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ON THE EXPONENTIAL DIVISOR FUNCTION
A. Smati and J. Wu
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Abstract. We investigate the exponential divisor function and establish
several asymptotic formulas involving this function.

1. Introduction

The notions of exponential divisor and exponential divisor function was intro-
duced by Subbarao [10]. Let p, with or without subscript, denote a prime number.
For n = p{*---p;* (canonical decomposition of the integer n > 1), we call d an
exponential divisor of n if d = p{* -~ pi* with pjlv; (1 < j < k). Let 7(®)(n) be
the number of such divisors of n with convention 7(¢)(1) = 1 and we call it the
exponential divisor function. This function is multiplicative and satisfies

(1.1) ) = [[ =),

p¥[In
where 7(n) is the usual divisor function and p” ||n means that p” | n, but p**{n. In
particular, 7(¢) (p¥) = 7(v) so that 7(°)(n) is prime independent. Moreover 7(¢)(n)
depends only on the squarefull kernel of n. More precisely, each integer n > 1 has

the unique representation n = gs with (g, s) = 1, where ¢ = ¢(n) is squarefree and
s = s(n) is squarefull, and we have

(1.2) (e (n) = () (s).

Such a function is called an arithmetical function with squarefull kernel, or simply
an s-function.

It seems interesting to make a systematic investigation of 7(¢)(n). For maxi-
mal order of 7(¢)(n), Erdés (cf. Theorem 6.2 of [10]) showed

log 7(¢)(n) log, n _ log2

(1.3) lim sup

n— 00 logn 2’
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where log,, is the k-fold iterated logarithm. Recently Wu [12, Théoréme 1] proved,
by a simple convolution argument, the asymptotic formula

(1.4) Zr(e)(n) = Az + Ay 2t/? + O(z*° log z),

n<z

where Ay =T (1+ X,2,{r(v) — (v — 1)}p™"), A3 are two effective constants.
This answers an open question in [10].

The aim of this paper is to consider further other analogues of some known
results on 7(n) in the case of 7(¢)(n): Titchmarsh’s exponential divisor problem,
mean value of 7(¢) (n — 1) over integers free of large prime factors, - - - etc. Most of
our results can be generalized to other prime-independent multiplicative s-functions
f,onlyif f*(v) := f(p”) does not increase too rapidly. To avoid unnecessary length,
we restrict ourselves to the case of 7(¢) (n).

Acknowledgements. The authors are grateful to A. Ivi¢ for his comments
on an earlier version of this paper.

2. Exponential divisor problem of Titchmarsh

The Titchmarsh divisor problem consists of the evaluation of T'(z) :=
Zp<x 7(p — 1). The best result known to date is due to Fouvry [4, Corollaire
1], Bombieri, Friedlander and Iwaniec [1, Corollary 2], who independently proved,
by an application of a theorem of Bombieri—Vinogradov type, that for any fixed
A > 0, we have

T(z) = Biz + By liz + O4(z/(logz)™),

oot 1 log p
liwrz/ —  Bi=|[(1+ ) B=y-) /e,
> logt ' 1;[( p(p—l)) ’ Xp:lﬂ?(p—l)

and 7 is the Euler constant.

We propose here to consider the exponential divisor problem of Titchmarsh,
i.e. to evaluate the summatory function T(¢) (z) := 2p<a 7(¢) (p — 1). Our result is
as follows.

THEOREM 1. For any fized A > 0, we have
T (z) =Cliz+ Oy (a:/(loga:)A)

with C =T, (1+ X2, {r(v) — 1}p™).

Proof. Here and in the sequel, the letters s and g denote respectively generic
squarefull and squarefree integers. As usual, let u(d) be the Mobius function and
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¢(d) the Euler function. Writing p — 1 = ¢s with (¢,s) = 1 and in view of (1.2),
we find that

N(z) = r)(s) S 1=3r) > p(n)®.

s<z ¢<(z-1)/s s<wz n<(z—1)/s
7s+1=p, (¢,5)=1 ns+1=p, (n,s)=1

With the aid of the relation

(2.1) un)* = 3 u(d)

d?|n

we can show, by interchanging the summations and the Md&bius inversion formula,

that
=> m906) Y uld) > 1
s<wz d<+/(z—1)/s 1<(z—1)/d%s
(d,5)=1 d*ts+1=p, (£,5)=1
=2 m6) X wddY um) YL
s<z d<+/(e—1)/s m|s n<(x—1)/d*ms
(d,s)=1 d*msn+1=p

Obviously, the last sum over n is equal to the number of primes not to exceed x
and congruent to 1 modulo d?ms. Defining 7(z;a,f) ;= |[{p <z :p=a (mod ¢)}|
for (a,f) =1, it follows

(2.2) T (z) = Z ) (s) Z Z p(m) m(z; 1, d*ms).

