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PARAQUATERNIONIC PROJECTIVE SPACE

AND PSEUDO-RIEMANNIAN GEOMETRY

Novica Bla�zi�c

Communicated by Mileva Prvanovi�c

Abstract. A natural and geometrical de�nition of projective space (Pn(B); g0),
based on the algebra of paraquaternionic numbers B, is given. Using the technique
of pseudo-Riemannian submersions, we determine the curvature of the paraquater-
nionic space (Pn(B); g0). Moreover, the properties of this curvatures are studied.

0. Introduction. Studying di�erential geometry of spaces related to the
algebra of paracomplex numbers was initiated by Rasevskii [R] and Libermann [L]
who de�ned paracomplex and para-K�ahlerian manifolds. This topic was discussed
later by several authors (see [B,CFG] for details).

Also, the geometry based on the paraquaternionic numbers B is interesting.
Etayo [E] studied Pn;n(C ), the space of paraquaternionic projective type, as a para-
Hermitian symmetric space related to Kaneyuki-Kozai classi�cation. He studied
the principal bundle � : GL(n + 1; C )=GL(1; C )�!Pn;n whose structure group is
GL(1; C ) = C � . An integrable paraquaternionic structure appeared naturally in
the study of Osserman pseudo-Riemannian manifolds (see [BBR, Rk]).

Here we consider a pseudo-Riemannian submersion � : S4n+32n+1�!Pn(B ) =

S4n+32n+1=S
3
1 with totally geodesic �bres S31 . The submersion � is used to give a

natural and geometrically oriented de�nition of paraquaternionic projective space
Pn(B ). It is simply connected and complete with respect to the metric induced by
submersion. Using the well known result of O'Neill we determine the sectional cur-
vature of a paraquaternionic projective space B . It has constant paraquaternionic
sectional curvature and unbounded sectional curvature. Some other properties of
the paraquaternionic projective spaces are also studied.

1. Paraquaternionic numbers and projective spaces. Let B denote the
algebra of paraquaternionic numbers generated by f1; i; e; f = ieg over R where
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e2 = 1, i2 = �1, ie = �ei. This is an associative, noncomutative and unitary
algebra over R of rank 3. To an arbitrary paraquaternionic number q 2 B , q =
x1 + x2i + x3e + x4f , xi 2 R, 1 � i � 4, we can associate its conjugate �q =
x1 � x2i� x3e� x4f , real part Re q = x1, and the norm

kqk2 = q�q = x21 + x22 � x23 � x24:

Then we have kqpk2 = kqk2kpk2 and clearly q is invertible if and only if kqk 6= 0.

Let ~B = fq 2 B j kqk 6= 0g be the multiplicative group of invertible
paraquaternionic numbers. Now we can de�ne the corresponding projective space.
The set

B
n+1 = f(q0; . . . ; qn) j qi 2 B ; 0 � i � ng

is a paraquaternionic unitary module. On B
n+1we have the endomorphisms I ,E,F

de�ned by I(q) = iq, E(q) = eq, F (q) = fq respectively. Then E2 = F 2 =
�I2 = id and IE = �EI = F . A vector q = (q0; . . . ; qn) 2 Bn+1 is a singular
vector if and only if there exists a � 2 B ; � 6= 0, such that �q = 0. Clearly, then
kq0k

2 = � � � = kqnk
2 = 0 and q0; . . . ; qn are mutually proportional with same real

factors. Let ~Bn denote the nonsingular vectors in Bn . On the set Bn+1 n f0g the
equivalence relation � is de�ned as usual u � v if and only if v = zu for some
z 2 ~B . The corresponding quotient space:

P (Bn+1 ) = (Bn+1 n f0g)=~B

is called the algebraic paraquaternionic projective space associated with Bn+1 .

