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Communicated by Mileva Prvanovi�c

Abstract. It is shown that homogeneous k-symmetric spaces of interior type
with real fundamental Lie groups G are homogeneous spaces G=H, where H are
biparabolic or dyparabolic subgroups (de�ned in the paper) of groups G. Geometric
interpretations of these spaces are given.

1. Homogeneous k-symmetric spaces. Nomizu [1954] has de�ned ho-
mogeneous symmetric spaces with fundamental group G and isotropy group H as
homogeneous spaces satisfying the condition

(1.1) G�
0 � H � G�

where G� is closed subgroup of all �xed elements of an involutive automorphism
� (�2 = id ) and G�

0 is the identity component of G�. Particular cases of homo-
geneous symmetric spaces are Riemannian symmetric spaces �rst de�ned by Shi-
rokov [1925] and Levy [1926], pseudo-Riemannian symmetric spaces, and symmet-
ric spaces with aÆne connections. Theory of symmetric Riemannian and pseudo-
Riemannian spaces and spaces with aÆne connection was built by Cartan who
established that all these spaces are determined by involutive automorphisms of
their fundamental groups and called them \symmetric spaces". He found deep
connections of all these spaces with Lie groups, and in particular of Riemannian
and pseudo-Riemannian spaces with simple Lie groups.

Homogeneous symmetric space G=H , where G is a Lie group, is locally de-
termined by the Cartan decomposition of tangent Lie algebra G of Lie group G

(1.2) g = h� e;
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where h is subalgebra of g which is tangent Lie algebra of subgroup H , and the
subalgebra h and subspace e satisfy conditions

(1.3) [hh] � h; [he] � e; [ee] � h:

First generalization of symmetric spaces with aÆne connections was done
by Rashevsky [1951], who de�ned symmetric spaces with aÆne connections with
torsion as spaces with aÆne connection for which covariant derivatives of both cur-
vature and torsion tensors are equal to zero. Nomizu [1954] gave another de�nition
of these spaces and called them reductive spaces. Reductive space G=H is locally
determined by the Cartan decomposition (1.2) of tangent Lie algebra g of the group
G where subalgebra h and subspace e satisfy only �rst two conditions (1.3).

Another natural generalization of symmetric spaces with aÆne connections
was done by Vedernikov [1966, 1972] who proposed to relinquish from involutivity
of automorphism � and de�ned homogeneous �-spaces as homogeneous spacesG=H
determined by arbitrary analytic endomorphism � of group G satisfying condition
(1.1). Stepanov [1967, 1972] considered a large class of reductive homogeneous
�-spaces including homogeneous k-symmetric spaces G=H determined by auto-
morphisms � of order k, that is, satisfying condition �k = id . These spaces were
researched by Wolf and Gray [1958], Ledger [1971], Fedenko [1977], and Kowalski
[1980]. Wolf and Gray found by means of root systems of semisimple Lie group
G the condition of k-symmetricity of spaces G=H and gave classi�cation of 3-
symmetric spaces with simple fundamental groups. The term \k-symmetric space"
was introduced by Ledger. Fedenko gave a classi�cation of k-symmetric spaces
with simple real fundamental groups, complete for classical groups and \rough" for
exceptional groups and found geometric interpretations of k-symmetric spaces with
classical fundamental groups. Note that \trisymmetric spaces" de�ned by Sabinin
[1961, 1972] are not 3-symmetric homogeneous spaces.

Note also another generalization of symmetric Riemannian spaces, \bisym-
metric Riemannian spaces" de�ned by Kantor, Sirota, and Solodovnikov [1995].

2. Simple real Lie algebras. If g is a simple real Lie algebra, all real Lie
algebras having common complex form Cg with g can be obtained by the Cartan

algorithm de�ned by Cartan [1929]: each involutive automorphism � in g determines
its Cartan decomposition (1.2) where h and e are eigensubspaces of automorphism
� corresponding to eigenvalues 1 and �1 respectively, and the space

(2.1) g(�) = h� ie (i2 = �1)

is a real Lie algebra having common complex form with g. In the case when
automorphism � is interior or exterior, Lie algebra (2.1) is called algebra of interior
or exterior type, respectively. An example of Lie algebra of exterior type is a
compact Lie algebra obtained from a splitable Lie algebra g by the Cartan algorithm
corresponding to its automorphism determined by automorphism � ! �� of its
root system.



Homogeneous k-symmetric spaces of interior . . . 123

Let us consider a simple real splitable Lie algebra g (see Bourbaki [1975,
ch. 8, x2]). Let k be its splitting Cartan subalgebra, that is, maximal commutative
subalgebra, such that for each elementX the operator adX of adjoint representation
of g can be reduced to diagonal form. If subalgebra k is �xed and a base �(�) of
the root system � of g consisting of simple roots is chosen, then we obtain marked

split Lie algebra represented by direct sum

(2.2) g = k�
M
�2�

g�

where � are elements of � and g� is an 1-dimensional subspace consisting of all
elements X satisfying condition [KX ] = �(K)X , for any K 2 k.

