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Abstract. The geometry of some manifolds �bered over a given manifoldM
is in the �rst place characterized by the group of allowable coordinate transforma-

tions. For the tangent manifold TM these are given by xi
0

= xi
0

(x)yi
0

= @x
i0

@xi
yi,

rank

�
@x

i0

@xi

�
= n, and for the total space of a vector bundle E ! M , we have

xi
0

= xi
0

(x), ya
0

=Ma
0

a (x)ya, rank(Ma
0

a ) = m = dimension of type �ber.

In the last years R. Miron, Gh. Atanasiu and others examined the OsckM
spaces, [10], [11], [12]. Here the case k = 2 will be investigated. Instead of Osc2M
the notation T 2M will be used (Osc1M coincides with TM). Instead of d-connection
used in [10], [11], [12], we consider here the generalized connection and determine
its torsion tensor. As a special case the known d-connection is obtained.

1. Adapted basis in T (T 2M). Let T 2M be a 3n dimensional C1 manifold.
A point u 2 T 2M in the local charts (U;') and (U 0; '0) has coordinates (xi; yi; zi)

and (xi
0

; yi
0

; zi
0

) respectively. In U \U 0 the allowed coordinate transformations are
given by the equations:

(1.1) (a) xi
0

= xi
0

(x) (b) yi
0

=
@xi

0

@xj
yj (c) zi

0

=
1

2

@2xi
0

@xk@xj
ykyj +

@xi
0

@xj
zj :

If rank
h
@xi

0

@xi

i
= n, then the inverse transformation of (1.1) exists:

(a) xi = xi(xi
0

) (b) yi =
@xi

@xj0
yj

0

(c) zk =
1

2

@2xk

@xi0@xj0
yi

0

yj
0

+
@xk

@xi0
zi

0

:

(1.2) (a) and (1.2) (b) are obvious. To obtain (1.2) (c) we start from

(1.2)
@xi

0

@xh
@xk

@xi0
= Ækh:
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From (1.2) it follows:

@2xi
0

@xh@xj
@xk

@xi0
+

@xi
0

@xh
@2xk

@xi0@xj0
@xj

0

@xj
= 0:

The multiplication of the above equation with yhyj gives

(1.3)
@2xi

0

@xh@xj
yhyj

@xk

@xi0
= �

@2xk

@xi0@xj0
yi

0

yj
0

:

If we multiply (1.1) (c) by @xk=@xi
0

, use (1.3) and (1.4) we obtain (1.2) (c).

The identity transformation is a special case of (1.1), namely if we put xi
0

= xi

in (1.1) (a), then yi
0

= yi, zi
0

= zi follows.

If in the local chart (U 00; '00) the point u has coordinates (xi
00

; yi
00

; zi
00

), then
in (U 00 \ U 0; '00) (1.1) are valid, if the index i0 is substituted by i00 and the indices
without 0 obtain 0. After some calculation it can be obtained, that the connection
between (xi

00

; yi
00

; zi
00

) and (xi; yi; zi) in U \ U 0 \ U 00 is given by (1.1) if the index
i0 is substituted by i00.

From the above follows:

Theorem 1.1. The transformations of type (1:1) form a group.

In T (T 2M) the natural bases are:

(1.4) B =

�
@

@xi
;
@

@yi
;
@

@zi

�
and B

0
=

�
@

@xi0
;

@

@yi0
;

@

@zi0

�
:

The bases vectors of B and B
0
are connected by:

@

@xi
=

@xi
0

@xi
@

@xi0
+

@yi
0

@xi
@

@yi0
+

@zi
0

@xi
@

@zi0
;

@

@yi
=

@yi
0

@yi
@

@yi0
+

@zi
0

@yi
@

@zi0
;(1.5)

@

@zi
=

@zi
0

@zi
@

@zi0
:

From (1.1) (c) it follows

(1.6)
@

@zi
=

@xi
0

@xi
@

@zi0
:

Let us introduce the notation

(1.7)
Æ

Æyi
=

@

@yi
�Hj

i (x; y)
@

@zi
:
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Proposition 1.1.
Æ
Æyi

de�ned by (1:8) is transformed as tensor, i.e.

