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Abstract. Starting with a given function k, as the kernel of a convolution
operator, the auxiliary function H is constructed, which is the kernel of a normal
operator. Establishing the connection between this operator and the previous one,
the exact asymptotic of singular values is obtained. The method is used to find the
exact asymptotic of the singular values of integral operators with the kernel of the
form T'(z,y)k(z = y), where k is not necessary a homogeneous function.

0. Introduction. We study the asymptotic singular value behavior of
integral operators defined by kernels of the form

(%) K(z,y) =T(z,yk(lz =ylI™), 2yeQ

where (2 is a Jordan measurable set in R™, and T, k are some suitably chosen
functions.

Asymptotic properties of the spectrum of operators with convolution kernels
are considered in many papers [1], [2], [3], [8], [9], [12], [13], [14], [17], [18]. The
exact asymptotics are obtained under the condition that the Fourier transform of
the kernel satisfies some conditions concerning the growth rate.

Kac [8], obtained the exact asymptotic of eigenvalues of the operators with
kernel p(y)|z—y|* 1 (0 < @ < 1, g € Cla,b], 0 > 0 on [a,b]). He used a probabilistic
method and Karamata Tauberian theorem.

Birman, Solomjak, Kostometov and Rotfeld in [1], [2], [9], [14] considered
the asymptotic of the spectrum of operators with the kernel of the form (x). They
assumed that k is a homogeneous function from the class C*°(R\{0}) and that T
is a function which is smooth of some order. They obtained the exact asymptotic
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46 Dostanic

or the upper estimate of eigenvalues, depending on the assumptions mode on the
smoothness.

Cobos and Kuhn [3] treated the problem of estimating the singular values of
operators with the kernel of the form (%) where

k(@) =lal* 'L +m Yz, yER, 0<a<l/2

They found an upper estimate for singular values of such operators and proved their
optimality (in the sense of the growth order) in the case m = 1, @ = [-1/2,1/2]

and )
|z —y|*™" - (I—=Infz —y[)"; |r—yl <1/2

T(x’y):{O; lz—y|>1/2°

Oehring [11] proved the convergence of series of singular values (with weights
defined by regularly varying sequences) for Hilbert Schmidt operators with the
kernel which is 27 periodical function on the second variable.

In the cited papers the problem of determining the exact singular values
asymptotic of integral operators with the kernel of the form (%) (where k is not a
homogeneous function) is not considered.

Here we propose a new method for solving such a problem. In the special
case when

1 K 1
k(z)=|z[*' 1+ —|1 S -5 =
(z) = || <+m|n|ﬂrll> , YER, 5 <a<

the exact asymptotic of singular values of operators considered in [3] is obtained.

1. Preliminaries. Suppose H is a complex Hilbert space and T is a compact
operator on H. The singular values of T' (s,,(T')) are the eigenvalues of (T*T)'/?
(or (TT*)'/?). The eigenvalues of (T*T)'/? arranged in a decreasing order and
repeated according to their multiplicity, form a sequence s1, so, ... tending to zero.

Denote the set of compact operators on H by C.

The operator T' is a Hilbert-Schmidt one (T € Cs) if (300, s2(T))/? =
|T|2 < 00.

If T € C5 is an integral operator on L*(Q) defined by

Tf) = / M(z, ) (y)dy

then [7]
T2 = / / \M (2, y)Pdady.
QJQ

Denote by [, K(z,y) - dy the integral operator on L?(£2) with the kernel K.
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Let N¢(T') be the singular value distribution function

N(Ty= > 1 (t>0).

sn(T)>t

A positive function L is a slowly varying function on [a, +00) if it is measurable
and for each A > 0 the equality

lim L(Az)/L(z) =1

T—-+00

holds. It is well known [15] that for every v > 0 we have

lim z"L(z) = 400 lim z7L(z) =0.

r—>+00 r—+00
In what follows we need some lemmas

LeEMMA 1. Suppose L is a slowly varying function such that o(x) = x~"L(x)
and Y(x) = 2" L(z) (r > 0) are monotone for x > xo and

o o (@) )

=1
z—+00 L(z)

Then Y
e ) ~ (L) y— 0%,

v )~ (wpw) "y e,

U are the inverses of ¢ and 1.

where o=, P~

Proof. Directly follows from (0) by substitution.
We observe that the functions

8§

L(z) = [[(nm, (@)™ (g, (z) = nln .. Inz)

i=1 g
satisfy conditions of Lemma, 1.