Subalgebras

(2.3) b+ = k�
M
�2�+

g� and b� = k�
M
�2��

g�

where �+ and �� are sets of positive and negative roots of � are opposite Borel

subalgebras of algebra (2.2). Any subalgebra of g containing its Borel subalgebra
is called parabolic subalgebra. All parabolic subalgebras of simple real split Lie
algebra g can be obtained as follows: for any set A = f�i; �j ; . . . ; �kg of r simple
roots from �(�) we denote by �q(A) the set of all such roots from � in whose
decompositions as linear combinations of simple roots, the sum of coeÆcients at
roots of A is equal to q. If we denote

(2.4) g0(A) = k�
M
�2�0

g�

and

(2.5) gq =
M
�2�q
q 6=0

g�;

Lie algebra (2.2) can be written as

(2.6) g = g�s(A)� . . .� g�1(A)� g0(A)� g1(A)� . . .� gs(A)

for which

(2.7) [gq(A)gp(A)] � gq+p(A):

Decomposition (2.6) was proposed by Kantor [1966] and Koecher [1967]. Subalge-
bras

(2.8) p+(A) = g0(A)� g1(A) � . . .� gs(A)
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and

(2.9) p�(A) = g�s(A)� . . .� g�1(A)� g0(A)

contain subalgebras (2.3) and therefore are opposite parabolic subalgebras of g.
Automorphism in g determined by transformation �! �� maps (2.8) to (2.9) and
vice versa.

Subalgebras p+(A) and p�(A) intersect in g0(A), that is (2.4), which is direct
sum of a semisimple Lie algebra g00(A) and an r-dimensional commutative algebra
dr. The base of the root system of g00(A) can be obtained from the base �(�) by
removing all roots of the set A.

Let us call subalgebras g0(A) and

(2.10) g0(A) = g�s(A) � g0(A)� gs(A)

in g its biparabolic and dyparabolic (that is, extended biparabolic; dyo is Greek
equivalent to Latin word bis) subalgebras, respectively.

For r > 1 algebra (2.10) is direct sum of the semisimple algebra g00(A) and
the commutative algebra dr�1. The base of root system of algebra g00(A) can be
obtained from the extended base �0(A) = �(A)[f��0g of the system �, where �0

is the maximal root of this system, by removing all roots of A. For r = 1 algebra
(2.10) coincides with g00(A). Note that removal from �0(�) a simple root entering
in the decomposition of the maximal root with coeÆcient 1 leads anew to the base
of �. Therefore for s = 1 algebra (2.10) coincides with g and if the set A does not
contain a root entering in the decomposition of the maximal root with coeÆcient 1
the set A determines two subalgebras of g, biparabolic and dyparabolic, and if the
set A contains such root it determines only a biparabolic subalgebra.

For real nonsplitable algebra g(�) obtained from split algebra by Cartan al-
gorithm subalgebras in g(�), obtained from subalgebras (2.8), (2.9), (2.4), and
(2.10) in g by Cartan algorithm corresponding to involutive automorphism �,
are called opposite parabolic, biparabolic, and dyparabolic subalgebras p+(A; �),
p�(A; �), g0(A; �), and g0(A; �), respectively. If g is simple splitable Lie alge-
bra the algebra (2.1) coincides with g for � = id . Therefore we will later denote
any simple real Lie algebra by g(�).

Classi�cation of simple Lie algebras can be reduced to classi�cation of bases
of their root systems. There are four in�nite series of classical simple Lie algebras

An, Bn, Cn (n � 1), and Dn(n � 3) with isomorphisms

(2.11) A1 = B1 = C1; B2 = C2; A3 = D3;

and �ve classes G2, F4, E6, E7, and E8 of exceptional simple Lie algebras.

3. Geometric interpretations of simple real Lie groups. Each Lie
algebra is a tangent Lie algebra of a Lie group and determines this Lie group up to
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local automorphism, simple Lie groups are denoted by the notations obtained from
notations of their tangent Lie algebras by replacing of gothic letters by correspond-
ing italic letters. All simple Lie groups admit geometric interpretations described
by the �rst author [1955, 1993]. Compact simple Lie groups of classes An, Bn,
Cn, and Dn are isomorphic on locally isomorphic to groups of motions of ellip-
tic spaces: complex Hermitian space C �Sn, real space S2n, quaternionic Hermitian
space H �Sn�1, and real space S2n�1, respectively. Splitable simple Lie groups of
the same classes are isomorphic or local isomorphic to groups of motions of split
complex elliptic space C0 �Sn, real pseudoelliptic space S2nn , split quaternionic ellip-
tic spaceH0 �Sn�1, and real pseudoelliptic space S2n�1n respectively, these groups for
C0 �Sn and H0 �Sn�1 are isomorphic to fundamental groups of real projective space
Pn and symplectic space S2n�1y . Noncompact and nonsplitable simple Lie groups of
the same classes are isomorphic or locally isomorphic to groups of motions of real,
complex and quaternionic hyperbolic, pseudoelliptic, or pseudohyperbolic spaces
or to fundamental groups of quaternionic projective and symplectic spaces having
the same complex forms as mentioned elliptic spaces.

