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Communicated by Mileva Prvanovié

Abstract. The geometry of some manifolds fibered over a given manifold M
is in the first place characterized by the group of allowable coordinate transforma-

6mil

tions. For the tangent manifold TM these are given by zi = ai (z)yi = o vt

i

rank {%ﬁi ] = n, and for the total space of a vector bundle £ — M, we have

' =z (x), y* = M2 (z)y®, rank(M2") = m = dimension of type fiber.

In the last years R. Miron, Gh. Atanasiu and others examined the Osck M
spaces, [10], [11], [12]. Here the case k = 2 will be investigated. Instead of Osc2M
the notation T2 M will be used (Osc! M coincides with T'M). Instead of d-connection
used in [10], [11], [12], we consider here the generalized connection and determine
its torsion tensor. As a special case the known d-connection is obtained.

1. Adapted basis in T(T?M). Let T?M be a 3n dimensional C*° manifold.

A point u € T?M in the local charts (U, ¢) and (U',¢') has coordinates (z%,y%, 2%)

and (2, y", 2%) respectively. In UNU’ the allowed coordinate transformations are
given by the equations:

9] 7 -/ o a.’L’i, . -1 ]. 82371:, ko al’l

T .t A i | L J el )

If rank [%—Ix~] = n, then the inverse transformation of (1.1) exists:

. .y . 8ajl - 1 8%’“ 1t 8$k i’
AN W) i 2 ] k_—-_“~ % .7 i
(a) &" =a'(z") (b) y gz Y (c) 2 2 927 927 7 Y ar -

(1.2) (a) and (1.2) (b) are obvious. To obtain (1.2) (c) we start from

i k
(1.2) oz’ Ox” _ 5k
Oxh dxi
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From (1.2) it follows:

.7
0%zt Oxk

az* oz’ 9%zk  OxI _
Ox"oxi Ox¥

Oxh Oz¥ Ox" Oxd
The multiplication of the above equation with y"y’ gives

.7
A

9% zk
ozrori Y Y ozt

= 927927

(1.3) Ty
If we multiply (1.1) (c) by dz*/dz", use (1.3) and (1.4) we obtain (1.2) (c).
The identity transformation is a special case of (1.1), namely if we put ' =gt
in (1.1) (a), then y* =y, 2" = 2 follows.

If in the local chart (U", ") the point u has coordinates (:ri” , yi”,zi”), then
in (U"NU',¢") (1.1) are valid, if the index i’ is substituted by " and the indices
without ' obtain /. After some calculation it can be obtained, that the connection
between (a:i”,yi”,zi”) and (z%,y%,2%) in UNU' NU" is given by (1.1) if the index
1’ is substituted by 7".

From the above follows:
THEOREM 1.1. The transformations of type (1.1) form a group.
In T(T?M) the natural bases are:

— o 0 0 — 0 o 0
(14) B_{axi’a_yi’(?zi} and B _{8wi"8yi"W}'

The bases vectors of B and B are connected by:

i

0 _ 0" 9 9y 9 0 9
ozt Oxt Ox?  Oxt Oyt Oxt 0z’
0 ' 9 92 9
(15) oyt Ayt Ay * Oyt 0z
9 02" 9
0zt 0zt 927"
From (1.1) (c) it follows
o 02" 0
(16) 9zt Ozt 21
Let us introduce the notation
4] 0 ;
(1.7) = g~ M)



90 Irena Comié¢

(1.8) is transformed as tensor, i.e.
5o s
Syt Oxt oyt
if 7—[;- (z,y) is transformed in the following way:
dx' oz 922l . Bx

1.9 J —— ) ——
(1.9) H = i A

The proof is obtained by direct calculation.

From (1.9) and (1.10) we obtain the first connection coefficient of Berwald
type:

(1.8)

oMY ol ox' 0xd 0xk 9%xd 920 Ozt
Oyk  Oyk Ozt Oxd Oz Oxidxk Ozt Oxk'
Let us introduce the notation:

6 0 j j 0
Szt~ Ozt - Mi(z, )W — N, )@

(1.10) Hil

(1.11)

PROPOSITION 1.2. % defined by (1.12) is transformed in the form:

if Ml (z,y) and N} (z,y,z) are transformed in the following way:
1) M= M~ s e
i i’ 2.5
N =N gai Zij Ol aaxisz gft )
a1 ~ et g gV Mg

Remark. M7 and N/ used here in [10], [11], [12] are denoted by (1)A7 and
(2)V! respectively.