LEMMA 2. Suppose the operator H € Cy, is such that for every € > 0 there
exist a decomposition H = H. + H!' (H., H!' € Cw,) with the following properties:
T

1/r
o ; : n — / o T N "
1° There exzists t1—1>%1+ <L(t—1/r)> Ni(H.) = c(H!) 2 nlLIr;O o) sp(H!) < e.
t

. . N . _
Then there exists 51—1>I(I)1+C(H5) =C(H) and %1_1}1[1) <7L(t—1/r)> Ni(H)=C(H)
Proof. Lemma 2 can be proved by a slight modification of the proof of Ky

Fan theorem [7].
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2. Main result. Suppose k is an even complex valued function from
C"(R\{0}) having a compact support. Let K(§) = [e"k(t)dt. Consider the
operator A: L?>(—1,1) — L?*(—1,1) defined by

Af(z) = / ke =) f ) dy

THEOREM 1. Let the function |K(£)| be decreasing for £ large enough, and
|K(&)| ~ & "L(E) (r € N) and L is some slowly varying function). If the operator
B:L?(0,2) — L?(0,2) defined by

satisfies the condition
(1) lim —— s, (B) = 0;

L(n)
then sp(A) ~ ———.
en s, (A) (e /2y
Proof. Consider the function
H(z,y) = Z [k(z —y +4n) — k(z +y + 4n + 2)], xz,y € [-1,1].

n=-—oo

Let o (z) = sinnw(1 + z)/2, n € N. The system of functions {p,}%2, is an
orthonormal basis of L?(—1,1). By a direct computation we get

1
nw
/ H(z,y)pn(y) dy = K (7) on(@), ze[-1,1], n=1,2,3,...
-1
The operator Ag: L?(—1,1) — L?*(—1,1) defined by Ay f(z) = fil H(z,y)f(y)dy
is a normal one and {|A,(Ao)|}n>1 are its singular values.
By assumption of Theorem 1 we have

(2) sn(Ap) ~ (nm/2) " L(n).

Let

Hy(z,y) =k(z—y—4)+ Z[k(m—y+4n)—k(:v+y+4n+2)],

n#£0
n#—1

Hy(z,y) = —k(z +y +2), H3(z,y) = —k(z +y —2)
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and let A; be linear operators on L?(—1,1) defined by

Aif(z) = / @iy (=1.2.9),

Then Ag = A+ A; + Ay + As. Since 8"H,; /0y" is a bounded function on [—1, 1],
we have [7] s, (A1) = o(n~""/?) and consequently

(3) sn(A1) = o(L(n)/n").

From the properties of singular values [7] and (1) it follows

4) sn(4;) = o(L(n)/n") i=2,3.

Finallly, from A = A — A; — Az — A3, (2), (3), (4) and Ky Fan theorem we get

$n(A) ~ (n1/2)""L(n).

Remark 1. Let A be an interval in R. If the function k satisfy the conditions

of Theorem 1, then
nt\ "
Sn k::r—y-dy>~<—> L(n),
(f =) ) o

where |A| denotes the length of the interval A (Consequence of Theorem 1).

Remark 2. Tt is not necessary to assume that k£ has the compact support; it is
enough to suppose that the series defining H is convergent and r times differentiable
by y term by term. It is easy to prove Theorem 1 in some cases when r ¢ N.
Namely, in the case 0 < r < 1/2 the condition (1) can be substituted by

2 2
/ / |k(z + y)|? de dy < 0o (i.e. B € ().
0o Jo

Then it is not necessary to assume that & is smooth. It is enough that k € C(R\{0})
(with compact support). The function k is not supposed to be homogeneous, and
so the method from [1], [2] cannot be used to obtain the asymptotic behavior of
the associated operators.

