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FOR FINITE DIFFERENCE SCHEMES
APPROXIMATING HOMOGENEOUS INITIAL-BOUNDARY
VALUE PROBLEM FOR HYPERBOLIC EQUATION
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Abstract. Applying the interpolation theory of the function spaces, we ob-
tain a new convergence rate estimate for the weak solution of hyperbolic initial-
boundary value problem.

1. Introduction. In the case of elliptic boundary value problem, the
convergence rate estimates for finite difference schemes of the form

llu = vllgp < CR*F|lullgs, s>k,

are said to be compatible with the smoothness of data [3]. Here u denotes the
solution of the boundary value problem, v denotes the corresponding discrete ap-
proximation, h is the discretisation parameter, H® denotes the standard Sobolev
space and H ,’f is the discrete Sobolev space. The compatible estimates may also be
derived in parabolic case [4]. But in the hyperbolic case, the usual estimates are
not compatible with the smoothness of data [5]:

lu—vllo, (ar) < Ch**  ullpre(q), s>k+1,

These estimates are usually obtained using the Brumble-Hilbert lemma [2].

A few years ago, Zlotnik [12] applied the interpolation theory to obtain for
the hyperbolic projection difference scheme a convergence rate estimate of the order
2(s — k)/3. Using also the interpolation theory, B.S. Jovanovi¢ derived in [6] the
convergence rate estimate of the same order for the finite difference schemes in the
case of homogeneous hyperbolic equation with constant coefficients. Here we show
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how the same estimate can be obtained in the case of homogeneous hyperbolic
equation with variable coefficients.

2. Statement of the problem Let L, = L;(0,1) (1 < ¢ < 00) be Lebesgue
spaces of integrable functions, H®* = H?(0, 1) standard Sobolev spaces, D the space
of infinitely differentiable functions with compact support in (0,1) and H§ is the
closure of D in H?®. (,) and || || denote the inner product and the norm in L,
respectively. Suppose a € Ly, such that

(1) a>ayp>0 in (0,1) ae.

For the operator L: H} — H~! defined by Lv = (av')’ there exist 0 < A\; < X2 <

..., limg A\, = 00, such that Ly, = Appr (k € N); the sequence of eigenfunctions

(pr)keny C Hg is an orthonormed topological basis of Ly (see [8]). Introduce the
o0

spaces V* (a > 0) by V* = {v € Lyo|||v|}« = Z)\gﬁ,ﬁ < oo}, where ¥ = (v, pr)
k=1

are the Fourier coefficients of v in the basis (¢ )ren-

Consider the initial-boundary value problem for the homogeneous second-
order hyperbolic equation (IBVP) in the domain @ = (0,1) x (0, T:

0%u 0 ou
ol %(a(ﬂf)%)a (z,t) € Q
uw(0,t) =u(l,t) =0 t€]0,T)
ou
’U,(:L’,O)ZUO(I‘), E(x,()) :ul(x)> LS (0)1)
There is the unique weak solution of this problem for ug € V1, u; € V0 (see [10],
[12]). It can be represented as the Fourier series

(2) u(e,t) =Y ikpr(x),
k=1

(3) U (t) = 11560) cos (mt) + \11/% sin (mt)

(here 11560), ﬂ,gl) are the Fourier coefficients of the functions wg, w1, respectively).

The relation (3) shows that the series (2) also has meaning for ¢ < 0. In such a way,
the solution of (IBVP) can be extended in ¢ on [T, T]; this extension we shall also
denote by u. If ug € V, u; € V71, it satisfies the relation

(4) S 10"u/08 |ya-1 < Clluollve + lJuallya-1),
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where | € Z, 0 < I < « (see the analogous relation in [9] and the proofs of
Propositions 1.1 and 1.3 in [12]). Then, in the perfectly same way as we deduced
Theorem 3 in [9], we obtain, applying (4) that for a € C? satisfying (1), the
following assertion holds:

If up € V¥, u; € VoL then

() (S 10"u/0t! || =1 < C(lluollve + [lur|lya-1),

where 1 < a<4,l€ Z,0<[<a.