(2

Proof. If we add the following equations (which follow from (1.6), (1.1) and

(1.3)):
o (o) 9 N 0%zl . 9r% 9z’ 9
ozt \ Ozt | Oz dzkzi Y 8:1:’ ozt | Oy’

+<1 P’ 8mh or’ a9k 83:) B

iaxhamkaaﬂ 63:" Bzt t orFon Dk Ozl - 8:1:" ozt | 821"
VR oz’ (027 0 N 82a7 gk 0
Loyl h(‘?x" Bzt \ Ozd By’ drrozi? 920 |
N0 g 0a7 02" 0" B

89z h oxi 9z Azt 923"’
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’

. 02" (D i 0 g 0\ o9 4 i
we obtain 5o = g <8wi' - M By7 - N 8zf'> = 52 527 where M, is
given by (1.14) and N by (1.15).

The basis
6 & 0

is called adapted basis for T(T?M). Its elements are transformed by (1.7), (1.9)
and (1.13).

From (1.14) and (1.15) we obtain two other connection coefficients of Berwald
type, namely

oMY R YO Y Y A 2o A, VL, Yo
J _ A J _ -
(1.16) Mt = oxk M; koxi ozk 9xi  Qxidxk dxt Oxk'”
117 g _ONJ ., 0xl 0ak 0aT %07 Oa' Oat
. i/ k/ - -

oz¥ ik gt gk’ Ozd  Oxidzk Ozt Ozt

2. The adapted basis in T*(T?M). The natural basis of T*(T>M) is
(2.1) B" = {da', dy’, dz"},
where the following relations are valid with respect to (1.1):

. Ot p o2zt . . 02
2.2 dr' = ~dz' (b)) dy* = ——y'dx? -
(2.2) (a) dz e (b) dy seiantl Wt 5

s (1 9% P L i »zt ; oz’ ;
() 4= = <§axkaxhaaﬂy V't aeianit )% T eV )W Gar )

From (2.2) (b) and (2.2) (c) it is obvious, that the transformations of dy
and dz? are not tensorial. If we put

dyi

(2.3) oyt = dy' + Hida

then from (1.10) and (2.1) we get

(2.4) sy' =

Let us introduce the notation

(2.5) 6z =dz' + M;(m,y)dyj +J\/ji(:n,y, 2)dz? + g}(x,y)dmj,
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where the transformation laws of M} and \j are prescribed by (1.14) and (1.15).

ProprosiTION 2.1. If g]’:(:n,y) has the following law of transformation (with
respect to (1.1)):

. w0t 9xT g 0%, Oxt . 0%l Ox
(2:6) G =9y ozt dzi + M 9%0z1 Y Bz M; 90z Bz

then 0z defined by (2.5) satisfies the equation
. J .
(2.7) 0z = —j627

Proof. The substitution of (2.2), (1.14) and (1.15) into 020" = dz/" +

v

M dyt + N da? + GI da’ gives (2.7) if (2.6) is true.
The adapted basis of T*(T*F) is

(2.8) B* = {dz',6y*, 62"},

where the elements of B* defined by (2.3) and (2.5) satisfy the transformation law
prescribed by (2.2) (a), (2.4) and (2.7).

THEOREM 2.1. The bases B (1.16) and B* (2.8) of T(T?M) and T*(T*M)
respectively are dual to each other if

(2.9) Hi(z,y) = Mi(z,y),
(2.10) Gi(z,y) = Mj(z, y) M} (2,y)

and if B (1.6) and B" (2.1) are dual to each other.
Proof. By direct calculation using (1.8), (1.12), (2.3) and (2.5) we obtain:

) . .5 .0
J = ‘] J — = J =
(dx ’5a:i> 8/, (dz ’5yi> 0, (dz 8zi> 0,
Y . . Y ; .0
J—NVN=H — M R J —) =
(211) <6y ,6$Z> Hz Mz? <6y ,6yl> 617 (6y 7azz> 07
) . ; Y ; . 0 .
iy =¢) — M ME I~ N = J I 2N =
02, 5550 = G = MIME, (027, 505) = =]+ M, (6, 55) = o],

The duality follows from (2.11) and (2.9).
PROPOSITION 2.2. G (,y) defined by (2.10) satisfies (2.6).
Proof. Using (1.4) and (1.14), it can be proved that

(2.12) Mo = g 02" Bat w027

T " 9xr Oxd Ozd Ozt y oz’
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From (2.12) and (2.10) after some calculation we obtain (2.6).