Ezample 1. Let k(z) = |z|*71, 0 < a < 1. The series

.- 1 1
Z <|m—y+4n|1—0‘ a |x+y+4n+2|1—0‘>

n=—oo

is convergent and
/ e |t|* "t dt = 2T () cos %|x|f‘l.
R 2
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So, K(§) = 2T'(«) cos &F|¢|~*. If we prove

(5) n ( / ) dy) = o(n~)

then by Theorem 1 we obtain

1 9 a
. —yl* o dy) ~2r T
s (/_1 |z — y| Y (c) cos 5 \ e

The operator f_ll |z —y|* - dy (0 < a < 1) is a positive one. From the
previous relation we get

1 2 @
A, —yl* L. dy) ~2r il (NI I
(/ =~ y] y) () cos & (m)

Observe that the direct application of Theorem from [18] to the kernel k(z) =
|£|*~! can not give the corresponding asymptotic formula, because the function K
is not bounded on R\{0}.

Now, we prove (5).

LEMMA 3. For the operator C: L*(0,2) — L?(0,2) defined by

Cf(x) = / @ty f@dy  (0<a<l)

we have lim,,_, o, n%s,(C) = 0.

Proof. Let ¢ > 0 be an arbitrary real number (¢ < 2) and let P,: L?(0,2) —
L?(0,2) be an operator defined by

f(x); = €[00
P = .
P { 0;  w€ (o2
Then C =C(I — P,) + (I - P,)CP, + P,CP,. Form Krein Theorem [7] it follows

sa(C(I = P,)) = o(n™""?)

(6) su((I = P,)CP,) = o(n™%/?)

Since P,CP,f(z) = fog(a: +y)® 1 f(y) dy, then applying the partial integration of
order @ and the Hardy-Littlewood inequality [16] we get
(7) nasn(PQCPQ) < Coo,

where the constant Cy does not depend on ¢ and n. (This method we use in [5]).
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From (6), (7) and the properties of singular values we obtain n%s,(C) < Vy-p
for n > ng, where the constant V;, does not depend on n and p. Lemma is proved.

Now, consider the case a > 1, a € N. Start with the function,

2(1—e)/2 Ko -
Vr(a)2) |z|0=272 (€ O (R\{0}))

where K, is McDonald function [16]. It is well known [16] that G, € L'(R) for
each a > 0,

Go(x) =

|x|(a—2)/26—‘$‘

- — +o00.
() 0 1l

/eimc’ya(t)dtZ(1+:152)_“/2 Ga(z) ~
R

By Theorem 1 we have

(8) %(/iGAx—w-@)~(%Q‘7

Since
|m|a71

Ga() = 2I' (@) cos amr /2

+e|* o) + (), 9(0) =0,

where ¢ and v are even entire functions, then from (8), Ky Fan and Krein theorem
[7] it follows

1 a—1 —
|z — y| ™m\ —« .
n I gy~ (2E) T, e
: (/_1 2I'(ex) cos am /2 Y ( 2 ) e
1 —a
2
Sn (/_1 |z —y|*t- dy) ~ 20 («) ‘COS%‘ . <E> .

(Iny/Ja])™

Ezample 2. Let k(z) = P

,0<a<1l,vy>0,m=0,1,2... Since

‘lnzﬂ/
// w+y22ada:dy<oo (for a >0, m=0,1,2...)

we have that for 0 < o <1/2
a 2] m
(9) lim — Sn / —(n’y/(m-i—ij)) -dy) =0
st "\ Jy @

holds. Since

/ e k(t) dt ~ 2T'(a) cos Q—JM (z — +00)
R

|z]*
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(which is obtained by differentiating [, e™*[t|* ' dt = 2T'(a) cos & |z|~* by «),
then from (9) and Theorem 1 we obtain

THEOREM 2. Suppose k is an even complex valued function satisfying the
following conditions:

1° k € L*0,00), k € L*(1/a, +00) for each a > 0 and

/01/a |k(t)| dt + a=1/? (/1:0 |k:(t)|2dt>1/2 =0 (Léf)>

(0 <r <1/2, L is a function from Lemma 1).

2° The function |K(§)|, where K(§) = [, €'®k(t) dt, is decreasing for & large
enough.

