad E(x, y ; a, \ell):=\Psi(x, y ; a, \ell)-\frac{\Psi_{\ell}(x, y)}{\varphi(\ell)} .
\end{aligned}
$$

In order to control the error term $R_{1}(x, y)$, we need an estimate of BombieriVinogradov type for $S(x, y)$: For any fixed $A>0$ and $\varepsilon>0$, the inequality

$$
\begin{equation*}
\sum_{\ell \leq \sqrt{x} / \exp \left\{(\log x)^{1 / 3}\right\}} \tau(\ell)^{3} \max _{(a, \ell)=1}|E(x, y ; a, \ell)|<_{A, \varepsilon} \frac{\Psi(x, y)}{(\log x)^{A}} \tag{3.4}
\end{equation*}
$$

holds uniformly in the region $\left(\mathcal{C}_{\varepsilon}\right)$. This is (7.1) of Fouvry and Tenenbaum [7]. Introducing

$$
w(\ell):=\sum_{s \leq Y} \sum_{\substack{d \leq Z \\ d^{2} m s=\ell}} \sum_{m \leq Y} \tau^{(e)}(s) \mu(d)^{2} \mu(m)^{2}
$$

we can write $\left|R_{1}(x, y)\right| \leq \sum_{\ell \leq(Y Z)^{2}} w(\ell)|E(x, y ; 1, \ell)|$. Obviously we have $w(\ell) \leq$ $\tau(\ell)^{3}$. Since $(Y Z)^{2} \leq x^{2 / 5}$, the estimate (3.4) implies that

$$
\begin{equation*}
\left|R_{1}(x, y)\right| \leq \sum_{\ell \leq x^{2 / 5}} \tau(\ell)^{3}|E(x, y ; 1, \ell)|<_{A, \varepsilon} \frac{\Psi(x, y)}{(\log x)^{A}} \tag{3.5}
\end{equation*}
$$

In order to approximate to the quantity $\Psi_{d^{2} m s}(x, y)$ in the principal term $P_{1}(x, y)$, we shall need Theorem 1 of Fouvry and Tenenbaum [5]: Under the following conditions
$x \geq 3, \quad \exp \left\{\left(\log _{2} x\right)^{5 / 3+\varepsilon}\right\} \leq y \leq x$,
$\left(Q_{\varepsilon}\right)$

$$
\log _{2}(\ell+2) \leq\left(\frac{\log y}{\log (u+1)}\right)^{1-\varepsilon}
$$

we have uniformly

$$
\Psi_{\ell}(x, y)=\frac{\varphi(\ell)}{\ell} \Psi(x, y)\left\{1+O\left(\frac{\log _{2}(\ell y) \log _{2} x}{\log y}\right)\right\}
$$

Since $d^{2} m s \leq(Y Z)^{2} \leq x^{2 / 5}$ and (x, y) is in the region $\left(\mathcal{C}_{\varepsilon}\right)$, it is clear that the conditions $\left(H_{\varepsilon}\right)$ and $\left(Q_{\varepsilon}\right)$ are satisfied. Hence we have

$$
\begin{aligned}
(3.6) P_{1}(x, y) & =\Psi(x, y)\left\{\sum_{s \leq Y} \frac{\tau^{(e)}(s) \varphi(s)}{s^{2}} \sum_{d \leq Z,(d, s)=1} \frac{\mu(d)}{d^{2}}+O_{\varepsilon}\left(\frac{\log _{2}(Y Z y) \log _{2} x}{\log y}\right)\right\} \\
& =A_{1} \Psi(x, y)\left\{1+O_{\varepsilon}\left(\frac{\log _{2}(Y Z y) \log _{2} x}{\log y}+\frac{(\log Y)^{2}}{\sqrt{Y}}+\frac{1}{Z}\right)\right\}
\end{aligned}
$$