(1.8)
Æ

Æyi
=

@xi
0

@xi
Æ

Æyi0

if Hi
j(x; y) is transformed in the following way:

(1.9) Hj0

i0 = Hj
i

@xi

@xi0
@xj

0

@xj
�

@2xj
0

@xi@xj
yj

@xi

@xi0
:

The proof is obtained by direct calculation.

From (1.9) and (1.10) we obtain the �rst connection coeÆcient of Berwald
type:

(1.10) H j0

i0 k0 =
@Hj0

i0

@yk0
=

@Hj
i

@yk
@xi

@xi0
@xj

0

@xj
@xk

@xk0
�

@2xj
0

@xi@xk
@xi

@xi0
@xk

@xk0
:

Let us introduce the notation:

(1.11)
Æ

Æxi
=

@

@xi
�Mj

i (x; y)
@

@yj
�N j

i (x; y; z)
@

@zj
:

Proposition 1.2.
Æ
Æxi

de�ned by (1:12) is transformed in the form:

(1.12)
Æ

Æxi
=

@xi
0

@xi
Æ

Æxi
;

if Mj
i (x; y) and N

j
i (x; y; z) are transformed in the following way:

Mj0

i0 =Mj
i

@xi

@xi0
@xj

0

@xj
�

@2xj
0

@xi@xj
yj

@xi

@xi0
;(1.13)

N j0

i0 = N j
i

@xi

@xi0
@xj

0

@xj
�

@2xj
0

@xi@xj
zj

@xi

@xi0

�
1

2

@3xj
0

@xi@xh@k
yhyk

@xi

@xi0
+

@2xj
0

@xk@xj
ykMj

h

@xh

@xi0
:(1.14)

Remark. Mj
i and N

j
i used here in [10], [11], [12] are denoted by (1)N j

i and

(2)N j
i respectively.

Proof. If we add the following equations (which follow from (1.6), (1.1) and
(1.3)):

@

@xi
=

 
@xi

0

@xi

!
@

@xi0
+

 
@2xj

0

@xk@xj
yj

@xk

@xi0
@xi

0

@xi

!
@

@yj0

+

 
1

2

@3xj
0

@xh@xk@xj
ykyj

@xh

@xi0
@xi

0

@xi
+

@2xj
0

@xk@xj
zj
@xk

@xi0
@xi

0

@xi

!
@

@zj0
;

�Mj
i

@

@yj
= �Mj

h

@xh

@xi0
@xi

0

@xi

 
@xj

0

@xj
@

@yj0
+

@2xj
0

@xk@xj
yk

@

@zj0

!
;

�N j
i

@

@zj
= �N j

h

@xj
0

@xj
@xh

@xi0
@xi

0

@xi
@

@zj0
;
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we obtain
Æ

Æxi
=

@xi
0

@xi

�
@

@xi0
�Mj0

i0
@

@yj0
�N j0

i0
@

@zj0

�
=

@xi
0

@xi
Æ

Æxi0
, where Mj0

i0 is

given by (1.14) and N j0

i0 by (1.15).

The basis

(1.15) B =

�
Æ

Æxi
;
Æ

Æyi
;
@

@zi

�

is called adapted basis for T (T 2M). Its elements are transformed by (1.7), (1.9)
and (1.13).

From (1.14) and (1.15) we obtain two other connection coeÆcients of Berwald
type, namely

M j0

i0 k0 =
@Mj0

i0

@xk0
=M j

i k

@xi

@xi0
@xk

@xk0

@xj
0

@xj
�

@2xj
0

@xi@xk
@xi

@xi0
@xk

@xk0
:(1.16)

N j0

i0 k0 =
@N j0

i0

@zk0
= N j

i k

@xi

@xi0
@xk

@xk0

@xj
0

@xj
�

@2xj
0

@xi@xk
@xi

@xi0
@xk

@xk0
:(1.17)

2. The adapted basis in T �(T 2M). The natural basis of T �(T 2M) is

(2.1) B
�
= fdxi; dyi; dzig;

where the following relations are valid with respect to (1.1):

(a) dxi
0

=
@xi

0

@xi
dxi (b) dyi

0

=
@2xi

0

@xj@xi
yidxj +

@xi
0

@xi
dyi(2.2)

