PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 61 (75), 1997, 17-20

IT IS CONSISTENT THAT THERE EXISTS AN η_1 -ORDERED REAL CLOSED FIELD WHICH IS NOT HYPER-REAL

Jadran Stojanović and Žikica Perović

Communicated by Žarko Mijajlović

Abstract. We provide an example of a model of ZFC in which there exists an η_1 -ordered real closed field which is not a hyper-real field.

Introduction

In [2] and [7], was asked to find an example of an η_1 -ordered real closed field which is not a hyper-real field. We will construct such an example under some additional set-theoretic assumptions. We will use the characterization of η_1 -ordered real closed fields obtained in [1], and the related results in [2].

1. Background

In this section we recall some definitions and facts, mostly following [1]. Hausdorff generalization of rationals is

 $\mathcal{Q}_1 = \{(x_\alpha)_{\alpha < \omega_1} | x_\alpha \in \{0,1\}, \{\alpha \mid x_\alpha = 1\} \text{ has maximum} \}$

ordered lexicographicaly.

Let $\mathcal{G} = (G, +, 0, \leq)$ be a totally ordered, divisible Abelian group. Absolute value of $a \in G$ is defined as $|a| = \max\{a, -a\}$. An *o*-subgroup \mathcal{H} of \mathcal{G} is convex if for every $b \in H, a \in G, |a| \leq |b| \Rightarrow a \in H$. The principal convex subgroup generated by $a \in G$ is $V(a) = \{b \in G \mid |b| \leq n |a| \text{ for some } n \in \omega\}$. Group \mathcal{G} is Archimedean if all the principal convex subgroups generated by nonzero elements coincide. The maximal convex subgroup not containing a is $V^-(a) = \{b \in G \mid n |b| < |a| \text{ for}$ every $n \in \omega\}$. Obviously, $V^-(a)$ is a subgroup of V(a) and $V(a)/V^-(a)$ is an

AMS Subject Classification (1991): Primary: 12J15, 12J25; Secondary 03E05 Supported by Grant 0401 of Science Fund of Srbija through Mat. Inst. SANU

Perović

Archimedean group. $\{V(a) \mid a \in G\}$ ordered by inclusion is the value set of \mathcal{G} . Let $\mathcal{F} = (F, +, \cdot, 0, 1, -, -^1, \leq)$ be a totally ordered field and Π be the value set of its additive group. We define addition in Π as V(a) + V(b) = V(ab). The ordered group $(\Pi, +, V(1), \leq)$ is the value group of the field \mathcal{F} . For every $a \in F$, $V(a)/V(a)^- \cong V(1)/V(1)^-$ is the residue field of \mathcal{F} .

Let T be a totally ordered set, G a totally ordered Abelian group, and $f \in G^T$. The set $s(f) = \{t \in T \mid f(t) \neq 0\}$ is the support of f. $G\{T\} = \{f \in G^T \mid s(f) \text{ is well ordered}\}$ is an Abelian group under pointwise addition and totally ordered if we define that an element is positive if its minimal nonzero coordinate is positive. If G is an Archimedean group, then T is the value set of $G\{T\}$.

Let F be a totally ordered field and G a totally ordered Abelian group. $K = F\{G\}$ becomes a totally ordered field under multiplication: For $a, b \in K$, $ab(g) = \sum_{x \in G} a(x)b(g - x)$. This is so called the field of formal power series.

 $F\{G\}_{\alpha}$ will denote the *o*-subfield of $F\{G\}$ consisting of the sequences whose support is of cardinality $< \aleph_{\alpha}$.

Let α be an ordinal. An ordered field \mathcal{F} is η_{α} -ordered if (F, \leq) is an η_{α} -set i.e., for every two subsets $H, K \subset F$ such that $|H| + |K| < \aleph_{\alpha}$ and H < K, there exists $a \in F$ such that H < a < K. We will now recall the definition of α -maximal fields introduced by I. Kaplansky.