Compact and splitable simple Lie groups of class G2 are isomorphic or locally
isomorphic to fundamental groups of G-elliptic and G-pseudoelliptic spaces Sg6

and Sg63 respectively. Compact simple Lie groups of classes F4, E6, E7, and E8

are isomorphic or locally isomorphic to groups of motions of octonionic Hermit-
ian elliptic plane O �S2 and analogous planes over tensor products C
O, H 
O,
and O 
O, respectively. Splitable simple Lie groups of the same classes are iso-
morphic or locally isomorphic to groups of motions of split octonionic Hermitian
elliptic plane O0 �S2 and analogous planes over tensor products C0 
O0, H0 
O0,
and O0 
O0, respectively. Noncompact and nonsplitable simple Lie groups of the
same classes are isomorphic or locally isomorphic to groups of motions of octonion-
ic Hermitian hyperbolic plane and analogous planes over tensor products C 
O,
H 
 O, and O 
 O, and to groups of motions of Hermitian elliptic planes over
tensor products C0 
O, C 
O0, H0 
O, H
O0, and O0 
O. Certain of these
groups are isomorphic to fundamental groups of octonionic projective plane OP 2

and symplectic 5-spaceO �Sy5 or of complex, quaternionic, and octonionic metasym-
plectic geometries C �Ms, H �Ms, and O �Ms de�ned by H. Freudenthal [1954-1964].
Splitable simple Lie algebras of classes F4, E6, E7, and E8 are also isomorphic to
fundamental groups of real, split complex, split quaternionic, and split octonionic
metasymplectic geometries Ms, C0 �Ms, H0 �Ms, and O0 �Ms, respectively, and, for
F4, E6 and E7 also of elliptic plane O0 �S2, projective plane O0P 2 and symplectic
5-space O0 �Sy5, respectively.

4. Parabolic spaces with simple real fundamental groups. Cartan
[1913] proved that all linear representations of complex simple Lie group G can
be obtained by means of fundamental representations which correspond to simple
roots of G which Cartan also called fundamental roots. Cartan has shown also
a geometric �gure connected with each fundamental representation and therefore
with each simple (fundamental) root of Lie groups Tits [1956] called these geomet-
ric �gures fundamental elements of Lie groups G, therefore we call these �gures
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fundamental �gures of G. Stabilizers of fundamental �gures are subgroups of G
whose tangent Lie algebras are parabolic subalgebras of tangent Lie algebra g of G
determined by one simple root of g corresponding to these �gures.

Closed subgroups of G whose tangential Lie algebras are parabolic subalge-
bras of g are called parabolic subgroups P of G, these subgroups can be also de�ned
as closed subgroups in G containing the Borel subgroup B de�ned by Borel [1956]
as maximal connected resoluble subgroup in G. Tangent Lie algebras of Borel sub-
groups B in G are Borel subalgebras b in g and tangent Lie algebras of parabolic
subgroups P in G are parabolic subalgebras p in g. Tits [1957] considered also geo-
metric �gures whose stabilizers are arbitrary parabolic subgroups in P determined
by sets of simple roots of G. Tits called manifolds of these �gures R-spaces, Wolf
[1959] called them 
ag manifolds, in the paper of the authors with Timoshenko
[1990] these manifolds are called parabolic spaces. Thus parabolic space with fun-
damental group G is a homogeneous space G=P where P is a parabolic subgroup
in G.

These de�nitions are valable also for real Lie groups G. Simple Lie alge-
bra g(�), for � = id splitable algebra determines up to local isomorphism sim-
ple real group G(�), for � = id splitable group, and subalgebras p+(A; �) and
p�(A; �) { opposite parabolic subgroups P+(A; �) and P�(A; �) of G(�). The
spaces �+(A; �) = G(�)=P+(A; �) and ��(A; �) = G(�)=P�(A; �) are opposite

parabolic spaces. The local automorphism of G(�) determined by automorphism
� ! �� of its root system maps opposite parabolic spaces to each other. Pairs of
points in these spaces corresponding under this automorphism are called pairs of

opposite points.

If r is a homogeneous space with fundamental group G(�), let us call minimal
geometric �gures in r whose stabilizers are subgroups P+(A; �) and P�(A; �) in
G(�) opposite parabolic A-�gures in r.

Two parabolic �gures in r are called incident if intersection of their stabilizers
is a parabolic subgroup, that is, they contain the same Borel subgroup. Since
parabolic (�i; �j ; . . . ; �k)-�gure in r is a set of incident �i� ; �j� ; . . . ; �k-�gures in
r, for description of all parabolic �gures in r it is suÆcient to describe only parabolic
�i-�gures in r.

In the paper of authors with Timoshenko [1990] parabolic �gures of homo-
geneous spaces with simple real fundamental groups are described and it is proved
that real simple roots of these groups determine real parabolic �gures, imaginary
roots of these groups determine imaginary parabolic �gures and pairs of conjugate
parabolic simple roots determine pairs of imaginary parabolic �gures determining
real parabolic �gures.

5. Interior automorphisms of �nite order of simple real Lie algebras.

Kac [1969] has described automorphisms � of �nite order (�k = id ) of semisimple
Lie algebras over algebraically closed �eld. Let us �nd all interior automorphisms
of �nite order of simple real Lie algebra g(�). First let us prove
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Lemma 5.1. The Dynkin diagram of a closed and symmetric subset �0 of

irreducible reduced root system � can be obtained from the Dynkin diagram or

extended Dynkin diagram of � by removing certain set of dots representing simple

roots.