3° The series Ennj_ol [k(a(z —y +4n)) — k(a(z + y + 4n + 2))] is convergent

and its sum is a bounded function on [—a,a]? for each a > 0.

If T € L™((—1,1)%) is a continuous function in some neighborhood of the
diagonal y = x and T(x,z) > 0 on [—1,1], then

o[ rrte =0 )~ 2 (L 0y ar)

Proof. Let A; =[-1+4+2(i—1)/N,—1+2i/N],i=1,2,...N and let z; be
the midpoint of A;. From the assumptions of the theorem, by Theorem 1 (having
in mind Remarks 1 and 2) we have

oo ([ oo an) ~ (i57) 200

Condition 1° (for @ = n) and Lemma 1 from [3] imply

(10) oo ([ Twke =) ay) < c 2

-1
for each T € L°°((—1,1)?) where the constant C' does not depend on n and T.
Let AN, A;;: L*(—=1,1) = L*(=1,1) (i,j = 1,2,...N) be the linear operators
defined by
1
AN £(@) = xaile) [ ble = pxa )T i) 1) dy

A f(2) = xa, ( /m— )Xo )T (2, ) £ (y) dy
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(xa(+) is the characteristic function of the set A). Let Ay = Zi\; AN and
let By:L?*(—1,1) — L?*(—1,1) be the linear operator defined by Byf(z) =

f,ll GN(Z’, y)k:(a; - y)f(y) dy, where
N
G (o) =D xai(@)xa, 0) (T(w,y) = Tlzi, 2:).

Then A = Ay + By + Ei# A;;. Suppose € > 0. Then from continuity of
T in the neighborhood of the diagonal y = =z, it follows that for N large enough
T (z,y) — T(xs,2z;)| < e for (z,y) € A; x A;. Then

(11) Gn(z,y)l <e  (z,y) € [-1,1%

Since By f(x) = f_ll Gn(z,y)k(z — y) f(y) dy, then from (10) (for T = Gn)
and (11) it follows

(12) sn(By) < C-e-L(n)/n"

where the constant C' does not depend on ¢ and n.

Now, we prove that A;; € Cs (i # j). From the condition 1° of Theorem 2 it
follows

1 o0
= / |k(t)|? dt < const (L(a))?/a®" (a large enough)
aJi/a

and therefore

(13) /yoo |k(t)|? dt < consty* ! <L G))z

To prove A;; € Cs (i # j) it is enough to prove

(14) /A /AJ_ lk(z — )P dedy < oo

because T € L*((—1,1)?). In the case A; N A; = @ (14) is true because k €
L*(A; x Aj). Now, suppose that the intervals A; and A; are neighbours (for
example j =i+ 1).

Since

2/N 2/N 5
/ dx/ |k(m—y)|2dy:/ dy/ ‘k(m—y——)
A A+l 0 0 N

2/N y+2 2/N o)
~ [ Cmopas [T a [ woPe,
0 y 0 Y

2
dx
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then from (13) it follows

2/N 1 2
/ / |k(z — y)|2 dzr dy < const / y?rt <L <_>> dy
Ay JA; 0 y

o0
= const / t 12 (L(1))? dt < oo.
N/2

Since A;; € C (i # j), then Cn = E]_\l%l A;; is Hilbert-Schmidt operator

and lim, oo n'/?s,(Cn) = 0, i.e.
(15) sn(CN) = o(L(n)/n") (because 0 < r < 1/2)

From (12) and (15) it follows that for each e > 0 there exists a sufficiently large
positive integer NV such that
,

— n
(16) nll_}Holo msn(BN-l-CN) <e

Since the operator Ay is the orthogonal sum of the operators AN, we have

N
(17) Ni(An) =D Ni(AY)

From conditions 2° and 3° of Theorem 2 and Theorem 1 it follows

|Ai]" Ln)

" n"

sn(AY) ~ T (@, ;) (i=1,2,...N).