Definition. Let \mathcal{F} be an ordered field with the valuation V, \mathcal{G} be its value group and α be an ordinal. A sequence $\{a_{\beta} \mid \beta < \alpha\}$ is pseudo-convergent if for every $\delta < \gamma < \beta < \alpha$ we have $V(a_{\beta} - a_{\gamma}) < V(a_{\gamma} - a_{\delta})$. An $a \in F$ is a pseudo-limit of that pseudo-convergent sequence if $V(a - a_{\beta}) = V(a_{\beta+1} - a_{\beta})$, for all $\beta < \alpha$.

Definition. \mathcal{F} is α -maximal if every pseudo-convergent sequence of length less then \aleph_{α} has a pseudo-limit. \mathcal{F} is maximal if it is α -maximal for $|F| = \aleph_{\alpha}$.

We will now recall a few facts from [1]:

THEOREM 1.1. (called Main Theorem in [1]) Let G be a totally ordered Abelian group and α a nonzero ordinal number. G is an η_{α} -set iff (1) its factors are conditionally complete, (2) its value set is an η_{α} -set, and (3) it is α -maximal.

THEOREM 1.2. (called Main Corollary in [1]) Let \mathcal{F} be an ordered field with valuation V and the value group \mathcal{G} . \mathcal{F} is η_{α} -ordered if and only if:

(i) Its residue field is isomorphic to \mathcal{R} .

(ii) Its value group \mathcal{G} is an η_{α} -ordered group.

(iii) It is α -maximal.

Real-closed fields are fields where every positive element is a square, and every polinomial (of one variable) of odd degree has a zero.

The following theorem appears in [1] as Corollary 3.2:

THEOREM 1.3. Let F be a real-closed field, H a totally ordered Abelian divisible group, and α a nonzero ordinal number. Then $F\{H\}_{\alpha}$ is a real-closed field.

Hyper-real fields are the non-Archimedean fields of the form C(X)/M, where X is a completely regular space, C(X) the ring of continuous functions from X to R, and M a maximal ideal in C(X). They are η_1 -ordered and real closed fields. For the basic facts on hyper-real fields one could see [5]. Here we just mention that for a maximal ideal M of C(X), Z[M] denotes the z-ultrafilter consisting of all the zero sets of functions from M. Sometimes we write X_U for C(X)/M and U = Z[M]; U is called a hyper-real ultrafilter. It is free i.e., it has empty intersection.

2. Construction of the example

THEOREM 2.1. Let L be an η_1 -ordered set which does not contain an increasing sequence of type ω_2 . Then $G = R\{L\}_1$ is an η_1 -ordered divisible Abelian group which does not contain an increasing well ordered sequence of size ω_2 .

Proof. By Theorem 1.1, G is an η_1 -ordered divisible Abelian group. We are left with the proof that it does not contain well ordered sequences of type ω_2 . Suppose, to the contrary, that G contains such a sequence e.g. g^{α} , $\alpha < \omega_2$. Let for $\alpha < \omega_2$, $g^{\alpha} = \sum_{\beta < \gamma_{\alpha}} t^{\alpha}_{\beta} l^{\alpha}_{\beta}$, where γ_{α} is a countable ordinal, and $(l^{\alpha}_{\beta})_{\beta < \gamma_{\alpha}}$ is a well ordered sequence in L. Since γ_{α} are countable ordinals, there exists $S \subset \omega_2$ of cardinality \aleph_2 such that g^{α} is constant for $\alpha \in S$. Without loss of generality we can suppose that $\gamma_{\alpha} = \gamma$, $\alpha < \omega_2$. We will recursively define a sequence k_{δ} of ordinals below ω_2 .

Consider the sequence $l_0 = (l_0^{\alpha})_{\alpha < \omega_2}$. It is nondecreasing. Since L does not contain an increasing sequence of type ω_2 , l_0 is ultimately constant. Let k_0 be the minimal index after which l_0 is constant. If $\beta = \delta + 1$, then k_{β} is the minimal ordinal after k_{δ} such that t_{β}^{α} is constant for $\alpha > k_{\beta}$. On limit steps we define $k_{\beta} = \sup\{k_{\delta}|\delta < \beta\}$. This finishes the construction of the sequence. Obviously $k_{\beta} < \omega_2$, for $\beta < \gamma$. Let $k = \sup\{k_{\beta}|\beta < \gamma\}$. Since γ is countable, and all the k_{β} , for $\beta < \gamma$, are less than ω_2 , we have $k < \omega_2$. It is evident from the construction that for every $\beta < \gamma$, and all $\alpha > \kappa$, l_{β}^{α} does not depend on α . Obviously, without loss of generality we can suppose that $g^{\alpha} = \sum_{\beta < \gamma} t_{\beta}^{\alpha} l_{\beta}$ for all $\alpha < \omega_2$.