85 d< <z—1)/s
(d,s)=1

Let Y, Z € [1, (logz)'°4] be two parameters to be chosen later. We divide
the triple sums on the right-hand side of (2.2) into three parts:

T\ (z) == Z 7 (s) Z Z p(m) w(z; 1, d*ms),

s<Y d<Z
(d,s)=
TZ,(e) (z) := Z 7€) (s) Z Z,u m(x; 1, d*ms),
=14 Z<d<\/(z-1)/s mls
(d,s)=1

Tée) (x) := Z @) (s) Z Zu 7(x; 1, d*>ms).
Y <s<z d< /(Ifl)/s m|s
(d,s)=1

Using the trivial estimate

(2.3) m(z;1,d*ms) < x/d*ms
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and noticing that

Z \/— ZLU <<H(1+p+0( ))<<(10gY)

s<Y p<Y

we deduce, by Abel summation, that

(s Iu ,ogY)?
(2.4) @) <z Z
s>Y m|s \/}_/

Similarly, we have

(2.5) (@) <2y
s<Y

7@ (s

ZW |Z|

ml|s a>7Z

It remains to evaluate Tl(e) (z). For this, we write Tl(e) () = Pi(z,y)+Ri(2,y),
where

Pi(z,y) == Z 79 (s) Z ZH clllzj:ns)

s<Y <z
(d,s)=1
. liz
Ri(z,y) ::ZT()( Zu { (z;1,d*ms) — W}
s<Y < Z

Since d?>ms < (ds)? < (logz)?°4, Siegel-Walfisz’ theorem [11, Theorem I1.8.5]
gives us

Ry (z,y) K xe~c1Viose 7 Z () (5)290) « ge~1VIogT Z7\/y Z ) ()29 /\/s
s<Y s<Y

< mefclx/logz Z\/}_f H (1 +4p71 + O(p73/2)) < mef%\/logz’
p<Y

where ¢, is an absolute positive constant.

For (d, s) = 1 and m|s, we easily show that p(d>ms) = do(d)mep(s). Recalling
the relation -\ pu(m)/m = ¢(s)/s, we have

T()

(2, y) —hxz

s<Y <z ()
(d,s)=1

pd) (logy)* . 1.
Z d——C’hx—{—O(Thw—FEhm),
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where we have used the following identities

7(8) (s) p(d) 3 1 (6 (s) 3 1 -1
2 (Z m_l}(l p(p—l))zS: s H(l p(p—l))

s d,s)=1 pls
1 1 -1& 7'(1/)>
1;[( p(p—l))< ( p(p—l)) Vz:; P
These estimates imply that
. logY)? . 1 e
2. T () =C1 ( liz+—1 Viegw)
(2.6) () Cl$+0( i izt Zliztae )

Combining (2.4)—(2.6) with (2.2), we obtain that

z(logY)?
VY

Now the required result follows from on taking ¥ = (logz)*4 and Z = (logz)”.
The proof of Theorem 1 is finished.

T(e)(x):C’Iix+O(%+ tae T log’”).

Remark 1. (i) The relation (1.4) and Theorem 1 show that the integers n
and p — 1 possess respectively A; and C exponential divisors, in the average sense.
The fact of C > A; attests to the bad distribution of prime numbers p in the
corresponding congruence class.

(ii) It is worth indicating that we use only Siegel-Walfisz’ theorem and the
trivial estimate (2.3) instead of the Bombieri-Vinogradov theorem and Brun—
Titchmarsh’s inequality, as in the classical divisor problem of Titchmarsh.

3. Mean value of 7(¢)(n — 1) over integers free of large prime factors

Let P(n) be the largest prime factor of the integer n > 1 with the convention
P(1) =1. For x > y > 2, we define u := (logz)/logy and

S(ey):={n<e: P(n) <y}, W(ey) =Sy, Ty = Y 7n-1).
neS(z,y)

Fouvry and Tenenbaum [6] proved that there exists a positive constant 7 such that
the asymptotic formula (see (1.16) of [6])

log(u + 1) ) }

T(z,y) = ¥(w,y) loga{1+0( or s

holds uniformly in the region: z > 3, z"'08s /10822 < ¢ < g,

In this section, we shall consider an analogue: T (z,y) :== 5. 7(¢)(n—1).
We have the following result. nes(z,y)
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THEOREM 2. Let Ay be defined as in (1.4). For any € > 0, the asymptotic
formula

() (z,y) = A U(z, y){l + 0. ((log2 y)z/ logy)}
holds uniformly for

(C.) >3,  exp{(logz)’*} <y<u.