Remark. It is important that the bases B and B* be dual to each other,
because if they are not, then the contraction of tensors doesn’t result tensors. If B

and B” ((1.6) and (2.1)) are dual to each other, it doesn’t follow that B and B”
are dual.

Now we have:
THEOREM 2.2. The bases B(M,N) = {%,%,%} and B*(M,N) =

{dz?,6y?, 82}, where their elements are given by

) 0

_ 0 9 g0 0 0 0
(2.13) szt Oxt L Oyd L9z Syt T Oyt 93’

0y =dy' + Mjda?, 62" = dz' + Moy’ + Njda'

are adapted basis for T(T?>M) and T*(T?>M) respectively, dual to each other, and
they satisfy the law of transformation:

§ oz 5 8§ Oy s 0 0z 0

(2.14) oz’ gx’ ozt oyt gy’ oy¥ 0zt gz’ 0zt
. xrt . . y’ . . 2t .
dz' = —dx', 0y’ = —=0y', 62" = —d0z".

7= gl 0= 5 SOy, 02t = 5

It must be noted that there exist as many adapted bases as many functions
M (z,y) and N} (z,y, z) can be found, satisfying (1.14) and (1.15) respectively.
If we denote by Ty, Ty,, Ty, the subspaces of T(T?M) spanned by {%},
{éfﬂ',}’ {%}, and by Ty, Ty, , Ty, the subspaces of T*(T?>M) spanned by {dz'},
{0y*}, {0z'} respectively, then

T(T°M) =Ty ®Tv, ®Tv,, T*(T’M)=TjaTy, &Ty,.

For the further examinations it is useful to introduce different kinds of indices.
Indices i, j, h, k,l = 1,n will be used in Ty and T}, a,b,c,d,e, f =n+1,2n in Ty,
and TV, p,q,r,8,t = 2n+ 1,3n in Ty, and T7;,. The Greek letters as indices will
take values from 1 to 3n. Using this notation the adapted bases have the form:

6 6 0 )
- J - = ~Z \_ * J b 5,01 — (58
(215) B - {(55[71, 6ya’ aZp} {604}) B {d:L’ ,(5:1/ 762 } {6 }7
where
50 w0 a0 80,0
(2.16) Szt Ozt Loyt L9z07 Sye T Oye @94’

Sy = dy® + M%dx', 629 =dz? + M%sy® —|—,/\/']9da:j.
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If i = a (mod n) and j = b= ¢ (mod n), then MI = M? = M4, N! = N7/,
in (2.16).
Some tensor field T expressed in the bases B and B* ((2.15)) has the form:

e Ry

6wl 6ya ®6z “e

®6yb...

0z"

The components of the tensor T', with respect to the coordinate transforma-
tions (1.1) are transformed in the following way:

a ...T ..

¢ —_— e —_— e — s e
g bose ort Qi aya 6yb’ 0z7 9z

Ox” oxl 9y oyt 9z 9z

For some vector field X € T(T?M) and some 1-form w € T*(T?M) we have:

X=X 5. + X¢ 0 +XIDi = X%,
(2.17) ox? oye OzP

w = wjde? + wydy® + w027 = wd”°.

With respect to (1.1) the coordinates of X and w transform in the following way:

’ 1 ’

. a i ’ 6 “ ! a i
X' = X*? :L", X =X y , XP =XP : ;
oxt oy® dzP

P j o b 021

wijr :wji.,, Wy Zwbi,: Wy = Wy Z”

Oz oy’ 0z

because for i =a = p (mod n) we have:

o’ oy* 9z

3. Generalized covariant derivatives. The generalized connection in
Lagrange and Hamilton spaces was studied among others in [2]-[6]. In T(T%M)
it is introduced in the following way. Let V : T(T?M) x T(T*M) — T(T*M) (x
is the Descartes product) be a linear connection, such that V : (X,Y) - VxY €
T(T?M), VX,Y € T(T?M). The operator V is called generalized connection.
It is called d-connection if VxY is in Ty, Ty, or Ty, if Y is in Ty, Ty, or Ty,
respectively, VX € T(T2M). It has been studied by many authors, mostly romanian
geometers.