Applying Lemma 1 we obtain

) t 1r _ |Az| 1/r
i <m> Ni(A7) = =2 (T (s, zi)' "

t—0t

Combining this with (17) we get
tl—l;Ié t N L(til/r) - P T xlawl .
Having in mind (16) and A = Ay + By + Cn by Lemma 2 we obtain

. ¢ 1/r
i, M) <W>

1
=~ lim Z|A| (25, )1/’"—1/1(T(m,x))1/’"dm

T N—+o0 4 s
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Substituting t = s,,(A4) we get

1/r

n - <L((sn(A))1/“)>
L[ (T (z,2)) V7 d sn(A)

Applying Lemma 1 we obtain

Sn(A) ~ (1 /1 (T (z,z))"/" dm)r M

™J-1

which ends the proof of Theorem 2.
Example 3. Let k(z) = |z|*"1(1+|In]|z|[)?, 0 < a < 1/2, v € R. The function

k satisfies conditions of Theorem 2 and
ar (In§)”
2 g

K(g):/Reitﬁk(t) dt = 27(a) cos C(140(1) £ 400 [6].

According to Theorem 2 we have

as) s ( f e cha Lokl )

—1 |z —y[t—

~ 21(a) cos % <1 /1 (T(z, 2))"/ d;g> " (n)t

T J_q ne

Remark 3. In [3] Cobos and Kiihn obtained the asymptotic order of the sin-
gular values of the operator

/ T(x,y)(lJrllnlﬂf—yll)” dy

—1 |z —y[t—

for a special case of T'. Exact asymptotic behavior is not derived.

Remark 4. If we put T'(x,y) = o(y) in (18) where o € C[-1,1], ¢ > 0 on
[-1,1] and v = 0, then for 0 < o < 1/2 we get,

) s ( | ol -yl ) ~ 2@ cos (3 [ (o) dx)a e,

-1 ™J

Having in mind the proof of Theorem 2, as in Lemma 5 we get that asymptotic
formula (19) is also valid in the case 1/2 < a < 1. From [4, Theorem 1] it follows

w(f 11 oWl =yl dy) ~ 2r@yeos 3 (2 11<g<w>>1/“ dw)a e
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Kac [8] obtained the asymptotic behavior of eigenvalues of the operator | _11 o(y)|z—
y|*~1 - dy using a probabilistic method and Karamata Tauberian Theorem.

3. Multidimensional case Suppose ko: (0,00) — R is a rapidly enough
decreasing function (for example one having a compact support) and let k(z) =

ko(llz[I™) (=]l = (C, #)'? @ = (21,22, ... @)
It is known [16] that
. 27) % o0
@) [ ey dy = i [ ke e gl
where J, is Bessel function.
We introduce the functions k1, ks, . . . kyy—1 in the following way:

kl(tl,tg,...tm_1) = Z [k(tl,...tm_l,:vm — Ym +4nm)
nm€Z

—k(t1,.. . tm—1,Tm + Ym + 40y + 2)]
ka(ti,t2,. . tm—2) = Z (B1(ti, .- tm—2,Tm—1 — Ym—1 + 4N 1)
Nm—1€Z
—ki(t1, . e, Tt + Ym—1 + 401 + 2)]

k‘m_l(tl) = Z [km_Q(tl,ZEQ —yYa + 4n2) — km_Q(tl,fEQ +y2 +4no + 2)]
No€Z

Define the function H by

(21) H(xz,y) = Z[km_l(m —y+4n) —kp_1(z+y +4n + 2)]
neZ

Suppose that the function kg is chosen such that all the series defining functions
ki,ka,...km—1, H are convergent. By a direct computation we obtain

T TNoT N T

22 H - =K (20 2 ) o inm
(22) i (T, 9)Pning...nm (Y) dy (2 5 5 )@ w (T)

where I = [-1,1],

m
. mni(1+z;)
Oning...nm (L) = H sin — s
i=1

K(tl,tg,...tm):/ eTER(E)dE, t = (t1,t, .. .tm).

Let
(271.)m/2

Ko = \mam

+0o0
/ ko(d™ ™2 T sy 1 (eNdo (A > 0).
0
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Then from (20) it follows that K (t1,%2,-..tm) = Ko(||t]])-

THEOREM 3. Let the function ko satisfy following conditions

1° ko is measurable and bounded on (g, +00) for each € > 0 and all the series
defining the function ky,...kn_1, H are convergent.