Proof. Let ¥(z,y;a,f) :=|{n € S(z,y) : n = a (mod ¢)}|. As before, we can prove
that

B T =37 Y @)Y um) U,y 1, Pms).
m|s

ssz d<\/(z=1)/s
(d,s)=1

Let Y, Z € [1,2'/1°] be two parameters to be chosen later. We divide the triple
sums on the right-hand side of (3.1) into three parts:

Tl(e) (x,y) := Z (e (s) Z wu(d) Z w(m) ¥(x,y; 1, d*ms),

s<Y d<Z ml|s
(d,s)=1

T @y) =316 S )Y pm) ¥,y 1,d*ms),
sk Z<d<y/(z=1)/5 m|s

(d,s)=1

ey = Y T D u(d) Y ulm) e,y L, dms).
¥<sss d<\/(z=1)/s mls

(d,s)=1

Using the inequality ¥(z,y;1,£¢) < x/f+1, we can prove, as in the proof of Theorem
1, that

(3.2) TS (z,y) < x/Z,  Ti(x,y) < z(logV)?/VY.

(e)(

It remains to evaluate T} (z,y). For this, we write

(3.3) T (2,y) = Pi(z,y) + Ri(x,y),
where

)= S ) um) T,

s<Y d<Z,(d,s)=1 m|s

Riey) =m0 S (@) S wlm) B, i1, Ems),
m|s

s<Y d<7,(d,s)=1

U(z,y) = Hn e S(z,y): (n,0) =1}, E(z,y;0,0) := ¥(z,y;0,() -
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In order to control the error term R;(z,y), we need an estimate of Bombieri—
Vinogradov type for S(z,y): For any fired A > 0 and € > 0, the inequality

E v
(3.4) E 7(6)° max |E(z,y;a,0)] <a.e (z,y)
0<y/z/ exp{(log z)1/3} (a,0)=1 o

holds uniformly in the region (C.). This is (7.1) of Fouvry and Tenenbaum [7].

Introducing
wit) =3 3 3 A uld)uim)?

s<Y d<Z m<Y
d?ms={
we can write |Ry(z,y)| < Ee<(yz)2 w(l)|E(z,y;1,¢)|. Obviously we have w(f) <
7(£)3. Since (Y Z)? < 2*/®, the estimate (3.4) implies that

R 3 z U(z,y)
. < 3 . . ) )
(3.5) |Ri(z,y)| < =, T(0)°|E(z,y;1,0)| <a, (logw)A

In order to approximate to the quantity ¥gz,,.(x,y) in the principal term
Py (z,y), we shall need Theorem 1 of Fouvry and Tenenbaum [5]: Under the fol-
lowing conditions

(H.) >3,  exp{(logyz)*/**} <y <a,
logy 1—e
e 1 2) < | ————— ,
(Q2) 0gz(f+2) < (log(u+ 1))

we have uniformly

Uy(z,y) = #\Il(x,y){l + O(%)}'

Since d*ms < (Y Z)? < 2?/°> and (z,y) is in the region (C.), it is clear that the
conditions (H.) and (Q.) are satisfied. Hence we have

7 (s)(s T
(3.6)P (z,y) = \If(:n,y){ Z M Z % + 08(10g2(YZy) log, )}

s<Y 5 d<Zz,(d,s)=1 IOgy
log,(Y Zy) log, z  (logY)? 1
— {10 (REETNReE  LELE , 2))

The estimates (3.3)—(3.6) imply that T(°)(z,y) = A; ¥(z,y){1 + O.(R)}, with

_log,(YZy) logyz  z(logY)? T

R: .
logy U(z,y)VY  Y(z,y)Z
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Taking Y = Z = '/'° and using ¥(z,y) > zu " valid for z > y > 2 [11,
Theorem II1.5.13], we can show that

z(logY)? /¥ (z,y)VY +z/¥(z,y)Z < 1/logz.
This concludes the proof of Theorem 2.
4. Maximal orders for Q(7(?)(n)), w(r(?(n)) and 7(°) (r(¢) (n))

As usual, let Q(n) and w(n) be the number of prime factors of n and the
number of distinct prime factors of n, i.e. Q(n) := Ep,,”n v and w(n) = Zp‘n 1.
Erdés and Ivi¢ [3] investigated the maximal orders for w(7(n)) and log7(7(n)).
Recently Ivi¢ [9] further developed the method of [3] to study the maximal orders
for w(f(n)) and log f(f(n)) for a fairly wide class of prime independent, integer
valued multiplicative functions f. Their results (cf. (3.3) and (3.4) of [3], (11) and
(12) of [9]) are approximate. As they indicated, it seems difficult to determine

precisely these maximal orders, even in the case of f(n) = 7(n), a(n) (the number
of nonisomorphic abelian groups of order n).