Proof. Let �0 be a closed and symmetric subset of root system �, that is,
the intersection of �0 +�0 and � enters into �0 and �0 = ��0. Then it is a root
system and for each base B0 of �0 there is a base B � B0 of � (Bourbaki [1968, ch.
6, x1, propositions 23 and 24]). Hence, since removal from extended base �0(�) of a
simple root entering into the decomposition of the maximal root �0 with coeÆcient
1 leads to the base of �, we obtain the assertion of the lemma.

Theorem 5.1. Any interior automorphism � of �nite order of simple real

Lie algebra g(�) leaves invariant a biparabolic or dyparabolic subalgebra g0(A; �)
or g0(A; �) and its order is equal, respectively, to s + 1 or s, where s is the sum

of coeÆcients with which simple roots of A enter into the decomposition of the

maximal root �0 of the root system of g(�).

Proof. It is suÆcient to prove this theorem for a simple real splitable Lie
algebra g. Let � be an arbitrary interior automorphism of �nite order of Lie
algebra (2.2) and g� is its subalgebra of �xed elements. Since the automorphism
� is interior its restriction on the Cartan subalgebra k is identity and therefore
� multiplies each root subspace g� by a nonzero real number t�. Therefore the
subalgebra g� has the form

(5.1) g� = k
M
�2��

g�

where �� is a closed set of roots from � (Bourbaki [1975, ch. VIII, x3, lemma 2]).
Since [g�g��] � k, �� is a symmetric set of roots, therefore by Lemma 5.1 there
is such set A of simple roots of g, for which algebra (5.1) coincides with g0(A) or
g0(A).

A set A of simple roots of Lie algebra g corresponds to two graduations

(5.2)
g(A) = g0(A)� a1(A)� . . .� as(A)

g(A) = g0(A)� a1(A)� . . .� as�1(A);

where ak(A) = gk(A) � g�k(A), k 6= 0 and s is the sum of coeÆcients with which
simple roots of A enter in the decomposition of maximal root �0 (it is well known
(Bourbaki [1975, p. 105]) that they determine automorphisms of orders s+1 and s
in Lie algebra g leaving invariant subalgebras g0(A) and g0(A), respectively. Since
they leave invariant the subalgebra k, they are interior. The theorem is proved.

Let us denote an interior automorphism of �nite order of g(�) leaving invariant
its subalgebra g0(A; �) or g

0(A; �) by �0(A; �) or �
0(A; �), respectively. Therefore

if a simple root �m enters into the decomposition of the maximal root �0 with
coeÆcient 1, automorphisms �0(�m; �) or �

0(�m; �) are, respectively, involutive
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and identical, and if root �m enters into the decomposition of the maximal root �0

with coeÆcient 2, automorphism �0(�m; �) is involutive.

Note that exterior automorphisms there are only in simple Lie groups of
classes An, Dn, and E6, that is in the groups whose Dynkin diagrams have sym-
metries; two-fold for groups An, Dn (n 6= 4) and E6, and three-fold for group D4,
that is in fundamental groups of spaces with duality or triality principle, and these
automorphisms are connected with symmetries of dual or trial �gures.

6. Homogeneous k-symmetric spaces of interior type with real fun-
damental Lie groups and their connection with parabolic spaces. It is
well known that certain usual symmetric spaces, that is, 2-symmetric spaces, are
connected with parabolic spaces: for instance the symmetric space with fundamen-
tal group An admitting a model in the manifold of m-pairs in real projective space
Pn, that is, manifold of pairs m-plane +(n�m� 1)-plane in Pn is connected with
two parabolic spaces with the same fundamental group admitting models in mani-
folds of m-planes and (n�m� 1)-planes in Pn, as well as symmetric spaces with
fundamental groups Bn and Dn admitting models in manifolds of hyperbolic lines
in hyperbolic spaces H2n and H2n�1 are connected with two parabolic spaces with
the same fundamental group admitting models on absolute quadrics of spaces H2n

and H2n�1, respectively. Let us show that these facts can be generalized onto all
k-symmetric spaces.

We call the subgroups of simple real group G(�) whose tangent Lie alge-
bras are g0(A; �) and g0(A; �) biparabolic and dyparabolic subgroups G0(A; �) and
G0(A; �) of G(�), respectively. Note that biparabolic group G0(A; �) is an inter-
section of two opposite parabolic subgroups P+(A; �) and P�(A; �) of the group
G(�).

Theorem 5.1 implies that the isotropy group H of homogeneous k-symmetric
space of interior type with real fundamental Lie group G(�) de�ned by an interior
automorphism of order k is a biparabolic or dyparabolic subgroup of G(�). In the
�rst case we call the homogeneous spaceG(�)=H space of interior type 1 and denote
it �0(A;G(�)), in the second case we call the space G(�)=H space of interior type

2 and denote it �0(A;G(�)).

Theorem 6.1. If s is sum of coeÆcients with which simple roots of the set

A enter into the decomposition of the maximal root �0 of the root system of g(�),
order of symmetry of spaces �0(A;G(�)) and �0(A;G(�)) is equal to s+ 1 and s,
respectively.

Proof. Graduations (5.2) of simple Lie algebra g determine automorphisms
of orders s+ 1 and s, respectively.