This de�nition is appropriate from an algebraic point of view. But diÆculties
are coming from the equivalence classes of singular elements of Bn+1 . From a geo-
metrical point of view it is better to consider only equivalence classes of nonsingular
paraquaternionic lines and we de�ne the paraquaternionic projective space as

P (~Bn+1 ) = Pn(B ) = ~Bn+1=~B :

For the algebra A of paracomplex numbers, A = Rh1; ii, the situation is
similar. A broad survey of geometries based on paracomplex numbers is given
in [CFG]. We are using some notations and notions from there, modi�ed to the
paraquaternionic numbers. The algebraic paracomplex projective space de�ned
in [CFG] coincides with Rosenfeld's paracomplex projective spaces P 0

n (see [Ro]).
The geometrical de�nition of a paracomplex projective space Pn(A ) was given by
Libermann [Lb]. In some sense similar to paracomplex projective spaces are the

paracomplex projective models Pn(B) in [GM] (open subsets of ~A n+1=~A ++ , the

four-fold covering space of the Liberman projective space Pn(A ), where ~A ++ is the

identity component of the group ~A ).

Etayo Gordejuela [E] de�ned and studied the spaces Pn;n(C ), similar to para-
complex projective models, and called them paraquaternionic projective spaces.
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2. Pseudo-Riemannian geometry and submersions. In R
4n+4 = B

n+1

we have the following natural scalar product h�; �i de�ned as

hu; vi = Re

nX
i=0

ui�vi

where u = (u0; . . . ; un), v = (v0; . . . ; vn), ui; vi 2 B . Clearly, the scalar product, of
the signature (2n + 2; 2n+ 2), is anti-invariant with respect to endomorphisms E
and F , and invariant with respect to I , i.e.,

hEu;Evi = �hu; vi; hFu; Fvi = �hu; vi; and hIu; Ivi = hu; vi:

The pseudosphere and the pseudohyperbolic space of radius r > 0 in R4n+4 , are
the hyperquadrics

S4n+32n+1 (r) =
n
u 2 B

n+1 j hu; ui =
X

kuik
2 = r2

o
;

H4n+3
2n+1 (r) = fu 2 B

n+1 j hu; ui = �r2g

respectively. On the tangent spaces TpS
4n+3
2n+1(r) and TpH

4n+3
2n+2 (r) the induced met-

rics are of the signature (2n + 1; 2n + 2) and (2n + 2; 2n + 1). The pseudo-
sphere and the pseudohyperbolic space are anti-isometric [O]. For r = 1 we set
S4n+32n+1(r) = S4n+32n+1 and H4n+3

2n+2 (r) = H4n+3
2n+2 . The pseudosphere S

4n+3
2n+1 is di�eomor-

phic to R2n+2 �S2n+1 and the pseudohyperbolic space H4n+3
2n+2 is also di�eomorphic

to R2n+2 � S2n+1 (see [O, p. 110]).

In R4 = B , we have S31 = f� 2 B j h�; �i = k�k2 = 1g. The pseudosphere S31
is the group of the unit paraquaternions. Then there is an action of S31 on S4n+32n+1

given by
T�(u0; . . . ; un) = (�u0; . . . ; �un);

which are obviously isometries with respect to h�; �i. Then, the paraquaternionic
projective space can be represented as

Pn(B ) = S4n+32n+1=S
3
1 = H4n+3

2n+2=S
3
1 :

This means that the projection � : S4n+32n+1�!Pn(B ) is a submersion with �ber

S31 . Moreover, Pn(B ) is homotopically equivalent to the complex projective space
Pn(C ). Therefore, Pn(B ) is simply connected.

The action of these isometries on S4n+32n+1 provides for Pn(B ) = S4n+32n+1=S
3
1 a

unique pseudo-Riemannian metric of signature (2n; 2n). More precisely, similarly
as in the Riemannian case, the following lemma can be proved.

Lemma 2.1. Let M be a pseudo-Riemannian manifold of signature (p; q) and
G closed group of isometries such that � : M �! B = M=G is a submersion. If

G admits a metric of signature (p1; q1), p1 � p; q1 � q, then there is a unique
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pseudo-Riemannian metric on B = M=G of signature (p � p1; q � q1) such that �
is a pseudo-Riemannian submersion. If M and G are complete, then the metric

induced by the submersion, is also complete on M=G. �

We �x a metric g0 of signature (2n; 2n) on Pn(B ) = S4n+32n+1=S
3
1 such that

� : S4n+32n+1 �! Pn(B ) is a pseudo-Riemannian submersion. The endomorphisms
I , E and F induce corresponding endomorphisms on the tangent space TpPn(B ).
Now we want to determine sectional curvature and the curvature tensor of the
paraquaternionic projective space equiped with this metric g0.

