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ON CESARO MEANS IN HARDY SPACES
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Communicated by Miroljub Jevti�c

Abstract. In the case 1=2 < p < 1 we generalize the Hardy-Littlewood
theorem on (C;�) means in Hp, � > 1=p � 1, by proving that Mp(��nu; r) �
Cp;�Mp(u; r), 0 < r < 1, where u is a harmonic function such that û(k) = 0
for k < �2n. In the case p � 1=2 such a generalization is not possible, but the above
estimate is valid if ��nu are replaced by Riesz type means.

1. Introduction and results

Let Hp denote the usual Hardy space of analytic functions on the unit disc
(cf. [1]). A result of Hardy and Littlewood [3] states that

(1) k��n�kHp � Cp;�k�kHp (0 < p < 1; � > 1=p� 1);

where ��n� are the Ces�aro means of order � of the Taylor series of �. Gwilliam [2]
extended this result to the case of harmonic functions by proving that

(2) sup
r<1

Mp(�
�
nu; r) � Cp;� sup

r<1
Mp(u; r);

where p and � are as in (1), and

Mp(u; r) =

8<
:

2�Z
0

ju(reit)jp
dt

2�

9=
;
1=p

; r � 0:

If u is the Poisson kernel, then Mp(u; r) ! 0 (r ! 1�), when p < 1, which shows
that (2) cannot be improved to obtain, for an arbitrary harmonic function u,

(3) Mp(�
�
nu; r) � Cp;�Mp(u; r) (0 < r < 1):
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In the case p � 1=2 the situation is even worse because then there exist harmonic
polynomials un, deg(un) < n, such that Mp(�

�
n ; l)=Mp(un; 1) ! 1 (n ! 1) (see

Theorem 3 below). However, if 1=2 < p < 1, then (3) holds provided û(k) = 0 for
k < �2n. We state this fact in the following form.

Theorem 1. Let f 2 L1(0; 2�) be such that f̂(k) = 0 for k < �2n, where n
is a positive integer. If 1=2 < p < 1 and � > 1=p� 1, then

(4) k��nfkp � Cp;�kfkp;

where Cp;� is a constant depending only on p and �.

Here

kfkp =

8<
: 1

2�

2�Z
0

jf(t)jpdt

9=
;
1=p

;

and f̂ is the Fourier transformation of f 2 L1 = L1(0; 2�).

We will deduce Theorem 1 from the following result by using the known
estimates for Fejer's kernels [5].

Theorem 2. Let n � 1, 0 < p < 1 and f; g 2 L1 be such that f̂(k) = 0 for
k < �n and ĝ(k) = 0 for k > n. Then

(5) kf � gkp � Cpn
1=p�1kfkpkgkp:

Here f � g denotes the convolution of f and g. Under the conditions of
Theorem 2 this is a trigonometric polynomial of degree � n; we have (f � g)^(k) =

f̂(k)ĝ(k).

In Section 4 we will show how (1) can easily be deduced from another impor-
tant result of Hardy and Littlewood (cf. [1]):

(6) j�̂(n)j � Cpn
1=p�1k�kHp

(� 2 Hp; 0 < p < 1):

(Here �̂(n) are Taylor's coeÆcients of �.) Although (6) is contained in (5) we will
deduce (5) from (6) very simply.

Theorem 2 will be used to prove part of the following.

Theorem 3. Let n and f be as in Theorem 1 and � � 1. Then

k��nfk1=2 � C�(log(2n))
2kfk1=2(7)

k��nfkp � Cp;�n
1=p�2kfkp (0 < p < 1=2):(8)

These inequalities are the best possible in the sense that there are (nontrivial)
trigonometric polynomials fn, independent of p; �, such that deg(fn) � n=2 and

k��nfnk1=2 � c�kfnk1=2(logn)
2(9)

k��nfnkp � cp;�kfnkpn
1=p�2 (0 < p < 1=2):(10)
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As a further application of Theorem 2 we shall prove that Theorem 1 is true
for all p < 1 if the Ces�aro means are replaced by the Riesz (spherical) means. The
latter are de�ned as

(11) (R�
nf)(t) =

X
jkj<n

 
1�

�
k

n

�2!�

f̂(k)eikt; n � 1:

Theorem 4. If f is as in Theorem 1, 0 < p < 1 and � > 1=p� 1, then

(12) kR�
nfkp � Cp;�kfkp:

Corollary. If f 2 Hp, 0 < p < 1 and � > 1=p � 1, then kR�
nfkHp �

Cp;�kfkHp .