(c) dzi
0

=

 
1

2

@3xi
0

@xk@xh@xj
ykyh+

@2xi
0

@xi@xj
zi

!
dxj+

 
@2xi

0

@xk@xj
yk

!
dyj+

 
@xi

0

@xj

!
dzj :

From (2.2) (b) and (2.2) (c) it is obvious, that the transformations of dyi
0

and dzi
0

are not tensorial. If we put

(2.3) Æyi = dyi +Hi
jdx

j

then from (1.10) and (2.1) we get

(2.4) Æyi
0

=
@xi

0

@xi
Æyi:

Let us introduce the notation

(2.5) Æzi = dzi +Mi
j(x; y)dy

j +N i
j (x; y; z)dx

j + Gij(x; y)dx
j ;
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where the transformation laws of Mi
j and N

i
j are prescribed by (1.14) and (1.15).

Proposition 2.1. If Gij(x; y) has the following law of transformation (with
respect to (1:1)):

(2.6) Gij = Gi
0

j0
@xi

@xi0
@xj

0

@xj
+Mi0

j0
@2xj

0

@xk@xj
yk

@xi

@xi0
+Mk

j

@2xj
0

@xk@xh
yh

@xi

@xj0
;

then Æzi de�ned by (2:5) satis�es the equation

(2.7) Æzj
0

=
@xj

0

@xj
Æzj

Proof. The substitution of (2.2), (1.14) and (1.15) into Æzj
0

= dzj
0

+

Mj0

i0 dy
i0 +N j0

i0 dx
i0 + Gj

0

i0 dx
i0 gives (2.7) if (2.6) is true.

The adapted basis of T �(T 2F ) is

(2.8) B� = fdxi; Æyi; Æzig;

where the elements of B� de�ned by (2.3) and (2.5) satisfy the transformation law
prescribed by (2.2) (a), (2.4) and (2.7).

Theorem 2.1. The bases B (1:16) and B� (2:8) of T (T 2M) and T �(T 2M)
respectively are dual to each other if

Hi
j(x; y) =Mi

j(x; y);(2.9)

Gij(x; y) =Mi
k(x; y)M

k
j (x; y)(2.10)

and if B (1:6) and B
�
(2:1) are dual to each other.

Proof. By direct calculation using (1.8), (1.12), (2.3) and (2.5) we obtain:

hdxj ;
Æ

Æxi
i = Æji ; hdxj ;

Æ

Æyi
i = 0; hdxj

@

@zi
i = 0;

hÆyj ;
Æ

Æxi
i = Hj

i �Mj
i ; hÆyj ;

Æ

Æyi
i = Æji ; hÆyj ;

@

@zi
i = 0;(2.11)

hÆzj ;
Æ

Æxi
i = Gji �Mj

kM
k
i ; hÆzj ;

Æ

Æyi
i = �Hj

i +Mj
i ; hÆzj ;

@

@zi
i = Æji :

The duality follows from (2.11) and (2.9).

Proposition 2.2. Gji (x; y) de�ned by (2:10) satis�es (2:6).

Proof. Using (1.4) and (1.14), it can be proved that

(2.12) Ms
r =Mj0

i0
@xi

0

@xr
@xs

@xj0
�

@2xs

@xj0@xt0
yt

0 @xj
0

@xr
:



Generalized connection on T (T 2M) 93

From (2.12) and (2.10) after some calculation we obtain (2.6).

Remark. It is important that the bases B and B� be dual to each other,
because if they are not, then the contraction of tensors doesn't result tensors. If B

and B
�
((1.6) and (2.1)) are dual to each other, it doesn't follow that B

0
and B

�0

are dual.