In particular if mi is coeÆcient with which the simple root �i enters into the
decomposition of the maximal root �0 order of symmetry of the spaces �0(�i;G(�))
and �0(�i;G(�)) is equal to mi + 1 and mi, respectively.

Therefore if the simple root �i enters into the decomposition of maximal root
�0 with coeÆcient 1 or 2, the spaces �0(�i;G(�)) or �

0(�i;G(�)) are 2-symmetric
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(that is, usual symmetric) spaces, and in the �rst case the root �i determines only
symmetric space of interior type 1.

Since decomposition (2.10) of Lie algebra g0(A) is the Cartan decomposition,
the space �(A;G(�)) = G0(A;G(�))=G0(A;G(�)) is a 2-symmetric space.

Decomposition (2.6) of Lie algebra (2.2) implies that tangent space to
�0(A;G) where G is a splitable group is the direct sum of tangent spaces to oppo-
site parabolic spaces �+(A;G) and ��(A;G) or the direct sum of tangent spaces
to �0(A;G) and �(A;G). This fact implies

Theorem 6.2. Space �0(A;G(�)) is a space of local trivial �bration with

the base �+(A;G(�)) and the �ber ��(A;G(�)) or with the base �0(A;G(�)) and
the �ber �(A;G(�)).

Therefore

dim�0(A;G(�)) = 2 dim�+(A;G(�)) = dimG(�) � dimG0(A; �);

dim�0(A;G(�)) = dim�0(A;G(�)) � dim�(A;G(�))

= dimG(�) � dimG0(A; �):

Therefore also points in �0(A;G(�)) can be represented by pairs of opposite
points in �+(A;G(�)) and ��(A;G(�)) or by pairs of points, one of which is a
point in �0(A;G(�)) and the second is a point in �(A; (G(�)).

If we look the coeÆcients with which simple roots of simple splitable Lie
algebras enter into the decompositions of the maximal roots �0 of these algebras
we �nd that the spaces

�0(�m; An) for all M; �0(�1; Bn); �0(�n; Cn);

�0(�m; Dn) for m = 1; n� 1; n;�0(�m; E6) for m = 1; 6; and

�0(�7; E7)

are symmetric spaces of interior type 1, and

�0(�m; Bn) for m > 1; �0(�m; Cn) for m < n; �0(�m; Dn) for m 6= 1; n� 1; n;

�0(�2; G2);�
0(�m; F4) for m = 1; 4; �0(�m; E6) for m = 2; 3; 5;

�0(�m; E7) for m = 1; 2; 6; and �0(�m; E8) for m = 1; 8

are symmetric spaces of interior type 2.

Classi�cation of spaces �0(A;G(�)) and �0(A;G(�)) can be reduced to clas-
si�cation of subgroups G0(A) and G

0(A) of simple splitable group G.

7. Figures of k-symmetry in homogeneous spaces with simple real

fundamental groups. Like usual symmetric spaces admit models by manifolds
of symmetry �gures (m-pairs in Pn and lines in H2n and H2n�1, mentioned at the
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beginning of x6, as well as points, lines, and m-planes in all elliptic, hyperbolic,
pseudoelliptic and pseudohyperbolic spaces, are examples of symmetry �gures),
k-symmetric spaces also admit models by manifolds of �gures of k-symmetry in
spaces r listed in x3.

We call k-symmetry A-�gure of interior type 1 or 2 in r minimal geomet-
ric �gure in r whose stabilizer is, respectively, subgroup G0(A; �) or G

0(A; �) in
fundamental group of r. Theorem 6.1 implies

Theorem 7.1. (s + 1)-symmetry A-�gure of interior type 1 in r is pair of

opposite parabolic A-�gures in this space.

First let us consider s-symmetry A-�gures of interior type 2 in spaces r.

Lemma 7.1. Intersection of opposite parabolic A-�gures in r is empty.

Proof. Let us denote intersection of opposite parabolic A-�gures p+(A) and
p�(A) in r by X0 and by X+ and X� complements of X0 to p+(A) and p�(A),
respectively. Then opposite parabolic subgroups P+(A; �) and P�(A; �) in the
groupG(�) admit linear representations in the space [X�X0X+] by linear operators
with matrices

(7.1)

2
4A11 0 0
A21 A22 0
A31 A32 A33

3
5 and

2
4B11 B12 B13

0 B22 B23

0 0 B33

3
5 ;

where 0 are zero matrices. Operators (7.1) transform subspaces X+ and X� into
themselves, therefore these subspaces are opposite parabolic A-�gures, and X0 is
empty set. The lemma is proved.

The opposite parabolic A-�gures p+(A) and p�(A) in r generate a subspace
in r. Let us call this subspace sum of p+(A) and p�(A) and denote that sum
p+(A) + p�(A).

Lemma 7.2. Points of 2-symmetric space �(A;G(�)) are represented by

opposite parabolic A-�gures p+(A) and p�(A) in p+(A) + p�(A).