The estimates (3.3)-(3.6) imply that $T^{(e)}(x, y)=A_{1} \Psi(x, y)\left\{1+O_{\varepsilon}(R)\right\}$, with

$$
R:=\frac{\log _{2}(Y Z y) \log _{2} x}{\log y}+\frac{x(\log Y)^{2}}{\Psi(x, y) \sqrt{Y}}+\frac{x}{\Psi(x, y) Z}
$$

Taking $Y=Z=x^{1 / 10}$ and using $\Psi(x, y) \gg x u^{-3 u}$ valid for $x \geq y \geq 2[\mathbf{1 1}$, Theorem III.5.13], we can show that

$$
x(\log Y)^{2} / \Psi(x, y) \sqrt{Y}+x / \Psi(x, y) Z \ll 1 / \log x
$$

This concludes the proof of Theorem 2.

4. Maximal orders for $\Omega\left(\tau^{(e)}(n)\right), \omega\left(\tau^{(e)}(n)\right)$ and $\tau^{(e)}\left(\tau^{(e)}(n)\right)$

As usual, let $\Omega(n)$ and $\omega(n)$ be the number of prime factors of n and the number of distinct prime factors of n, i.e. $\Omega(n):=\sum_{p^{\nu} \| n} \nu$ and $\omega(n):=\sum_{p \mid n} 1$. Erdős and Ivić [3] investigated the maximal orders for $\omega(\tau(n))$ and $\log \tau(\tau(n))$. Recently Ivić [9] further developed the method of [3] to study the maximal orders for $\omega(f(n))$ and $\log f(f(n))$ for a fairly wide class of prime independent, integer valued multiplicative functions f. Their results (cf. (3.3) and (3.4) of [3], (11) and (12) of [9]) are approximate. As they indicated, it seems difficult to determine precisely these maximal orders, even in the case of $f(n)=\tau(n), a(n)$ (the number of nonisomorphic abelian groups of order n).

In this section, we consider another interesting example: $f(n)=\tau^{(e)}(n)$.
Theorem 3. (i) A maximal order for $\Omega\left(\tau^{(e)}(n)\right)$ is $(\log n) / 2 \log _{2} n$.
(ii) A maximal order for $\omega\left(\tau^{(e)}(n)\right)$ is $\left(\log _{2} n\right) /(\log 2) \log _{3} n$.
(iii) We have

$$
\begin{equation*}
\log \tau^{(e)}\left(\tau^{(e)}(n)\right) \leq\{1+o(1)\}\left(\frac{\log _{2} n}{\log _{3} n}\right)^{2} \tag{4.1}
\end{equation*}
$$

In addition, the inequality

$$
\begin{equation*}
\log \tau^{(e)}\left(\tau^{(e)}(n)\right) \geq\{\log 2+o(1)\} \frac{\log _{2} n}{\log _{3} n} \tag{4.2}
\end{equation*}
$$

holds for infinitely many integers n.
Proof. On the one hand, using the relation (1.3), we immediately see that

$$
\Omega\left(\tau^{(e)}(n)\right) \leq \frac{\log \tau^{(e)}(n)}{\log 2} \leq\left\{\frac{1}{2}+o(1)\right\} \frac{\log n}{\log _{2} n}
$$

On the other hand, putting $n_{k}:=\left(p_{1} p_{2} \cdots p_{k}\right)^{2}(k=1,2, \cdots)$, where p_{j} denotes the j th prime number, we have $\Omega\left(\tau^{(e)}\left(n_{k}\right)\right)=\Omega\left(2^{k}\right)=k$. It is clear that $\log n_{k} \leq$ $2 k \log p_{k}$ and Chebyshev's estimate implies that $\log n_{k} \gg p_{k}$. Thus it follows that $k \geq\left(\log n_{k}\right) /\left(2 \log _{2} n_{k}\right)\left\{1+O\left(1 / \log _{2} n_{k}\right)\right\}$. This proves the first assertion.