In this section, we consider another interesting example: f(n) = 7(¢)(n).
THEOREM 3. (i) A maximal order for Q(7(¢)(n)) is (logn)/2log, n.

(ii) A maximal order for w(r(¢)(n)) is (log, n)/(log 2) logs n.

(iii) We have

& o7 (9 1) 5 {1+ o1} ((222)",

In addition, the inequality

log, n
(e) (-(e) > =P
(4.2) log 74 (719 (n)) > {log2+ o(1)} Tog, 7

holds for infinitely many integers n.

Proof. On the one hand, using the relation (1.3), we immediately see that

log 7(¢) (n) logn

Q(rl® <= /<l 1 :

(T (n)) log2 — { +of )}logzn

On the other hand, putting ng := (pipa---px)? (k = 1,2,---), where p; denotes
the jth prime number, we have Q(7()(ny)) = Q(2*) = k. It is clear that logny, <
2k log pr, and Chebyshev’s estimate implies that logng > pg. Thus it follows that
k > (logny)/(21ogy ni){1 + O(1/logy ni) }. This proves the first assertion.

In view of (1.1), we can write that

(4.3) w(r(n)) = w( 1 T(y)) - w( T II (n+ 1)).

p¥|In plInp’pllv
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Noticing that p < (logv)/log2 and v < (logn)/log2, we have p < (log, n)/log2+
O(1). It is clear that the right-hand side of (4.3) does not exceed the number of
prime numbers < log, n/log2 + O(1), i.e.

1 1 log, n
() .
w(T (”)) < 7r(log2 n/log2 + 0(1)) < {10g2 + O(log3n)}log3n'

In order to establish the lower bound, we consider ny := H§:1 p?prl (ke N).
We have w(r(®)(ny)) = W(H§:1 T(2Pi7Y)) = W(H§:1 pj) = k and 27 logp, <
(log, k)

(log 2)

logny, < 2P*~'klog pr. Using the relation py, ~ klogk, we find k ~ logs ng,

(k — 00).

Finally we consider (ili). We write log7(®) (r(¢)(n)) = > g (n) l08 T ().
For p” || 7¥)(n), the relation (1.3) implies that v < (log7(®(n))/log2 < { +
o(1)}(logn)/log, n. Thus by a well-known result, we get

log v

log(v) < {log2+o(1)}lo < {log2+o(1)}10g2n

gV logsn’

This and (ii) yield that

o log, 1 . log, 1\ 2
log 7' (7 (n)) < {1°g2+°(1)}@w(T( ') < {Ho(l)}(loggn) '

This proves the inequality (4.1).
Next let ng := (p1p2 - Ppips--pi)? (K =1,2,--+), we have

(4.4) log 7(©) (T(e) (ny)) = log (e (201727 Pk) = log T(p1p2 -+ pi) = klog2.

We easily see that

logng =2 Y 108Pj X Ppipspn X P1D2 -~ Pr10g(P1D2 -+ Pk,
J<pip2--Pr

thus log, ng = log(pips - - - pi) + O(logs ni) < klogpr + O(logg ng). It is clear that
log, ng > log(pips - - - pr.) > pr. and log pr, < logs ny + O(1). Therefore

(45) k2 (o () o

Now the required estimate (4.2) follows from (4.4) and (4.5), completing the proof.

As application of Theorem 3(ii), we state the asymptotic formula, which
contains a better error term than that in [8] for this special function 7(¢)(n) (see
(4.4) and Theorem 5 of [8]).
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COROLLARY 1. Let g(k) := [, p/(p+1), we have

7 o= w(7(9)(s))g(s ogx)?log, =
Y w(rOm) = = ( (S))g()+0(\/5(1 g)° log, ).

2
m logs x
n<x s=1 83

Proof. This can be verified by the same argument as in [8].

5. Values of 7(°)(n) compared to w(n)

In this section, we shall make a comparison between exponential divisors and
prime factors of integers. Although the maximal order of 7(¢)(n) is much larger
than that of w(n), but the average order of 7(°)(n) is A; and the average order of
w(n) is log, n, so that almost all n satisfy w(n) > 7(¢)(n). Precisely, we have the
following result.