Proof. It is suÆcient to prove this lemma for space r with simple real splitable
fundamental group G. Theorem 7.1 implies that group G0(A) maps each of oppo-
site parabolic A-�gures p+(A) and p�(A) into itself, therefore group G0(A) maps
into itself the pair p+(A) + p�(A). Therefore by Lemma 7.1 group g0(A) admits
linear representation in the space of pairs p+(A) + p�(A) by operators with the
matrices

(7.2)

�
A11 A12

A21 A22

�
;

where submatrices A12 and A21 are zero matrices. The same form is the form of
matrices of corresponding linear representation of Lie algebra g0(A). It is easy to
check that the correspondence mapping elements of subalgebra g0(A) of algebra
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g0(A) onto operators with matrices (7.2), where submatrices A12 and A21 are zero
matrices, and elements of subspaces gs(A) and g�s(A) in this Lie algebra onto
operators with matrices (7.2), where, respectively, submatrices A11, A21, A22 and
A11, A12, A22 are zero matrices, is an isomorphism of Lie algebras. Therefore the
group G0(A) is represented in the space of pairs p+(A) + p�(A) by operators with
the matrices (7.2) and it is fundamental group of this space, and its subgroupG0(A)
is the stabilizer of each of p+(A) and p�(A), which form a symmetry �gure in the
space of pairs p+(A) + p�(A). Lemma is proved.

This lemma implies that if a pair of two opposite parabolic A-�gures in r

generates whole space r, the subgroup G0(A) coincides with group G and r, is
2-symmetric space, and corresponding symmetry �gures are pairs of opposite par-
abolic �gures.

The manifold of pairs of opposite parabolic A-�gures in r is a space of local
trivial �bration whose base is manifold of sums of opposite parabolic A-�gures in
r and �bers above p+(A) + p�(A) are p+(A) and p�(A). Therefore Theorem 6.1
and Lemma 7.2 imply also

Theorem 7.2. k-symmetry A-�gure of interior type 2 in space r is the sum

of pairs of its opposite parabolic A-�gures.

Thus manifold of k-symmetry A-�gures of interior type 1 or 2 in homogeneous
space r with simple real fundamental group G(�) is a model of homogeneous k-
symmetric space of interior type 1 or 2, respectively, determined by a set A of
simple roots of simple splitable Lie group G.

Let us �nd k-symmetry �m-�gures of interior type 1 and 2 in homogeneous
spaces with all simple real splitable fundamental groups. We will use the description
of parabolic �gures in these spaces given in Rosenfeld, Zamakhovsky and Timo-
shenko [1990] and the numeration of simple roots in the book Bourbaki [1968].

1. Each simple root �m of group An enters into decomposition of maximal
root �0 with coeÆcient 1. Therefore in projective space Pn there are only 2-
symmetry �m-�gures of interior type 1, which are pairs of opposite parabolic �gures
in Pn, that is (n � m)-pairs consisting of nonintersecting (n � m)-plane and an
(m � 1)-plane. Stabilizers of these �gures are groups An�m � Am�1 �D1. Space
Pn admits an interpretation in the space C0 �Sn, (n�m)-pairs in Pn are interpreted
as (n�m)-planes in C0 �Sn.

2. Simple root �m of group Bn enters into decomposition of maximal root �0

with coeÆcient 1 for m = 1 and with coeÆcient 2 for m > 1. Therefore in space
S2nn there are 2-symmetry �1-�gures of interior type 1 and, for m > 1, 3-symmetry
�m-�gures of interior type 1 and 2-symmetry �m-�gures of interior type 2. A pair
of opposite parabolic �m-�gures in S2nn is a pair of (m � 1)-planar generators of
absolute quadric of S2nn which are cut out from it by (2n�m)-planes intersecting
in a 2(n �m)-plane. Therefore 2-symmetry �1-�gure of interior type 1 in S2nn is
a pair of points of absolute quadric which are cut out from this quadric by two
hyperplanes tangent at these points which intersect in a 2(n� 1)-plane, this �gure



132 Rosenfeld and Zamakhovsky

determines a line in S2n�1n and its polar 2(n� 1)-plane. Stabilizers of these �gures
are groups Bn�1 �D1.

For m > 1 3-symmetry �m-�gure of interior type 1 in S2nn which is a pair of

opposite parabolic �m-�gures consists of a 2(n �m)-plane which is S
2(n�m)
n�m , and

of two (m�1)-planar generators of absolute quadric of S2nn which lie in a (2m�1)-
plane which is S2m�1

m and determine a paratactic congruence of lines in this S2m�1
m ,

a 2-symmetry �gure in S2m�1
m . Thus this 3-symmetry �gure consists of 2(n�m)-

plane and (2m� 1)-plane and of paratactic congruence in the last (2m� 1)-plane.
Stabilizers of these �gures are groups Bn�m �Am�1 �D1.

For m > 1 2-symmetry �m-�gure of interior type 2 in S2nn which is a pair of
opposite parabolic �m-�gures consists of a (2m� 1)-plane and its polar 2(n�m)-
plane. Stabilizers of these �gures are groups Bn�m �Dm.

3. Simple root �m of group Cn enters into decomposition of maximal root
�0 with coeÆcient 1 for m = n and with coeÆcient 2 for m < n. Therefore in
space Sy2n�1n there are 2-symmetry �n-�gures of interior type 1 and, for m < n,
3-symmetry �m-�gures of interior type 1 and 2-symmetry �m-�gures of interior
type 2.