In view of (1.1), we can write that

$$
\begin{equation*}
\omega\left(\tau^{(e)}(n)\right)=\omega\left(\prod_{p^{\nu} \| n} \tau(\nu)\right)=\omega\left(\prod_{p^{\nu} \| n} \prod_{p^{\prime} \mu \| \nu}(\mu+1)\right) \tag{4.3}
\end{equation*}
$$

Noticing that $\mu \leq(\log \nu) / \log 2$ and $\nu \leq(\log n) / \log 2$, we have $\mu \leq\left(\log _{2} n\right) / \log 2+$ $O(1)$. It is clear that the right-hand side of (4.3) does not exceed the number of prime numbers $\leq \log _{2} n / \log 2+O(1)$, i.e.

$$
\omega\left(\tau^{(e)}(n)\right) \leq \pi\left(\log _{2} n / \log 2+O(1)\right) \leq\left\{\frac{1}{\log 2}+O\left(\frac{1}{\log _{3} n}\right)\right\} \frac{\log _{2} n}{\log _{3} n}
$$

In order to establish the lower bound, we consider $n_{k}:=\prod_{j=1}^{k} p_{j}^{2^{p_{j}-1}}(k \in \mathbf{N})$. We have $\omega\left(\tau^{(e)}\left(n_{k}\right)\right)=\omega\left(\prod_{j=1}^{k} \tau\left(2^{p_{j}-1}\right)\right)=\omega\left(\prod_{j=1}^{k} p_{j}\right)=k$ and $2^{p_{k}-1} \log p_{k} \leq$ $\log n_{k} \leq 2^{p_{k}-1} k \log p_{k}$. Using the relation $p_{k} \sim k \log k$, we find $k \sim \frac{\left(\log _{2} n_{k}\right)}{(\log 2)} \log _{3} n_{k}$ $(k \rightarrow \infty)$.

Finally we consider (iii). We write $\log \tau^{(e)}\left(\tau^{(e)}(n)\right)=\sum_{p^{\nu} \| \tau^{(e)}(n)} \log \tau(\nu)$. For $p^{\nu} \| \tau^{(e)}(n)$, the relation (1.3) implies that $\nu \leq\left(\log \tau^{(e)}(n)\right) / \log 2 \leq\left\{\frac{1}{2}+\right.$ $o(1)\}(\log n) / \log _{2} n$. Thus by a well-known result, we get

$$
\log \tau(\nu) \leq\{\log 2+o(1)\} \frac{\log \nu}{\log _{2} \nu} \leq\{\log 2+o(1)\} \frac{\log _{2} n}{\log _{3} n}
$$

This and (ii) yield that

$$
\log \tau^{(e)}\left(\tau^{(e)}(n)\right) \leq\{\log 2+o(1)\} \frac{\log _{2} n}{\log _{3} n} \omega\left(\tau^{(e)}(n)\right) \leq\{1+o(1)\}\left(\frac{\log _{2} n}{\log _{3} n}\right)^{2}
$$

This proves the inequality (4.1).

$$
\text { Next let } n_{k}:=\left(p_{1} p_{2} \cdots p_{p_{1} p_{2} \cdots p_{k}}\right)^{2}(k=1,2, \cdots), \text { we have }
$$

$$
\begin{equation*}
\log \tau^{(e)}\left(\tau^{(e)}\left(n_{k}\right)\right)=\log \tau^{(e)}\left(2^{p_{1} p_{2} \cdots p_{k}}\right)=\log \tau\left(p_{1} p_{2} \cdots p_{k}\right)=k \log 2 \tag{4.4}
\end{equation*}
$$