3. Discretisation. Lower estimate. Let @, be a uniform mesh on [0, 1]

0
with the stepsize h = 1/n, wp, = @, N(0,1) and w;, = w, U{0}. We set H(w) to be
the space of all functions defined on @, vanishing at 0 and 1. Introduce the finite
differences in z:

vp = (o(@ + ) = o(@)/h,  vs = (0(z) — vz — b)) /h.
We define the following discrete norms

Wil = (0 Y 2@) ") ol = (0 Y v2@)

TEWHh TEWR

ol = ()1 + Ival*)H2.

1/2

0 0
The operator Ly: H(w) — H(w) defined by

_ [ —3l(ava)s + (avs)a], @€ wn
th_{O, z € {0,1}

0
is positive on H(w) and satisfies the inequalities
(6) cllvelln < lvllcz,) < Cllvelln:

Let @, be a uniform mesh on [—7/2,T| with the stepsize 7 = T'/(m — 1/2),

wr =0, N(0,T), and w, = w,; U{—7/2} (see [6]). Let us introduce the following
notations:

v(t+71), v=uvt-71), v =0v(j-1/2)71),

1=w+v)/2, v=0-v)/T, vi=(v—0)/T.

v=uv(t),

For functions defined on @, x @, we define the norms

1/q
Ivllc. gy = max o, Ol and ol r = (7 3 G 0IE)

t tCwr
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One can easily deduce

0
LEMMA 1. For v € H(w) the inequality ||v]|(14+0.25r2(c—1/4)L,) < Cl|v]|n holds
if one of the following two conditions is satisfied:

(i) If o > 1/4, then 7/h < C, where C' is an arbitrary constant;

(i) If o < 1/4, then T/h <4,/ (1 P for an so € (0,1), where ¢1 is a constant
depending only on the function a. EI

Let S, and S; denote the Steklov smoothing operators in z and ¢:

z+h/2 t+‘r/2
1
St =3 [ feds Sf@n=1 [ fwod
z—h/2 t T/2

For the approximation of (IBVP) we shall use a weighted finite difference
scheme (FDS) (see [7]):

vz = —Lp(00 + (1 — 20)v + 00),
v(0,t) = v(1,t) =0, t €W,

T T
0 = ug — §S§u1, vl =ug + §S§u1

Let z = u — v denote the error of the approximation.

Suppose ug € V1, u; € VO a € C? satisfying (1) and that one of conditions in
Lemma 1 holds. Then applying the a priori estimate for FDS (see [7]) one obtains

(7 N(v) < CN(W°),
where N?(w) = [[welltry 0052 (5—1 /40,y T 1@l[¢r, ). Using Lemma 1, we have
(8) 102 M1 40.257 (5 1/2)2,) < Cllolln = CllSiun[ln < Cllua|

(the last inequality in (8) follows from the Cauchy-Schwartz inequality). The in-
equality (6) yields

122y = llwollz,) < Cll(uo)alln < Clluoll

(for the last inequality see [6]). From this, using equivalency of the norms in H'!
and V! (see [9]), we obtain

172y < Clluolly:
The estimates (7), (8) and the last inequality yield

(9) max 1oll(z,) < Cllluollvr + lluillvo).
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Further, thanks to (5) (for I = 0, a = 1), we obtain

l@ll) < Cll@elln < ¢ max [[0u/ow] < Clljuollvr + [furllve),

whence,

(10) max |all(L,) < C([luollvr + [lurllvo)-

Ewr

Finally, from (7), (9), (10) follows the lower estimate

(11) 12llc, ) < Cllluollve + llutllvo).