A pair of opposite parabolic �m-�gures in Sy
2n�1 for m < n is a pair of null

(m� 1)-planes which lie in (2n�m� 1)-planes corresponding to them in absolute
null-system of Sy2n�1 and intersecting in a (2(n�m)� 1)-plane, and for m = n it
consists of two null (n� 1)-planes determining a symplectic congruence of lines in
Sy2n�1. Therefore 2-symmetry �n-�gure of interior type 1 in Sy2n�1 determines
symplectic congruence of lines in Sy2n�1. Stabilizers of these �gures are groups
An�1 �D1.

For m < n 3-symmetry �m-�gure of interior type 1 in Sy
2n�1 which is pair of

opposite parabolic �m-�gures consists of a (2(n�m)�1)-plane which is Sy2(n�m)�1,
and of two null (m � 1)-planes which lie in a (2m � 1)-plane being Sy2m�1 and
determine a symplectic congruence of lines in this Sy2m�1. Thus this �gure consists
of (2(n �m) � 1)-plane and (2m � 1)-plane and of symplectic congruence in the
last (2m� 1)-plane. Stabilizers of these �gures are groups Cn�m �Am�1 �D1.

For m < n 2-symmetry �m-�gure of interior type 2 in Sy2n�1 which is pair
of opposite parabolic �m-�gures consists of a (2m � 1)-plane and (2(n�m) � 1)-
plane corresponding to it in the absolute null-system of Sy2n�1. Stabilizers of these
�gures are groups Cn�m � Cm.

Space Sy2n�1 admits an interpretation in the space H0 �Sn�1, null m-planes
in Sy2n�1 are interpreted by (n � m)=2-planar generators of absolute Hermitian
quadric in H0 �Sn�1.

4. Simple root �m of group Dn enters into decomposition of maximal root �0

with coeÆcient 1 for m = 1, n� 1, and n and with coeÆcient 2 for 1 < m < n� 1.
Therefore in space S2n�1n there are 2-symmetry �1-�gures, �n�1-�gures, and �n-
�gures of interior type 1 and, for 1 < m < n� 1, 3-symmetry �m-�gures of interior
type 1 and 2-symmetry �m-�gures of interior type 2.

A pair of opposite parabolic �m-�gures in S2n�1n for m < n � 1 is a pair of
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(m � 1)-planar generators of absolute quadric cut out from it by (2n � m � 1)-
planes intersecting in a (2(n �m) � 1)-plane and for m = n � 1 or n it is a pair
of (n � 1)-planar generators of absolute quadric of S2n�1n which belong to one
family of (n�1)-planar generators, these two (n�1)-planar generators determine a
paratactic congruence of lines in S2n�1n . Therefore 2-symmetry �1-�gure of interior
type 1 in S2n�1n for m = n� 1 or n determines a paratactic congruence of lines in
S2n�1n and for m = 1 consists of two points of absolute quadric which are cut out
from this quadric by two hyperplanes tangent at these points which intersect in a
2(n� 3)-plane, this �gure determines a line in S2n�1n and its polar (2n� 3)-plane.
Stabilizers of �rst two of these �gures are groups An�1 �D1, stabilizers of last of
these �gures are groups Dn�1 �D1.

For 1 < m < n � 1 3-symmetry �m-�gure of interior type 1 in S2n�1n which
is pair of opposite parabolic �m-�gures consists of a (2(n � m) � 1)-plane being

S
2(n�m)�1
n�m , and of two (m�1)-planar generators of absolute quadric of S2n�1n which

lie in a (2m� 1)-plane being S2m�1
m and determine a paratactic congruence of lines

in this S2m�1
m . Thus this �gure consists of (2(n�m)�1)-plane and (2m�1)-plane

and of paratactic congruence in the last (2m� 1)-plane. Stabilizers of these �gures
are groups Dn�m �Am�1 �D1.

For 1 < m < n � 1 2-symmetry �m-�gure of interior type 2 in S2n�1n which
is pair of opposite parabolic �m-�gures consists of a (2m � 1)-plane and its polar
(2(n�m)� 1)-plane. Stabilizers of these �gures are groups Dn�m �Dm.

Space S2n�1n admits an interpretation in the space H0 �Syn�1, m-planar gen-
erators of absolute quadric in S2n�1n are interpreted by null ((n �m)=2)-planes in
H0 �Syn�1.

5. Simple roots �1 and �2 of group G2 enter into decomposition of maxi-
mal root �0 with coeÆcients 3 and 2, respectively. The split group G2 is locally
isomorphic to group of automorphisms in alternative algebra O0 of split octonions
and space S63 can be de�ned as intersection of hypersphere j�j = 1 in O0 with
the metric of pseudo-Euclidean space R8

4 with hyperplane � = ��� with identi�ed
antipodal points. In space Sg63 there are 4-symmetry �1-�gures and 3-symmetry
�2-�gures of interior type 1 and 3-symmetry �1-�gures and 2-symmetry �2-�gures
of interior type 2. The 2-symmetry �gure is only the last �gure, Dynkin diagram
of its stabilizer can be obtained from extended Dynkin diagram of the group G2 by
removal of the root �2, this stabilizer is direct product A1 �A1.