We easily see that

$$
\log n_{k}=2 \sum_{j \leq p_{1} p_{2} \cdots p_{k}} \log p_{j} \asymp p_{p_{1} p_{2} \cdots p_{k}} \asymp p_{1} p_{2} \cdots p_{k} \log \left(p_{1} p_{2} \cdots p_{k}\right)
$$

thus $\log _{2} n_{k}=\log \left(p_{1} p_{2} \cdots p_{k}\right)+O\left(\log _{3} n_{k}\right) \leq k \log p_{k}+O\left(\log _{3} n_{k}\right)$. It is clear that $\log _{2} n_{k} \gg \log \left(p_{1} p_{2} \cdots p_{k}\right) \gg p_{k}$ and $\log p_{k} \leq \log _{3} n_{k}+O(1)$. Therefore

$$
\begin{equation*}
k \geq\left\{1+O\left(\frac{1}{\log _{3} n_{k}}\right)\right\} \frac{\log _{2} n_{k}}{\log _{3} n_{k}} \tag{4.5}
\end{equation*}
$$

Now the required estimate (4.2) follows from (4.4) and (4.5), completing the proof.
As application of Theorem 3(ii), we state the asymptotic formula, which contains a better error term than that in [8] for this special function $\tau^{(e)}(n)$ (see (4.4) and Theorem 5 of [8]).

Corollary 1. Let $g(k):=\prod_{p \mid k} p /(p+1)$, we have

$$
\sum_{n \leq x} \omega\left(\tau^{(e)}(n)\right)=\frac{6 x}{\pi^{2}} \sum_{s=1}^{\infty} \frac{\omega\left(\tau^{(e)}(s)\right) g(s)}{s}+O\left(\sqrt{x} \frac{(\log x)^{2} \log _{2} x}{\log _{3} x}\right) .
$$

Proof. This can be verified by the same argument as in [8].

5. Values of $\tau^{(e)}(n)$ compared to $\omega(n)$

In this section, we shall make a comparison between exponential divisors and prime factors of integers. Although the maximal order of $\tau^{(e)}(n)$ is much larger than that of $\omega(n)$, but the average order of $\tau^{(e)}(n)$ is A_{1} and the average order of $\omega(n)$ is $\log _{2} n$, so that almost all n satisfy $\omega(n)>\tau^{(e)}(n)$. Precisely, we have the following result.

Theorem 4. For any fixed $A>0$, we have

$$
\begin{equation*}
\sum_{n \leq x, \omega(n)>\tau^{(e)}(n)} 1=x+O_{A}\left(x /\left(\log _{2} x\right)^{A}\right) . \tag{5.1}
\end{equation*}
$$

Proof. Putting $S:=\sum_{n \leq x, \omega(n) \leq \tau^{(e)}(n)} 1$, it follows, by Cauchy-Schwarz' inequality, that

$$
\begin{equation*}
S \leq 1+\sum_{1<n \leq x}\left(\frac{\tau^{(e)}(n)}{\omega(n)}\right)^{A} \leq 1+\left\{\sum_{1<n \leq x} \tau^{(e)}(n)^{2 A}\right\}^{1 / 2}\left\{\sum_{1<n \leq x} \omega(n)^{-2 A}\right\}^{1 / 2} \tag{5.2}
\end{equation*}
$$

Let $h(n)$ be the multiplicative function defined by $\mathbf{1} * h(n)=\tau^{(e)}(n)^{2 A}$. It is easy to see that $h(p)=0$ and $h\left(p^{\nu}\right)=\tau(\nu)^{2 A}-\tau(\nu-1)^{2 A}$ for $\nu \geq 2$. Thus the series $\sum_{n=1}^{\infty} h(n) n^{-s}$ converges absolutely for Re es $>\frac{1}{2}$, and this implies

$$
\begin{equation*}
\sum_{n \leq x} \tau^{(e)}(n)^{2 A} \leq x \sum_{m \leq x}|h(m)| / m \ll x . \tag{5.3}
\end{equation*}
$$

Without loss of generality, we can suppose that A is an integer. By Theorem 12 of [2], we have $\sum_{1<n \leq x} \omega(n)^{-2 A} \ll x /\left(\log _{2} x\right)^{2 A}$. Now the relation (5.1) follows from (5.2) and (5.3). This completes the proof of Theorem 4.