We shall not make that restriction on V here. In the following we shall use

Cotiong: 8 — O _ 8 _ 0 _ 8 _ 2
the abbreviations: 0r = 575, 00 = 577, Ok = 5.7, 00 = 5,75 Op = 5.5
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Definition 3.1. The generalized connection V is defined by

V5,065 = Efir + Fi50: + Ff",0,,  Vi,00 = B} 6p + Ef 16 + F,; 0,
V5.0, = F)0u + Ff6c + E0r, V5,05 =CF0k + Cfube +CJ 0,

(3.1) V5,8 = Cf.0 + Cf b + C)u0r, V5,0, =CJl 6+ CFfude + CJo0r,
Vo,0; =L},0k+ Lfp0c + L7 ,0r, Vo 0, = L, 00 + Ly 0 + Ly 0,
Vo,0, =L} 61+ LS 6.+ L, ,0n

The d-connection is defined if in (3.1) all terms on the right-hand side vanish,
except the underlined ones.

For the vector field X defined by (2.17) we have
Vi, (X70; + X"0, + X70,)
= (0;X9)8; + XIV5,6; + (6; X°)6p + X"V, 8 + (6;X1)0, + X1V 5,0,
=0 X+ F X7+ BE XY+ Fl X6k + (6 X+ F)5 X+ F5S X+ FS5 X6+
(0: X"+ F; X7+ F; X" + F/; X0,

From the above equation it follows

(3.2) Vs X = X[ + X[i0c + X[;0r,

where

(3.3) X =6X"+F X+ F5 X"+ F5 X9, we{kcr}
or shorter

(3.4) X =6X"+F5X* ze{kcr}

The summation over « is the sum of summations over 7, b and ¢ as is written in
(3.3). The sign [i is the covariant derivative in direction of the basis vector d;.

The covariant derivative of X in the direction of d, has the form:

(35) véaXsz|a6k +Xc|a5c+Xr|aara

where

(3.6) Xa = 0.X" + Cf, X7 + O, X"+ O, X", w € {kye,r},
or shorter

(3.7) X%, = 0, X* + CF X
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The covariant derivative of the vector field X in the direction of 0, is given

by

(3-8) Vo, X = X |0k + X[l + X" 1,0y,

where

(3.9) X%, =0, X"+ L/, X7 + L, X"+ L7, X9, x € {k,cr},

or abbreviated
(3.10) X7, = 0p X" + Ly, X",
In (3.7) and (3.10) the summation over « is the sum of summations over j, b and
q (asin (3.4)).

THEOREM 3.1. If X and Y are vector fields in T(T?M), V the generalized
connection defined by (3.1), then the following equation is valid:
(38.11) VyX = (X[Y'+ X5, Y + X*||,Y7)é

+(XEY' + XY+ XYY D)0 + (XY + XY + X[,V )0,

Proof. The proof follows from (3.2)—(3.10) and the bilinearity of V.

The equation (3.11) can be written in the abbreviated form as follows

(3.12) VyX = XY76,,
(3.13) X5 =03X"+T.05X".

Ifg=i,then T =F;if =a,then ' =C;if f=pthen T = L.

THEOREM 3.2. All covariant derivatives X, X°|,, X%, (a =k, or a =
¢ or a = 1) from (3.11) are transformed as tensors with respect to (1.1) if all
connection coefficients from (3.1) are transformed as tensors, except the following,
which have the form

Pk gk ozt dzk ozl 9% Oxb
JE T i 9k 9xd T Qxidxi Oxk
, ami’ ayb’ oy° ach’ oy°

3.14 Fe —pe 9% Oy Oy 07y
(3.14) bi Y9t dyt Oy * dzidyd Oy
Pro_pr or' 9z 82" 9%z 02"

4 ! Y . .
7 TV 9xt 027 9z Oxi0z4 Oz

The proof is obtained by direct calculation.
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Remark. From (2.17) it follows that F%, = F, = F,; if k = ¢ =r (mod n),

q l. .
j = b= ¢ (modn). The connection coefficients H,, M/, and N defined by
(1.11), (1.17) and (1.18) respectively, satisfy the transformation laws prescribed by
(3.14).

b

4. The torsion tensor of the generalized connection. The torsion
tensor T'(X,Y) is defined in the usual way by:

T(X,Y)=VxY - VyX — [X,Y].