Let us recall some basic de�nitions concerning the Levi-Civita connection
of pseudo-Riemannian manifold (P; h) of signature (p; q). We will also establish
important notions for paraquaternionic manifolds.

For a vector X 2 TpP , kXk
2 = h(X;X), X is isotropic if kXk2 = 0 and

�(X) = sign(h(X;X)). Let TP be the tangent bundle of P and X;Y; Z; etc.,
arbitrary vector �elds. If r is the corresponding Levi-Civita connection, R(X;Y ) :
TpP�!TpP is a curvature operator de�ned by

R(X;Y )Z = [rX ;rY ]Z �r[X;Y ]Z:

If � is a nondegenerate 2-dimensional plane, � = hX;Y i, the sectional curvature
of �, K(�), is de�ned as

K(�) = K(X;Y ) =
h(R(X;Y )Y;X)

Q(X;Y )
;

where Q(X;Y ) = h(X;X)h(Y; Y ) � h2(X;Y ). � is nondegenerate if and only if
Q(X;Y ) 6= 0. The sectional curvature does not depend on the choice of the base
fX;Y g for �. For an orthonormal base, K(�) = h(R(X;Y )Y;X)=�(X)�(Y ).

P is a paraquaternionic manifold if we have locally de�ned endomorphisms I ,
E and F of the tangent bundle such that E2 = F 2 = �I2 = id and IE = �EI =
F . (P; h) is a paraquaternionic hermitian manifold if (P; h) is a paraquaternionic
manifold and I is an isometry and endomorphisms E;F are antiisometries, i.e.,

h(IX; IY ) = h(X;Y ); h(EX;EY ) = �h(X;Y ); h(FX;FY ) = �h(X;Y );

for tangent vectors X and Y . Then we say that a paraquaternionic hermitian
manifold P is of constant paraquaternionic sectional curvature if K(�) = const for
all nondegenerate 2 planes contained in the vector subspace generated by vectors
X; IX;EX;FX for arbitrary nonisotropic vector X . For notational convenience,
from now on, we will use the following notation: J1 = I , J2 = E and J3 = F .

3. Curvature of the paraquaternionic projective space. We will de-
termine now the sectional curvature operator of Pn(B ) = S4n+32n+1=S

3
1 with respect to

the induced metric g0 (by submersion).
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Let � : P�!B be a pseudo-Riemannian submersion. At a point p 2 ��1(b),
H and V denote the orthogonal projections of TpM on its horizontal and vertical
subspaces

Hp = Tp(�
�1b)? and Vp = Tp(�

�1b)

respectively. The following well known theorem of O'Neill is important for us
(see [O]):

Theorem 3.1. Let � : P�!B be a pseudo-Riemannian submersion. If

the horizontal vector �elds X;Y on P span nondegenerate planes, then for their

sectional curvatures the following holds

(3.1) KB(d�X; d�Y ) = Kp(X;Y ) +
3

4

hV [X;Y ];V [X;Y ]i

Q(X;Y )
: �

We can now prove:

Theorem 3.2. The sectional curvature of some nondegenerate 2-plane in the

paraquaternionic projective space (Pn(B ) = S4n+32n+1=S
3
1 ; g0) is determined by

(3.2) KPn(B) (d�X; d�Y ) = 1 + 3(hX; J1Y i
2
� hX; J2Y i

2
� hX; J3Y i

2
)=Q(X;Y ):

The paraquaternionic projective space is of constant paraquaternionic sectional cur-

vature 4.

Proof. We will apply O'Neill's theorem to the submersion � : S4n+32n+1 �! Pn(B )

with �ber S31 . That means

(3.3) KPn(B) (d�X; d�Y ) = KS
4n+3

2n+1

(X;Y ) +
3

4

kV [X;Y ]k2

Q(X;Y )

for horizontal vector �elds X and Y on S4n+32n+1 . To continue computation we need

to determine the vertical subspace at the point N of S4n+32n+1 . Using the hyperbolic

rotation we �nd the curve �(�) = cosh � �1+sinh � � e on S31 , and the corresponding
orbit curve is �(�)N . Its tangent vector at N is J2N . Also, J3N lies in the vertical
subspace of TNS