The following result, due to Ivić, exhibits integers n for which $\omega(n)=\tau^{(e)}(n)$.
Theorem 5. For each $A>0$, there exists two positive constants $C_{1}(A), C_{2}(A)$ such that

$$
\begin{equation*}
C_{1}(A) x\left(\log _{2} x\right)^{A} / \log x \leq \sum_{n \leq x, \omega(n)=\tau^{(e)}(n)} 1 \leq C_{2}(A) x /\left(\log _{2} x\right)^{A} . \tag{5.4}
\end{equation*}
$$

Proof. Obviously the second inequality of (5.4) immediately follows from Theorem 4. In order to prove the first one, we suppose, as before, that A is an integer.

Considering the integer of type $n=2^{2^{A}} p_{1} \cdots p_{A}$, where p_{1}, \cdots, p_{A} are distinct odd prime numbers, then we have $\tau^{(e)}\left(2^{2^{A}} p_{1} \cdots p_{A}\right)=\tau^{(e)}\left(2^{2^{A}}\right)=\tau\left(2^{A}\right)=A+1=$ $\omega\left(2^{2^{A}} p_{1} \cdots p_{A}\right)$. Thus we deduce that

$$
\begin{equation*}
\sum_{n \leq x, \omega(n)=\tau^{(e)}(n)} 1 \geq \sum_{n \leq x / 2^{2 A}, \omega(n)=A, 2 \nmid n} \mu(n)^{2} . \tag{5.5}
\end{equation*}
$$

Introducing the function $H_{r}(x):=\sum_{n \leq x, \omega(n)=r, 2 \nmid n} \mu(n)^{2}$ we easily see that (cf. (5.14)
of $[8])$ of [8])

$$
H_{r}(x)+H_{r-1}(x / 2)=\sum_{n \leq x, \omega(n)=r} \mu(n)^{2}=\{1+o(1)\} \frac{x}{\log x} \frac{\left(\log _{2} x\right)^{r-1}}{(r-1)!}
$$

Since (5.5) holds for any positive integer A, we must have that

$$
\begin{aligned}
\sum_{n \leq x, \omega(n)=\tau^{(e)}(n)} 1 & \geq \frac{1}{2}\left\{H_{A+1}\left(x / 2^{2^{A+1}}\right)+H_{A}\left(x / 2^{2^{A}}\right)\right\} \\
& \geq \frac{1}{2}\left\{H_{A+1}\left(x / 2^{2^{A+1}}\right)+H_{A}\left(x / 2^{2^{A+1}+1}\right)\right\} \ngtr_{A} x\left(\log _{2} x\right)^{A} / \log x .
\end{aligned}
$$

This proves Theorem 5.
Opposite to the usual divisor function $\tau(n)$, we shall show that $\sum_{n \leq x} \tau^{(e)}(n)$ is dominated by a large number (actually almost all inyegers $\leq x$) of normal integers.

Theorem 6. For any $\varepsilon \in(0,1)$, we have

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ \log _{2} x \mid>\varepsilon \log _{2} x}} \tau^{(e)}(n) \ll x /(\log x)^{\eta} \tag{5.6}
\end{equation*}
$$

with $\eta:=\min \{(1+\varepsilon) \log (1+\varepsilon)-\varepsilon,(1-\varepsilon) \log (1-\varepsilon)+\varepsilon\}>0$. In particular, the mean value $(1 / x) \sum_{n \leq x} \tau^{(e)}(n)$ is given by the integers such that $\omega(n)=\log _{2} x+$ $O\left(\xi(x) \sqrt{\log _{2} x}\right)$, where $\xi(x) \rightarrow \infty, \xi(x)=o\left(\sqrt{\log _{2} x}\right)$.