Now we have:

Theorem 2.2. The bases B(M;N ) =
n

Æ
Æxi

; Æ
Æyi

; @
@zi

o
and B�(M;N ) =

fdxi; Æyi; Æzig, where their elements are given by

(2.13)

Æ

Æxi
=

@

@xi
�Mj

i

@

@yj
�N j

i

@

@zj
;

Æ

Æyi
=

@

@yi
�Mj

i

@

@zj
;

Æyi = dyi +Mi
jdx

j ; Æzi = dzi +Mi
jÆy

j +N i
j dx

j

are adapted basis for T (T 2M) and T �(T 2M) respectively, dual to each other, and
they satisfy the law of transformation:

(2.14)

Æ

Æxi
=

@xi
0

@xi
Æ

Æxi0
;
Æ

Æyi
=

@yi
0

@yi
Æ

Æyi0
;
@

@zi
=

@zi
0

@zi
@

@zi0
;

dxi =
@xi

@xi0
dxi; Æyi =

@yi

@yi0
Æyi

0

; Æzi =
@zi

@zi0
Æzi

0

:

It must be noted that there exist as many adapted bases as many functions
Mj

i (x; y) and N
j
i (x; y; z) can be found, satisfying (1.14) and (1.15) respectively.

If we denote by TH , TV1 , TV2 the subspaces of T (T 2M) spanned by f Æ
Æxi
g,

f Æ
Æyi
g, f @

@zi
g, and by T �

H , T
�
V1
, T �

V2
the subspaces of T �(T 2M) spanned by fdxig,

fÆyig, fÆzig respectively, then

T (T 2M) = TH � TV1 � TV2 ; T �(T 2M) = T �
H � T �

V1
� T �

V2
:

For the further examinations it is useful to introduce di�erent kinds of indices.
Indices i; j; h; k; l = 1; n will be used in TH and T �

H , a; b; c; d; e; f = n+ 1; 2n in TV1
and T �

V1
, p; q; r; s; t = 2n+ 1; 3n in TV2 and T �

V2
. The Greek letters as indices will

take values from 1 to 3n. Using this notation the adapted bases have the form:

(2.15) B =

�
Æ

Æxi
;
Æ

Æya
;
@

@zp

�
= fÆ�g; B� = fdxj ; Æyb; Æzqg = fÆ�g;

where

(2.16)

Æ

Æxi
=

@

@xi
�Mb

i

@

@yb
�N q

i

@

@zq
;

Æ

Æya
=

@

@ya
�Mq

a

@

@zq
;

Æya = dya +Ma
i dx

i; Æzq = dzq +Mq
aÆy

a +N q
j dx

j :
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If i = a (mod n) and j = b = q (mod n), then Mj
i =Mb

i =Mq
a, N

q
i = N j

i ;
in (2.16).

Some tensor �eld T expressed in the bases B and B� ((2.15)) has the form:

T = T :::i :::a :::r :::
::::j::: b::: s:::

Æ

Æxi

 dxj � � �

Æ

Æya

 Æyb � � �

@

@zr

 Æzs � � �

The components of the tensor T , with respect to the coordinate transforma-
tions (1.1) are transformed in the following way:

T :::i0 :::a0 :::r0 :::
::::j0::: b0::: s0::: = T :::i :::a :::r :::

:::j::: b::: s:::

@xi
0

@xi
@xj

@xj0
� � �

@ya
0

@ya
@yb

@yb0
� � �

@zr
0

@zr
@zs

@zs0
� � �

For some vector �eld X 2 T (T 2M) and some 1-form ! 2 T �(T 2M) we have:

(2.17)
X = X i Æ

Æxi
+Xa Æ

Æya
+Xp @

@zp
= X�Æ�;

! = !jdx
j + !bÆy

b + !qÆz
q = !�Æ

� :

With respect to (1.1) the coordinates of X and ! transform in the following way:

X i0 = X i@x
i0

@xi
; Xa0

= Xa @y
a0

@ya
; Xp0

= Xp@z
p0

@zp
;

!j0 = !j
@xj

@xj0
; !b0 = !b

@yb

@yb0
; !q0 = !q

@zq

@zq0
;

because for i = a = p (mod n) we have:

(2.18)
@xi

0

@xi
=

@ya
0

@ya
=

@zp
0

@zp
:

3. Generalized covariant derivatives. The generalized connection in
Lagrange and Hamilton spaces was studied among others in [2]{[6]. In T (T 2M)
it is introduced in the following way. Let r : T (T 2M) � T (T 2M) ! T (T 2M) (�
is the Descartes product) be a linear connection, such that r : (X;Y ) ! rXY 2
T (T 2M), 8X;Y 2 T (T 2M). The operator r is called generalized connection.
It is called d-connection if rXY is in TH , TV1 or TV2 if Y is in TH , TV1 or TV2 ,
respectively, 8X 2 T (T 2M). It has been studied by many authors, mostly romanian
geometers.