THEOREM 4.1. The torsion tensor for the generalized connection has the form
T(X,Y) =Tk, + T+ T"0,, where

T =Tk YiX'+ ThYIXY 4+ ) yiXe
+TAY X + T VP X + T YO X
+TEYPX + TRYPX + TR yPXY,
T =Ff =B T =0 - RS T = Lf - Fj,
Tbki = Fbki - Cikln Tbka = Cbka - Cakb) Tbkq = Lbkq - qub)
Tpki = Fpki - Likp’ Tpkb = Cpkb - Lbkp’ Tpkq = kaq - qup’
T =T5Y X" + T/ YIX + T VIXT + T5YP X+ T,5Y X+
T,V X"+ TSYIX + T,V IX P+ T, YIXT,
chi = chi - cmg - Kicj: Tacb = Cacb - Cbcaa chi = Fqci - Licqﬂ
=050 k5t K5, 1,5 =L,—-C%, T,5=0C5%-L/,
T = B — C% — K5, chr = chr - F’r'cj’ chr = LqC'r' - chq)
T =T/ YIX + T YIXP + T/ YIXO+ T, YO X 4+ T, VP X
T, Y'X+ T, Y’X' + T, Y’ X" + T, Y’ X"
1% =F, - F'; — K/ =0 R+ Ky, T, =Ly —Cfy,

i3
T o __ T ' ' T o __ T T T T o __ ' '
1, =L/, -F;+ K/, T,;=F%-C"%—-K%, T,),=C/,— Ly,
T o __ r T T T o __ T r T T o __ T T
Tba_cba_ ab_Kab) Tpi_Fpi_Lip_Kip7 qu_qu_Lqp'

Proof. The proof is obtained by direct calculation using (3.12), (3.13) and
the relations:

[X, Y] =[X (V) = Y (X9)]g; + [X (V") = Y(X")])0+
[X(Y) -Y(X"))9,+A+B+C+D,
where
A= X"YI(5;6; — 6;0;), B= (XY’ ~YIX")(8:0 — 5p0;)
C = (XY —YiX"(6:;0, — 0,0:), D= XY, — 0p0,)-
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Using (2.16) we obtain:

A=XYI(KS0. + K, ;0,) = X'YI(KS50. + K['0,),
where

K& =6M5—6M5, K =K, + MK K, =N — N7
B = (Xin - YiXb)(Kicbfsc + K, 0r),
K5 =0 M;, Ky = Firb + MLK, Firb = N — i Mj.
ONT
024"
D=XY"K.,0,, KI,=08M—05,M;.

C=XY"-Y'X)K/"0r, K, =

Remark. As M = M(z,y), in all above formulae 8, M = 0.

5. Special cases. As mentioned in Definition 3.1 the special connection V
(the so called d-connection) is obtained, if in (3.1) only the underlined terms are
left. More precisely:

Definition 5.1 The d-connection V is defined by:

vdl(sj - FJI‘; 6k, v[jl(sb - Fbci667 v&iaq - quiar
(5.1) Vs,0; = Cj’“aék, V5,00 = Cyube, Vs,0,=C.,0;
Vo0, = LrSe, Vo, = Lioes Vo,d0= L0,

From (5.1) the following property of d-connection is obvious:
vX Ty — TH, vX CTV1 — TV1, vX . TV2 — TVz

for any vector field X from T'(T?M).

THEOREM 5.1. If X and Y are vector fields in T(T*>M) expressed in the basis
B (2.15), then

VxV = YEX + VF X+ YR, XP)0, + (VX + Yo X+ Y4, XP)6.

+ (Y—MX" + Y X7+ Y], XP)0,,

YT;’ =5V + Fyzl YY, YITE =0,Y" + vaIaY?/, Yzﬂp =0,Y" + EyIpr,

where either x =k, y=j, orx=c,y=0b, orz=r,y=q.

THEOREM 5.2. The connection coefficients C'jka, C’bca, C'qra, Ejkp, Ebcp and

Eq’"p with respect to (1.1) are transformed as tensors. The transformation laws for



I k
Pk,
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I C

5 and F_'qri are given by (3.14) if in these formulae the connection coefficients

are overlined.

T(X,

Tk

T

and

—

10.

TT

THEOREM 5.3. The torsion tensor T(X,Y) of d-connection ¥V has the form
Y) =T*6), + T¢6. + T"0,, where

ThYIX + THYIXY + TRy X9 + T Yixe 4+ TRyexd,
T X'+ TSV X + T,V X7 + T,V X" + T,V X + T,V X",
Y X+ T Y X+ T Y X+ T, Y IX7

+ T, Y X+ T, YVIX + T YP X1

_jki = ijz - F'i’;a _jkb = _Tbkj = Cjkb:

o =-T5=Lf, Ty = =K,

bcj = _chb = Fbcj - chba acb = acb - Cbcav

Iy = =15 = L'y, T)j =T = Fj = K]y
,qrb — _Tbrq — qurb, Tprq — Eprq _ Eqrp,

7sz = _Kz’rj’ Tbra = _Karb‘

It is easy to see, that all components of the torsion tensor 7" which appear in
with respect to (1.1) transform as tensors.
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