Proof. For each $z>0$, the function $\tau^{(e)}(n) z^{\omega(n)}$ is multiplicative and $\tau^{(e)}(p) z^{\omega(p)}=z$ for all prime numbers p. Thus we have that $\sum_{n=1}^{\infty} \tau^{(e)}(n) z^{\omega(n)} n^{-s}$ $=\zeta(s)^{z} G(s)$ for Rees >1, where $\zeta(s)$ is the Riemann zeta-function and $G(s)$ is a Dirichlet series absolutely convergent for Rees $>\frac{1}{2}$. By a standard analytic argument (see the proof of Theorem II.5.3 of [11]), we can show that

$$
\sum_{n \leq x} \tau^{(e)}(n) z^{\omega(n)} \ll x(\log x)^{z-1}
$$

Hence we deduce that

$$
\left.\begin{array}{c}
\sum_{\substack{n \leq x \\
\sum^{(e)}(n) \leq}} \sum_{n \leq x} \tau^{(e)}(n)\left\{(1+\varepsilon)^{\omega(n)-(1+\varepsilon) \log _{2} x}\right. \\
\left|\omega(n)-\log _{2} x\right|>\varepsilon \log _{2} x
\end{array} \quad+(1-\varepsilon)^{\omega(n)-(1-\varepsilon) \log _{2} x}\right\} \ll x(\log x)^{-\eta},
$$

where η is defined as in Theorem 6. Noticing that $\eta=\min \left\{\int_{1}^{1+\varepsilon} \log t \delta t, \int_{1-\varepsilon}^{1} \log \frac{1}{t} \delta t\right\}$, we immediately see $\eta>0$ for any $\varepsilon \in(0,1)$. This proves the inequality (5.6). Combining this with (1.4) yields the second assertion. The proof of Theorem 6 is finished.

Remark 2. In view of (1.4), it is easy to show that the function $\tau^{(e)}(n)$ does not have a monotone normal order.

References

[1] E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251.
[2] J.-M. De Koninck, On a class of arithmetical functions, Duke Math. J. 39 (1972), 807-818.
[3] P. Erdős and A. Ivić, On the iterates of the enumerating function of finite Abelian groups, Bull. XCIC Acad. Serbe des Sciences et des Arts, Sci. Math. 17 (1989), 13-22.
[4] E. Fouvry, Sur le problème des diviseurs de Titchmarsh, J. Reine Angew. Math. 357 (1985), 51-76.
[5] E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc. (3) 63 (1991), 449-494.
[6] E. Fouvry et G. Tenenbaum, Diviseurs de Titchmarsh des entiers sans grand facteur premier, /in: Analytic Number Theory (Proceeding, Tokyo, 1988) (eds K. Nagasaki et E. Fouvry) LNM 1434, 86-102, Springer-Verlag, Berlin-Heidelberg-New York, 1990.
[7] E. Fouvry et G. Tenenbaum, Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques et applications, Proc. London Math. Soc. (3) 72 (1996), 481-514.
[8] A. Ivić, On the number of Abelian groups of a given order and on certain related multiplicative functions, J. Number Theory 16 (1983), 119-137.
[9] A. Ivić, On the maximal order of certain arithmetic functions, Filomat (Niš) 9:3 (1995), 483492
[10] M.N. Subbarao, On some arithmetic convolutions, in The Theory of Arithmetic Functions, LNM 251, 247-271, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[11] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995.
[12] J. Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, J. Théorie des Nombres de Bordeaux 7 (1995), 133-142.

Abdelhakim Smati	Jie Wu
Département de Mathématiques	Laboratoire de Mathématiques
Unité associée au CNRS, URA 1586	Institut Elie Cartan - UMR CNRS 9973
Université Limoges	Université Henri Poincaré, Nancy 1
87060 Limoges cédex	54506 Vandœuvre-lès-Nancy
FRANCE	FRANCE
e-mail: smati@cict.fr	e-mail: wujie@iecn.u-nancy.fr