Since $(g^{\alpha})_{\alpha < \omega_2}$ is well ordered, and the ordering of G is lexicographic, $(t_0^{\alpha})_{\alpha < \omega_2}$ is a well ordered sequence in R. Since R allows just countable well ordered subsets, there exists δ_0 , such that t_0^{α} is constant for $\alpha > \delta_0$. Repeating this construction we get a sequence $(\delta_{\beta})_{\beta < \gamma}$, of ordinals smaller than ω_2 , such that for $\alpha > \delta_{\beta}$, t_{ξ}^{α} does not depend on α , for every $\xi < \beta$. Let $\delta = \sup\{\delta_{\beta}|\beta < \gamma\}$. Since γ is countable, $\delta < \omega_2$. Hence, the sequence g^{α} is constant for $\alpha > \delta$, contradicting the assumption that it is strictly increasing. This contradiction proves the statement. \Box

Let G be any group from the theorem above and $F = R\{G\}_1$. Then we can prove the following statement.

THEOREM 2.2. The field F is an η_1 -ordered real closed field which does not contain a well ordered increasing sequence of type ω_2 .

Perović

Proof. F is an η_1 -ordered real closed field by Theorem 1.3. It does not contain a well ordered sequence of type ω_2 , by the theorem above, taking G for L, and F for G. \Box

Now we specify the ordering L from Theorem 2.1, to be Q_1 . Following the ideas from [2], we use the result from [6], that there exists a model of ZFC in which $2^{\aleph_0} = \aleph_2$, $2^{\kappa} = \kappa^+$, for $\kappa > \aleph_0$, and in which there exists $F \subset \omega^{\omega}$ of size \aleph_2 , such that F is well ordered under relation \prec , defined as "smaller almost ewerywhere".

THEOREM 2.3. There exists a model of ZFC in which every hyper-real field contains a sequence of type ω_2 .

Proof. Let \mathcal{M} be the model mentioned just before the theorem. Let $C(X)/M = X_U$ be any hyper-real field. By Theorem 8.2 in [2], there exists a free ultrafilter p on N such that N_p elementarily embeds in X_U . Since p is free, it contains Freschet filter. Henceforth, for $[F] = \{[f]_p : f \in F\} \subset N_p$, we have that [F] is a well ordered sequence of type ω_2 in N_p . Since N_p embeds in X_U , we have that X_U contains a well ordered sequence of type ω_2 . \Box

From the two theorems above we get the assertion.

THEOREM 2.4. There exists a model of ZFC in which there exists an η_1 ordered real closed field which is not isomorphic to any hyper-real field.

References

- [1] N. L. Alling, On the existence of real-closed fields that are η_{α} -sets of power κ_{α} , Trans. Amer. Math. Soc. **103** (1962), 341–352.
- [2] M. Antonovskij, D. Chudnovsky, G. Chudnovsky and E. Hewitt, Rings of real-valued continuous functions II, Math. Zeit. 176 (1981), 151-186.
- [3] P. Erdös, L. Gillman and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math. 61 (1955), 542–554.
- [4] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.
- [5] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.
- [6] S. H. Hechler, Short complete nested sequences in $\beta N \setminus N$ and small almost disjoint families, Gen. Topology Appl. 2 (1972), 139–149.
- [7] M. Henriksen, Rings of continuous functions from an algebraic point of view, in: J. Martinez, ed., Ordered Algebraic Structures, Kluwer, Amsterdam, 1989, 143-174.
- [8] Ž. Perović, Cardinalities of η_1 -ordered fields, Proc. Amer. Math. Soc. **118** (1993), 379–384.

Filozofski fakultet Univerzitet u Nišu 18000 Niš Yugoslavia (Received 25 12 1996)