We shall not make that restriction on r here. In the following we shall use
the abbreviations: Æk =

Æ
Æxk

, Æa =
Æ

Æya
, @k =

@
@xk

, @a =
@

@ya
, @p =

@
@zp

.
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De�nition 3.1. The generalized connection r is de�ned by

rÆiÆj = F k
j iÆk + F c

j iÆc + F r
j i@r; rÆiÆb = F k

b i Æk + F c
b iÆc + F r

b i @r

rÆi@q = F k
q i Æk + F c

q iÆc + F r
q i@r; rÆaÆj = C k

j aÆk + C c
j aÆc + C r

j a@r;

rÆaÆb = C k
b aÆk + C c

b aÆc + C r
b a@r; rÆa@q = C k

q aÆk + C c
q aÆc + C r

q a@r;(3.1)

r@pÆj = L k
j pÆk + L c

j pÆc + L r
j p@r; r@pÆb = L k

b pÆk + L c
b pÆc + L r

b p@r;

r@p@q = L k
q pÆk + L c

q pÆc + L r
q p@r:

The d-connection is de�ned if in (3.1) all terms on the right-hand side vanish,
except the underlined ones.

For the vector �eld X de�ned by (2.17) we have

rÆi(X
jÆj +XbÆb +Xq@q)

= (ÆiX
j)Æj +XjrÆiÆj + (ÆiX

b)Æb +XbrÆiÆb + (ÆiX
q)@q +XqrÆi@q

= (ÆiX
k +F k

j iX
j +F k

b iX
b +F k

q iX
q)Æk + (ÆiX

c+ F c
j iX

j + F c
b iX

b + F c
q iX

q)Æc+

(ÆiX
r + F r

j iX
j + F r

b iX
b + F r

q iX
q)@r

From the above equation it follows

(3.2) rÆiX = Xk
jiÆk +Xc

jiÆc +Xr
ji@r;

where

(3.3) Xx
ji = ÆiX

x + F x
j iX

j + F x
b iX

b + F x
q iX

q; x 2 fk; c; rg

or shorter

(3.4) Xx
ji = ÆiX

x + F x
� iX

�; x 2 fk; c; rg:

The summation over � is the sum of summations over j, b and q as is written in
(3.3). The sign ji is the covariant derivative in direction of the basis vector Æi.

The covariant derivative of X in the direction of Æa has the form:

(3.5) rÆaX = XkjaÆk +XcjaÆc +Xrja@r;

where

(3.6) Xxja = ÆaX
x + C x

j aX
j + C x

b aX
b + C x

q aX
q; x 2 fk; c; rg;

or shorter

(3.7) Xxja = ÆaX
x + C x

� aX
�:
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The covariant derivative of the vector �eld X in the direction of @p is given
by

(3.8) r@pX = XkkpÆk +XckpÆc +Xrkp@r;

where

(3.9) Xxkp = @pX
x + L x

j pX
j + L x

b pX
b + L x

q pX
q; x 2 fk; c; rg;

or abbreviated

(3.10) Xxkp = @pX
x + L x

� pX
�:

In (3.7) and (3.10) the summation over � is the sum of summations over j, b and
q (as in (3.4)).

Theorem 3.1. If X and Y are vector �elds in T (T 2M), r the generalized
connection de�ned by (3.1), then the following equation is valid:

(3.11) rYX = (Xk
jiY

i +XkjaY
a +XkkpY

p)Æk

+ (Xc
jiY

i +XcjaY
a +XckpY

p)Æc + (Xr
jiY

i +XrjaY
a +XrkpY

p)@r:

Proof. The proof follows from (3.2){(3.10) and the bilinearity of r.

The equation (3.11) can be written in the abbreviated form as follows

rYX = X�
j�Y

�Æ�;(3.12)

X�
j� = Æ�X

� + � �

 �X


 :(3.13)

If � = i, then � = F ; if � = a, then � = C; if � = p then � = L.