4n+3
2n+1 . Finally we can see that J1N is a vertical vector in a similar

way, using euclidean rotations. Hence

(3.4) V [X;Y ] = h[X;Y ]; J1NiJ1N � h[X;Y ]; J2NiJ2N � h[X;Y ]; J3NiJ3N:

Since: r is a torsion-free connection, [X;Y ] = rXY �rYX , and J1, J2 and
J3 are parallel with repect to r, we have

V [X;Y ] = 2(hX; J1Y iJ1N � hX; J2Y iJ2N � hX; J3Y iJ3N)

and

(3.5) kV [X;Y ]k2 = 4(hX; J1Y i
2
� hX; J2Y i

2
� hX; J3Y i

2
):
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Since the pseudosphere S4n+32n+1 is of constant sectional curvature 1, (3.2) follows
from (3.3) and (3.5).

For horizontal vectors X;Y 2 TpS
4n+3
2n+1 , the vectors J1Y; J2Y; J3Y are also

horizontal and

PrhY;J1Y;J2Y;J3Y iX = �(Y )hX;Y iY + �(J1Y )hX; J1Y iJ1Y

+ �(J2Y )hX; J2Y iJ2Y + �(J3Y )hX; J3Y iJ3Y

where PrhY;J1Y;J2Y;J3Y iX is normal projection of the vector X on the subspace
hY; J1Y; J2Y; J3Y i. If X and Y are orthonormal vectors which generate the plane
�, then

PrhY;J1Y;J2Y;J3Y iX = �(Y )(hX; J1Y iJ1Y � hX; J2Y iJ2Y � hX; J3Y iJ3Y )

and (3.2) becomes

(3.6) KPn(B) (d�X; d�Y ) = 1 + 3kPrhY;J1Y;J2Y;J3Y iXk
2=�(X):

Hence, the paraquaternionic sectional curvature of a paraquaternionic projective
space is 4. �

Corollary 3.3. The paraquaternionic projective space for n = 1, P1(B ),
is of constant sectional curvature 4. It is di�eomorphic to S42 and we have a �ber

bundle of Hopf type, � : S74�!S42 with totally geodesic �bre S31 . �

Corollary 3.4. The curvature tensor of (Pn(B ); g0) is

(3.8)

R(X;Y )Z = cfg0(Y; Z)X � g0(X;Z)Y

+
X
r

�rg0(JrY; Z)JrX �
X
r

�rg0(JrX;Z)JrY

+ 2
X
r

�rg0(X; JrY )JrZg;

where �1 = 1, �2 = �3 = �1 and c is a constant.

Proof. Using the submersion � : S4n+32n+1 �! Pn(B ), from (3.2) it follows that

g0(R(X;Y )Y;X) = cfQ(X;Y ) + 3
X
r

�rg0(X; JrY )
2g:

By polarization, this formula implies (3.8). �

Remark 1. For the paraquaternionic projective space corresponding to the
pseudosphere of radius r, sectional curvature of some plane � with respect to
pseudoorthogonal base fX;Y g is

KPn(B) (d�X; d�Y ) =
1

r2
(1 + 3kPrhY;J1Y;J2Y;J3Y iXk

2=�(X)):
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It is well known that the sectional curvature of Pn(B ) is unbounded for n > 1
(see [O, p. 229]).

Remark 2. If we consider the metric�h�; �i on Bn+1 , then the paraquaternionic
projective space Pn(B ) is of constant negative paraquaternionic sectional curvature
�4 with respect to the induced metric �g0. This is equivalent with the fact that
the pseudosphere S4n+32n+1 and the pseudohyperbolic space H4n+3

2n+2 are anti-isometric.

Remark 3. Using the algebra of paracomplex numbers, A = Rh1; ii, instead
of the paraquaternionic numbers B we have the submersion

� : S2n+1n �!Pn(A ) = S2n+1n (r)=S11

with totally geodesic �bres S11 = fu 2 A j hu; ui = 1g. Its sectional curvature is

KPn(A) (d�X; d�Y ) = �r�2(1 + 3kPrhY;J2Y iXk
2=�(X)):

In [GM] and [E], the projective model Pn(B), di�eomorphic to TSn, was studied
using the appropriate submersion.
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