4. Upper estimate. In this section we suppose that uy € V4, u; € V3,
a € C? satisfying (1) and that one of the conditions in Lemma 1 holds. Then
the inequality (5) implies 6%u/0t%,0%/0xz> € H*(Q). Thus, applying the embed-
ding theorem H2(Q) C C(Q) (see [11]) we conclude that 0%u/dt%,0%u/0z? are
continuous. The error z is the solution of the following finite difference scheme:

7 = —Ln(0Z + (1 - 20)z + 02) + ¢,
z(0,t) = 2(1,¢t) = 0, tew,
2 =u (a:, —g) —up(x) + gSiul, 2l =u (a:, %) —up(z) — %Sﬁul,

where ¢ = sz + Ly (0@ + (1 — 20)u + o). The application of the a priori estimate
to z yields

(12) N(z) < C(N (%) + %nwuh_,@“)),

where ¢ = 1 if (i) in Lemma 1 is satisfied or ¢ = s if (ii) is satisfied. Let us first
estimate N (2°). Decompose the first term in N (2°):

g teR)—ued) o

-
T/2
1 ou 2
= / E(%’?)dﬂ —uy(z) + ui () — S;ur = g1(z) + ga(z).
—7/2
From
B 9 N 9
u u u
n@ =7 [ Frend-F@n=-1 [ [©¢-nggeodd
—7/2 —-7/2 0
/2 n x+h

o= [ ] [ € mppaie.azican

-7/2 0 =z
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we have
g1l < Cll(g1)e |l
x+h T/2 t ,
—2,-2,
(13) hy o hr / ‘ T ‘dg‘dtdg)
TEWh z —‘r/2 0
0*u
< 2
s 0T emaT T 0t30x
Further, the equality
z+h s
92(x) = w1 (x) — Sjus = / / — s)uy (&)dEds,
z—h

and the equivalence of the norms in H? and V2 imply
(14) llgalln < CR?[luf || < CR?||uallv=.

Then Lemma 1, together with (13), (5), (14) yields

(15) 12l (2 (o2 < OO +7)uollvs + ).

70 = % (u (a:, %) +u (m, —%)) —up(z) =1 (m, %) — a(z,0),
(u(z,t) + u(x,—t))/2, the identity

For

where u(zx,t) =

T/2 ¢t 6 R
//8—“ (z, C)dCdt,
0 0
holds. Hence,
0%
-0 < < —_—
Z¥llcz) < OlE)alln < O7° max |l 5550
<07 max ool < 07 (luollve + flullvs)

From (15) and the last estimate one obtains
(16) N(2%) < C(0? +7°)(|luollvs + [lusllvs).
To estimate v, we shall rewrite it in the following manner:

Y =ug + Lyu+ o’ Lyug = a+ B+ 7,

_ 1
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where
0%u
ot?’

Obviously, a = a; + as, where

Q= Up — B=—Lu+ Lyu, ~v=07>Lyug.

0%u u  0%*u
Oél(.’L',t) = U — SgS?W, OéQ(CE,t) = stgw — W
But,
0*u 0%u
_ Q2 2 o2
Oél(CE,t) = St W — SmSt W
LT js—al\ (,_ lc=1]\ 2u(e.0
s—z — U
= — _ 1 N D 1 _ )
T Teo(o- ) (o-165)
r—h x t—T
wherefrom,
lox (o)l < O max |20
. v |l—==_
Lo = te[~T,1] || Ot2022 ||’
and consequently, referring to (5), we obtain
(17) ]y, (o) < Ch*(luollve + [lualve)-

The term ay can be represented in the form

z+h s t+7

o= T e (-5 (- K1) e

r—h © t—T

L s =] =1l 9u(s, Q)
s—x n— u(s,
_ _ 12— 1_
= / / / (€ n)( - ) ( - ) o dCdnds,
x—ht—1 t
whence,
0*u 0*u
< h2 T 2 z -
Ha2||L1’T(L2’h) <C tEI[Ii%“},(T] ot20z2 T ter[riaT)fT] ott |’

and therefore
llzlly - (2o < C(B* + 7%)([[uollve + [[ually=).
From (17) and the last estimate we obtain

(18) ladlzy (2o < O +72)(lluollve + llutllvs).
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Decompose 3 in the following way: 3 = 81 + 2 + 83 + B4, where,

0? 0 1
ﬂ1=a<6—£—uzz>, Bo =a (a—Z—§(ux+uf)>,

ﬁ3=%(a’—az)(uz—u§), 5423 (a,_%(az+aw)> Ug.