Theorem 3.2. All covariant derivatives X�
ji, X

�ja, X�kp (� = k, or � =

c or � = r) from (3:11) are transformed as tensors with respect to (1:1) if all
connection coeÆcients from (3:1) are transformed as tensors, except the following,
which have the form

F k
j i = F k0

j0 i0
@xi

0

@xi
@xk

@xk0

@xj
0

@xj
+

@2xk
0

@xi@xj
@xk

@xk0

F c
b i = F c0

b0 i0
@xi

0

@xi
@yb

0

@yb
@yc

@yc0
+

@2yc
0

@xi@yb
@yc

@yc0
(3.14)

F r
q i = F r0

q0 i0
@xi

0

@xi
@zq

0

@zq
@zr

@zr0
+

@2zr
0

@xi@zq
@zr

@zr0
:

The proof is obtained by direct calculation.
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Remark. From (2.17) it follows that F k
j i = F c

b i = F r
q i if k = c = r (mod n),

j = b = q (mod n). The connection coeÆcients H i
j k, M

j
i k and N j

i k de�ned by

(1.11), (1.17) and (1.18) respectively, satisfy the transformation laws prescribed by
(3.14).

4. The torsion tensor of the generalized connection. The torsion
tensor T (X;Y ) is de�ned in the usual way by:

T (X;Y ) = rXY �rYX � [X;Y ]:

Theorem 4.1. The torsion tensor for the generalized connection has the form
T (X;Y ) = T kÆk + T cÆc + T r@r, where

T k = T k
j i Y

jX i + T k
j bY

jXb + T k
j qY

jXq

+ T k
b i Y

bX i + T k
b aY

bXa + T k
b qY

bXq

+ T k
p iY

pX i + T k
p bY

pXb + T k
p qY

pXq;

T k
j i = F k

j i � F k
i j ; T k

j b = C k
j b � F k

b j ; T k
j q = L k

j q � F k
q j ;

T k
b i = F k

b i � C k
i b ; T k

b a = C k
b a � C k

a b; T k
b q = L k

b q � C k
q b;

T k
p i = F k

p i � L k
i p; T k

p b = C k
p b � L k

b p; T k
p q = L k

p q � L k
q p;

T c = T c
j iY

jX i + T c
j bY

jXb + T c
j rY

jXr + T c
b iY

bX i + T c
a bY

aXb+

T c
b rY

bXr + T c
q iY

qX i + T c
q bY

qXb + T c
q rY

qXr;

T c
j i = F c

j i � F c
i j �K c

i j ; T c
a b = C c

a b � C c
b a; T c

q i = F c
q i � L c

i q ;

T c
j b = C c

j b � F c
b j +K c

j b; T c
b r = L c

b r � C c
r b; T c

q b = C c
q b � L c

b q;

T c
b i = F c

b i � C c
i b �K c

i b; T c
j r = L c

j r � F c
r j ; T c

q r = L c
q r � L c

r q;

T r = T r
j iY

jX i + T r
j bY

jXb + T r
j qY

jXq + T r
b i Y

bX i + T r
b aY

bXa+

T r
b qY

bXq + T r
p iY

pX i + T r
p bY

pXb + T r
p qY

pXq

T r
j i = F r

j i � F r
i j �K r

i j ; T r
j b = C r

j b � F r
b j +K r

j b; T r
b q = L r

b q � C r
q b;

T r
j q = L r

j q � F r
q j +K r

j q ; T r
b i = F r

b i � C r
i b �K r

i b ; T r
p b = C r

p b � L r
b p;

T r
b a = C r

b a � C r
a b �K r

a b; T r
p i = F r

p i � L r
i p �K r

i p; T r
p q = L r

p q � L r
q p:

Proof. The proof is obtained by direct calculation using (3.12), (3.13) and
the relations:

[X;Y ] =[X(Y j)� Y (Xj)]Æj + [X(Y b)� Y (Xb)]Æb+

[X(Y q)� Y (Xq)]@q +A+B + C +D;

where

A = X iY j(ÆiÆj � ÆjÆi); B = (X iY b � Y iXb)(ÆiÆb � ÆbÆi)

C = (X iY q � Y iXq)(Æi@q � @qÆi); D = XaY b(ÆaÆb � ÆbÆa):
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Using (2.16) we obtain:

A = X iY j(K c
i j@c +K

r

i j@r) = X iY j(K c
i jÆc +K r

i j@r);

where

K c
i j = ÆjM

c
i � ÆiM

c
j ; K r

i j = K
r

i j +Mr
cK

c
i j ;K

r

i j = ÆjN
r
i � ÆiN

r
j :

B = (X iY b � Y iXb)(K c
i bÆc +K r

i b@r);

K c
i b = ÆbM

c
i ; K r

i b = K
r

i b +Mr
cK

c
i b ; K

r

i b = ÆbN
r
i � ÆiM

r
b :

C = (X iY q � Y iXq)K r
i q@r; K r

i q =
@N r

i

@zq
:

D = XaY bK r
a b@r; K r

a b = ÆbM
r
a � ÆaM

r
b :

Remark. As M =M(x; y), in all above formulae @rM = 0.

5. Special cases. As mentioned in De�nition 3.1 the special connection �r
(the so called d-connection) is obtained, if in (3.1) only the underlined terms are
left. More precisely:

De�nition 5.1 The d-connection �r is de�ned by:

�rÆiÆj = �F k
j i Æk; �rÆiÆb = �F c

b i Æc; �rÆi@q = �F r
q i@r

�rÆaÆj = �C k
j aÆk;

�rÆaÆb = �C c
b aÆc;

�rÆa@q = �C r
q a@r(5.1)

�r@pÆj = �L k
j pÆk;

�r@pÆb = �L c
b pÆc;

�r@p@q = �L r
q p@r:

From (5.1) the following property of d-connection is obvious:

�rX : TH ! TH ; �rX : TV1 ! TV1 ; �rX : TV2 ! TV2

for any vector �eld X from T (T 2M).

Theorem 5.1. If X and Y are vector �elds in T (T 2M) expressed in the basis
B (2:15), then

�rXY = Y k
�ji
X i + Y k�jaX

a + Y k�kpX
p)Æk + (Y c

�ji
X i + Y c�jaX

a + Y c�kpX
p)Æc

+ (Y r
�ji
X i + Y r�jaX

q + Y r�kpX
p)@r;

Y x
�ji
= ÆiY

x + �F x
y iY

y; Y x�ja = @aY
x + �C x

y aY
y; Y x�kp = @pY

x + �L x
y pY

y;

where either x = k, y = j, or x = c, y = b, or x = r, y = q.

Theorem 5.2. The connection coeÆcients �C k
j a,

�C c
b a,

�C r
q a,

�L k
j p,

�L c
b p and

�L r
q p with respect to (1:1) are transformed as tensors. The transformation laws for
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�F k
j i ,

�F c
b i and

�F r
q i are given by (3:14) if in these formulae the connection coeÆcients

are overlined.

Theorem 5.3. The torsion tensor T (X;Y ) of d-connection �r has the form
T (X;Y ) = �T kÆk + �T cÆc + �T r@r; where

�T k = �T k
j i Y

jX i + �T k
j bY

jXb + �T k
b j Y

bXj + �T k
j qY

jXq + �T k
q jY

qXj ;

�T c = �T c
j iY

jX i + �T c
i bY

jXb + �T c
b jY

bXj + �T c
a bY

aXb + �T c
b qY

bXq + �T c
q bY

qXb;

�T r = �T r
j iY

jX i + �T r
b aY

bXa + �T r
j qY

jXq + �T r
q jY

qXj

+ �T r
b qY

bXq + �T r
q bY

qXb + �T r
p qY

pXq

and

(5.2)

�T k
j i = �F k

j i � �F k
i j ; �T k

j b = � �T k
b j = �C k

j b;

�T k
j q = � �T k

q j = �L k
j q ; �T c

j i = �K c
i j ;

�T c
b j = � �T c

j b =
�F c
b j �K c

j b;
�T c
a b =

�C c
a b � �C c

b a;

�T c
b r = � �T c

r b =
�L c
b r;

�T r
q j = � �T r

j q =
�F r
q j �K r

j q;

�T r
q b = � �T r

b q = �C r
q b; �T r

p q = �L r
p q � �L r

q p;

�T r
j i = �K r

i j ;
�T r
b a = �K r

a b:

It is easy to see, that all components of the torsion tensor T which appear in
(5.2) with respect to (1.1) transform as tensors.
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