Proof of Theorems 2, 1 and 4

Proof of Theorem 2. Assuming, as we may, that f and g are trigonometric

polynomials we de�ne the analytic polynomials F and G by F̂ (k) = f̂(k � n) and

Ĝ(k) = ĝ(n � k), k � 0. It follows from the hypotheses that g(�t) = e�
R
G(eit)

and f(t) = e�
R
F (eit). Now write f � g as

(f � g)(t) =

2nX
k=0

f̂(n� k)ĝ(n� k)ei(k�n)t

=

2nX
k=0

Ĝ(k)F̂ (2n� k)ei(k�n)t:

Hence, for a �xed t, we have that (f � g)(t) = �̂(2n)e�
R
, where � is the analytic

function de�ned by
�(z) = G(eitz)F (z):

Now we apply (6) to obtain

j(f � g)(t)jp � Cp(2n)
1�p

2�Z
0

���G�ei(t+�)�F (ei�)���p d�

= Cpn
1�p

2�Z
0

jg(�t� �)f(�)jpd�:

Integrating this over the interval 0 � t � 2� and using Fubini's theorem we get (5).
�
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Remark. Somewhere we use C to denote constants which may vary from line
to line.

Proof of Theorem 1. Recall that ��nf = K�
n � f , where K

�
n are Fejer's kernels,

(13) K�
n (t) =

nX
�n

B(�; n+ 1)

B(�; n+ 1� jkj)
eikt;

where B is the Euler Beta function. By Theorem 2, inequality (4) follows from the
inequality kK�

nkp � Cn1�1=p (1=2 < p < 1; � > 1=p � 1). If 0 < � � 1, this is
easily obtained by integration from

jK�
n (t)j � C� min

�
n; n�� jtj���1

�
(0 < � � 1; jtj < �)

(see [5, p. 48]). If � > 1, we use the formula

K�
n (t) =

0
@ nX

j=0

A��2
n�jA

l
jK

l
j(t)

1
A =A�

n ;

where, for � > �1,

(14) A�
n =

�
n+ �

n

�
�

n�

�(�+1)
(n!1)

(see [5, p. 42 and Ch. 3.13]). Combining these relations we �nd that jK�
n (t)j �

C�n
�1jtj�2 (jtj < �). Since also jK�

n (t)j � 2n+ 1 (by (13)) we obtain

(15) jK�
n (t)j � C�min(n; n�1jtj�2) (� � 1; jtj < �):

Now integration yields the desired estimate for kKnkp. This completes the proof
of Theorem 1. �

Proof of Theorem 4. In this case we have R�
nf = T�

n � f , where

T�
n (t) =

nX
�n

�
1�

k

n

���
1 +

k

n

��
eikt:

Hence T�
n is the convolution of the functions

1X
k=�n

�
1 +

k

n

��
rkne

ikt =:h(t)

nX
k=�1

�
1�

k

n

��
r�kn eikt = h(�t)
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where rn = 1� 1=(n+ 1). Hence, by Theorem 2,

kT�
n � fkp � Cpn

1=p�1kT�
n kpkfkp � Cpn

2=p�2khk2pkfkp:

So it suÆces to prove that khkp � Cp;�n
1�1=p, for 0 < p < 1, � > 1=p�1. We have

h(t) = r�nn n��e�int�(rne
it);

where

�(z) =
1X
k=1

k�zk;

and hence
khkp � Cn��Mp(�; rn):

Now we use two familiar estimates,

j�(z)j � C�j1� zj���1 (jzj < 1)

and
2�Z
0

j1� reitj��dt � C�(1� r)1�� (� > 1);

to obtain
Mp

p (�; rn) � Cp;�(1� rn)
1�(�+1)p:

Combining these inequalities we conclude the proof. �

3. Proof of Theorem 3

Inequalities (7) and (8) follow from Theorem 2 and (15). To prove the rest

de�ne trigonometric polynomials fn by f̂n(k) = �(k=n), where � is an even C1-
function on the real line such that �(x) = 1 for jxj < 1=4 and �(x) = 0 for
jxj > 1=2. It is easily shown (see, for example, [4, p. 177]) that kfnkp � Cpn

1�1=p.
So it remains to prove that

k��nfnkp � c�n
�1(logn)2 (p = 1=2)(16)

k��nfnkp � cp;�n
�1 (p < 1=2);(17)

where c� and cp;� are positive constants.

Let

Fn(x) =
�(x=n)

B(�; n+ 1� jxj)
; �1 < x <1;(18)

Gn(t) = (1� eit)3
1X
�1

Fn(k)e
ikt:
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We will show that there exists a constant A > 0 such that

(19) jGn(t)j � A�1n��1t (n > A; A=n < t < �);

which will imply

(20) j��nfn(t)j � c�n
�1t�2 (A=n < t < �)

because
��nfn(t) = (1� eit)�3B(�; n+ 1)Gn(t):

Inequalities (16) and (17) are immediate consequences of (20).

To prove (19) observe �rst that Gn is a trigonometric polynomial of degree
< n=2 + 3. The coeÆcients of Gn are given by

Ĝn(k) = Fn(k)� 3Fn(k � 1) + 3Fn(k � 2)� Fn(k � 3):

Using this we get

Ĝn(1)e
it + Ĝn(2)e

2it = (4Fn(1)� 3Fn(0)� Fn(2))e
it(1� eit):

Since, by (18), for n > 4,

4Fn(1)� 3Fn(0)� Fn(2) =

�
4�

3(�+ n)

n
�

n

�+ n� 1

�
1

B(�; n)
> c�n

��1;

we see that

(21) jĜn(1)e
it + Ĝn(2)e

2itj � c�n
��1jtj (jtj < �):

On the other hand, if k 6= 1; 2 and jkj < n=2 + 3, then we can apply Lagrange's
theorem for symmetric di�erences to obtain

jĜn(k)j � supfjF 000
n (x)j: 0 < jxj < n=2 + 3g:

(It follows from (18) that F 000
n (x) exists for x 6= 0.) The formula

�
d

dx

�m
B(�; n+ 1� x) =

1Z
0

t��1(1� t)n�x
�
log

1

1� t

�m
dt

(0 < x < n+ 1) together with the inequality log(1=(1� t)) � t=(1� t), 0 < t < 1,
shows that

(d=dx)mB(�; n+ 1� x) � B(� +m;n+ 1 +m� x) � C�n
���m
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for m = 1; 2; 3 and 0 < x < n=2 + 3, n > 10. Using this we can show, after an
elementary but rather long computation which we omit, that jF 000

n (x)j � C�n
��3.

Hence jĜn(k)j � C�n
��3 and hence��� X

k 6=1;2

Ĝn(k)e
ikt
��� � C�n

��2:

Combining this with (21) we obtain

jGn(t)j � c�n
��1jtj � C�n

��2 (jtj < �);

which implies (19). This completes the proof of Theorem 3. �

4. Remarks

(A) A simple proof of (1) can be given by using the identity

�(z�)(1� z)���1 =

1X
k=0

A�
k (�

�
k �)(�)z

n; jzj < 1; j�j = 1;

where A�
k is de�ned by (14). From this and an obvious modi�cation of (6) it follows

that

rnpjA�
n(�

�
n�)(�)j

p � Cpn
1�p

2�Z
0

j�(reit�)jpj1� reitj�(�+1)pdt

Now let r = 1� 1=n and integrate over the circle j�j = 1 to obtain (1).

(B) Inequality (1) can also be deduced from (5) by considering ��n� as the
convolution of the functions �(rne

it), rn = 1� 1=(n+ 1), and

nX
k=�1

B(�; n+ 1)

B(�; n+ 1� k)
r�kn eikt = r�nn B(�; n+ 1)�(1� rne

�it)�(�+1)eint:
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