Simple roots �1, �2, �3, �4 of group F4 enter into decomposition of maximal
root �0 with coeÆcients 2, 3, 4 and 2, respectively. The split group F4 is the group
of motions of Hermitian elliptic planeO0 �S2 over the algebraO0 of split octonions. In
this plane there are 3-symmetry �1-�gures, 4-symmetry �2-�gures, 5-symmetry �3-
�gures, and 3-symmetry �4-�gures of interior type 1 and 2-symmetry �1-�gures, 3-
symmetry �2-�gures, 4-symmetry �3-�gures, and 2-symmetry �4-�gures of interior
type 2. The 2-symmetry �gures are only the �rst and last �gures, Dynkin diagrams
of their stabilizers can be obtained form extended Dynkin diagram of the group F4
by removal of the roots �1 and �4, theirs stabilizers are direct product A1 � C3
and group B4.
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Simple roots �1, �2, �3, �4, �5, �6 group E6 enter into decomposition of
maximal root �0 with coeÆcients 1, 2, 3, 2 and 1, respectively. The split group
E6 is the group of collineations of projective plane O0P 2 over algebra O0 or group
of motions of Hermitian elliptic plane over direct product O0 �C0. In O0P 2 there
are two 2-symmetry �gures of exterior type, including \0-pair" point+line, and
2-symmetry �1-�gures and �6-�gures and 3-symmetry �2-�gures, �3-�gures, and
�5-�gures of interior type 1 and 2-symmetry �2-�gures, �3-�gures, and �5-�gures
of interior type 2. Therefore this plane has only 2-symmetry �gures of interior type
with stabilizers D5 � D and A5 � A1 (stabilizers of symmetry �gures of exterior
type in this plane are C4 and F

4).

Simple roots �1, �2, �3, �4, �5, �6, �7 of groupE7 enter into decomposition of
maximal root �0 with coeÆcients 2, 2, 2, 4, 3, 2 and 1, respectively. The split group
E7 is the group of motions of Hermitian elliptic plane over direct productO

0�H0. In
this plane there are 3-symmetry �1-�gures, �2-�gures, �3-�gures, and �6-�gures, 5-
symmetry �4-�gures, 4-symmetry �5-�gures and 2-symmetry �7-�gures of interior
type 1 and 2-symmetry �1-�gures, �2-�gures, �3-�gures, and �5-�gures of interior
type 2. The 2-symmetry �gures are only �1-�gures, �2-�gures, �3-�gures, and �5-
�gures of interior type 2 and �7-�gures of interior type 1, stabilizers of �rst �gures
are D6 �A1 and A7, stabilizer of the last �gure is E6 �D.

Simple roots �1, �2, �3, �4, �5, �6, �7, �8 of group E8 enter into decomposi-
tion of maximal root �0 with coeÆcients 2, 3, 4, 6, 5, 4, 3, and 2, respectively. The
split group E8 is the group of motions of Hermitian elliptic plane over direct prod-
uct O0�O0. In this plane there are 3-symmetry �1-�gures, 4-symmetry �2-�gures,
5-symmetry �3-�gures, 7-symmetry �4-�gures, 6-symmetry �5-�gures, 5-symmetry
�6-�gures, 4-symmetry �7-�gures and 3-symmetry �8-�gures of interior type 1 and
2-symmetry �1-�gures, 3-symmetry �2-�gures, 4-symmetry �3-�gures, 6-symmetry
�4-�gures, 5-symmetry �5-�gures, 4-symmetry �6-�gures, 3-symmetry �7-�gures,
and 2-symmetry �8-�gures of interior type 2. The 2-symmetry �gures are only
�1-�gures and �8-�gures of interior type 2, stabilizers of these �gures are E7 �A1

and D8.

Other k-symmetry �gures in spaces with simple real splitable fundamental
groups can be obtained analogously for arbitrary set A of simple roots. If the set A
consists of roots �i1 ; �i2 ; . . . ; �ik the stabilizerH = G0(A) of correspondent k-�gure
of interior type 1 is direct product of simple Lie groups whose Dynkin diagrams
are obtained from the usual Dynkin diagram of the group G after removal of dots
corresponding to simple roots of A and the commutative groupDk and the stabilizer
H = G0(A) of correspondent k-�gure of interior type 2 is the direct product of
simple Lie groups whose Dynkin diagrams are obtained from the extended Dynkin
diagram of the group G after removal of dots corresponding to simple roots of A.
The dimensions of these k-symmetric spaces are equal to di�erences dimG�dimH .

Let us call k1-symmetry A1-�gure and k2-symmetry A2-�gure of interior type
1 or 2 incident if parabolic A1-�gure and A2-�gure are incident (see n

04). Since par-
abolic f�i; �j ; . . . ; �hg-�gure in r consists of incident parabolic �i� ; �j� ; . . . ; �h-
�gures in r k-symmetry f�i; �j ; . . . ; �kg-�gure of interior type 1 or 2 consists of
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incident k1� ; k2� ; . . . ; kh-symmetry �i� ; �j� ; . . . ; �k-�gures of interior type 1 or 2,
respectively.

k-symmetry A-�gures of interior type 1 and 2 in homogeneous spaces with
simple real nonsplitable fundamental groups can be obtained from k-symmetry A-
�gures of interior type 1 and 2 in homogeneous spaces with simple real splitable
fundamental groups by Cartan algorithm.
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