THEOREM 4. For any fized A > 0, we have

(5.1) > 1=a+ Oa(z/(logyz)™").

n<z,w(n)>7()(n)

Proof. Putting S := > 1, it follows, by Cauchy—Schwarz’ in-
equality, that n<z,w(n)<r)(n)
(5.2) " B
7% (n) () (,,\24 1/2 o2
< <
S_1+Z <w(n)> _1+{Z7‘ (n) } {Zw(n) }
1<n<z 1<n<z 1<n<z

Let h(n) be the multiplicative function defined by 1 % h(n) = 7(¢) (n)?4. It is easy
to see that h(p) = 0 and h(p”) = 7(v)?>4 — 7(v — 1)?4 for v > 2. Thus the series
> o2 h(n)n™* converges absolutely for Rees > 1, and this implies

(5.3) Z r@m)* <z Z |h(m)|/m < x.

n<z m<x

Without loss of generality, we can suppose that A is an integer. By Theorem 12 of
[2], we have 3, _, ., w(n) =24 < z/(log, )**. Now the relation (5.1) follows from
(5.2) and (5.3). This completes the proof of Theorem 4.

The following result, due to Ivi¢, exhibits integers n for which w(n) = 7(¢) (n).

THEOREM 5. For each A > 0, there exists two positive constants Cy (A), C2(A)
such that

(5.4) C1(A)z(log, z)*/logz < > 1< Cy(A)z/(log, )2

n<z,w(n)=7()(n)

Proof. Obviously the second inequality of (5.4) immediately follows from Theorem
4. In order to prove the first one, we suppose, as before, that A is an integer.
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Considering the integer of type n = 22Ap1 ---pa, Where py,--- ,pa are distinct odd
prime numbers, then we have 7(¢) (22Ap1 opa) = 7 (22A) =712 =A4+41=
w(22Ap1 -+-pa). Thus we deduce that

(5.5) > 1> > p(n)?.

n<z,w(n)=7()(n) n<z /224 w(n)=A,2tn
Introducing the function H,.(z) := > u(n)? we easily see that (cf. (5.14)
of [8]) n<z,w(n)=r,2tn
log, )" ~!
H H,_ 2) = 211 1 d (27
D+ Hae) = T ) = (o) o

n<z,w(n)=r

Since (5.5) holds for any positive integer A, we must have that

Z 1Z%{HA_,_l(w/QzAH)+HA(3:/22A)}

n<z,w(n)=r)(n)

> % {HA+1 (m/22A+1) + Hy (m/22A+1+1)} >4 z(log, m)A/loga}.

This proves Theorem 5.

Opposite to the usual divisor function 7(n), we shall show that 3~ .. 7()(n)
is dominated by a large number (actually almost all inyegers < x) of normal inte-
gers.

THEOREM 6. For any ¢ € (0,1), we have

(5.6) > 7 (n) < z/(log z)"

n<z
|w(n)—log, z|>clogy x

with n := min {(1 +¢)log(l +¢) —¢, (1 —¢€)log(l —¢) + &} > 0. In particular, the
mean value (1/z) 3, -, (&) (n) is given by the integers such that w(n) = log, x +

O(&(z)\/log, x), where £(z) — 00, £(z) = o(4/log, ).

Proof. For each z > 0, the function 7(¢)(n)z*(" is multiplicative and
7() (p)2¢P) = % for all prime numbers p. Thus we have that >"°0 | 7€) (n)z()n=3
= ((s)*G(s) for Rees > 1, where ((s) is the Riemann zeta-function and G(s) is
a Dirichlet series absolutely convergent for Rees > % By a standard analytic
argument (see the proof of Theorem II.5.3 of [11]), we can show that

Z 7 (n)2*" « z(logz)* .

n<z



32 Smati and Wu

Hence we deduce that

Z e (n) < Z e (n){(l + E)w(n)—(1+s) log, ©

\w(n)flogfzzbslogz i n<z +(1- E)w(n)—(l—s) log, x} < z(logz)™",

1+e 1
where 7 is defined as in Theorem 6. Noticing that = min { [ logtét, [ logi 6t},
1 1—¢

we immediately see n > 0 for any £ € (0,1). This proves the inequality (5.6).
Combining this with (1.4) yields the second assertion. The proof of Theorem 6 is
finished.

Remark 2. In view of (1.4), it is easy to show that the function 7(¢)(n) does
not have a monotone normal order.
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