Combining the estimate m[ax] |a(xz)| < C and the fact that
ze€|0,1

xz+h s
0? 1 ot
§ ez = / / = s)—gfg D agas,

022
r—h
one obtains
2 4 4
(19) 181111y < ON® i [9%u/0a.
Using the relation
xz+h s
L rug =k [ e 020
or 2°°° T 94 Ox3 ’
rz—h
and the estimate m[%)i] |a'(z)] < C we have
xe|0,
2 3 3
(20) 1Ball (1) < OB masx[[6°u/0a.

Applying Taylor’s formula, one has

la'(z) — a,| < h max |a"(z)] < Ch.
z€[0,1]

This estimate and the obvious relation u, — uz = hugzz = hS2(0?u/dz?), imply
1) 8ol a0y < O s [57u/0)|.
From Taylor’s formula it follows that
1
|la(z) — =(az + az)| < Ch* max |a"'(z)| < Ch*.
2 z€[0,1]

From this, taking into account that

1 i du(s,t)
Yz =7 / Ox ds,
z—h
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we obtain

< Ch? )
(22) 1Bille, <o,y < OB mars (19 a]

Then (19)—(22), thanks to (5), yield
(23) 1Bl - 22y < CR(Iluollvs + lluallys).

Representing the term 7 in the form

0'7'2

Y= —T(azuztt’ + azugg + 20Ug57),

we easily obtain, using preceding techniques, that

11z, - (22) < CT*(lluollvs + lluallv=).

The last estimate together with (18), (23) yields

191121 (22m) < CB7 + 1) ([Juollvs + [luallve).

From this estimate, (16) and (12) it follows that N(z) < C(h® 4+ 72)(||luol|v+ +
[[u1]]y2), whence the upper estimate

(24) 1Zlle, ) < C(h+1)*(lluollvs + llur]lve).

5. Interpolation. Now we are going to apply the interpolation theory to our
problem. Let {A;, A5} and {By, B2} be two interpolation pairs (see [1]). Then, if L
is a continuous linear operator from A; + A, into By + Bs such that its restrictions
L: Ay — By and L: Ay — B, are bounded, the inequality

(25) ||L||(A1yA2)9,q*>(B17B2)9,q < ||L||,14:0—>B1 ||L||?42AB27

holds for 0 < # < 1, 1 < ¢ < 00, where (43, A2)p,q denotes the interpolation space
obtained by the K-method of real interpolation (see [1]).

THEOREM. Suppose a € C? satisfying (1), u is the weak solution of (IBVP), v
is the corresponding discrete approximation and let one of the conditions in Lemma
1 is satisfied. Then for the error z = u — v the following estimates hold:

(2) ||2||CT(H}L) <C(h+ 7)2(s71)/3(”u0| ve + lutllyet), 1<s<4,

(i) Zllc, ) < C(h47)26=D/3(||ug|| s + ||url|gre-1), 1< s<4, s# integer+
1/2,

Proof. (i) Let 2(® denote the error in the case when u; = 0 and 2 in
the case ug = 0. Define the linear operators Ry, Ry by Roug = 2@, Ryu; = z(1).
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From (11) and (24) it follows that Ry is a bounded linear operator from V! into
D = C,(H}) and from V* into D. Of course, the corresponding conclusion also
holds for R;. Therefore, the interpolation inequality (25) yields

(26) | Roll(va,v1), oD < ||R0||%/:0_>D||R0||$/1%D’

(27) I1R1ll(va,voy, ,p < IRV, plIRLG 0 s

Applying the interpolation relation (V& VP, = V=0t o > 3 > 0 (see
Proposition 4 in [9]), we have (V4 V1)y, = V473 and (V3,V0)y, = V373,
Setting 4 — 30 = s, from (11), (24), (26)—(27) one obtains

HZ(O)“CT(H}L) < C(h+71)*¢ 3 |ug||y+  and

(28)
1Z21W N,y < C(h+ 1) g [l ye-r

Using zZ = 2(°) + 2(1) we finally obtain the desired estimate.
(ii) The continuous injection H§ C V¥, 1 < s <4, s # integer +1/2 (see [9])
applied in (28) implies the estimate (ii). O
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