2° The function |Ko(§)| is monotone if £ is large enough and |Ko(§)| ~
ETTLE) (£ =& +0), 0 < r < m/2, where L is a slowly varying function from
Lemma 1.

3° All the integrals

S m/
/[0,2]m /[0,2]m ‘ko (( Z(wl + yz’)Q) 2) ‘2 dx dy

are finite for all the combinations of + and —, except for the one with all signs —.
Then for the operator A: L?>(I™) — L*(I™) defined by

Af(x) = [ k(z—-y)fly)dy we have
Im
"L 1/m 1/m
sp(A) ~ <7ri6'0> % where Cp = % (I‘ (1 + %)) .

Proof. From (21) and assumptions 1° and 3° of Theorem 3 it follows that
/ / |H (z,y) — k(z — y)|* dvdy < +o0

and therefore the operator Bf(z) = [},.(H(x,y) = k(z — y))f(y) dy is a Hilbert-
Schmidt one. So,

(23) lim n'/%s,(B) =0

n—o0

Let D: L?>(I™) — L?(I™) be a linear operator defined by

Df(z)= [ H(z,y)f(y)dy.

im

From (22) it follows that

™
Sovrsnn (D) = |1 (F o+ )|

(by $ny...n,, (D) we denote singular values of D). Clearly A = D = B. Let mg(§) =
|Ko(£)|. From condition 1° it follows that mg is a monotone function for £ > &
and mo(§) ~ ETL(E) £ = 00,0 <r <m/2.
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Then sp,..n,, (D) = mo (%\/n% + - n%n) For large enough ny,no, ..., ny,
we have

ni+n3 4+l =4n 2 (mg (s, (D)),

where mg " is the inverse function of mg (¢ > &)).

Let the sequence {Sp,ns..n,, } be arranged in a nonincreasing order sy >
s2 > .... The sequence {mg'(s,)} is nondecreasing for n large enough and hence
my " (sn) = my " ($ny...n,, (D)) for n and ny .. .n,, large enough.

Let N be a positive integer such that
ni4ni+--4nd = 47r_2(m0_1(sn1___nm (D)))? = 471'_2(71151(sn))2 = N?
Denote by v; and vs the smallest and largest values of such that
n}+nd 4+ +nk =473 (my " (s,))? = N?

It is known [10] that

,n.m/2 N N
=y YRR
(24)
7.‘.m/2 N N
V2= iy )
From N2 = 4772(mg ' (s,))? we get
(25) Sp, = mo(TN/2).

Since v < n < vy, from (24) it follows that

,n.m/2

= __N"4o(N™), ie.
e N Y R A

(26) N = Con*™(1 +0(1)), where Cp= % (I‘ (1 + %))l/m.

From (25), (26) and condition 2° (Theorem 3) it follows that

2 \" L(n'/™)

Combining this with (23) and Ky Fan Theorem, we get

2 \" L(n'/™)

Theorem 3 is proved.
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Remark 5. Let A = [—a, a]™. If the function ¢t — k(at) satisfies conditions of
Theorem 3, then

B |A|1/m r L(nl/m)
Sn (/Ak'(l' y) dy) (7’(’6’0 nrim

where |A| denote the measure of the cube A.

LEMMA 4. Let ko(t) = t* ' (1+ L|Int])", v € R, 1/2—1/2m < a < 1/2.
Then the function |Ko(-)| has the following asymptotic behavior

In&)” r 2
|Ko(&)] ~ (;2 ”mﬂ?amp(mﬁm_l/a))/g)’ § = oo,
where o2 oo
Ko(©) = s [ bl e (061
Proof.
o) 1 1 Y
Ko(© = a2 [ (e [ = 1)) e

~ (2m)™2E M (I £ / W2 (u)du

= (2m)™/2¢ oM (Ip €)Y - gem-m/2 . (%) /F <w ) |

(by Veber formula [16], fooo 0% 7, (0)do = 2°T (”‘*‘g"‘l) /[‘ (V+;:B))‘

If % = ﬁ < a< % then the functions ky and K, satisfy conditions of

Theorem 3 (which can be easily verified). Then we have r = am and
I'(am/2)

— 7_‘_m/2 am
L == a2

(In¢)".

COROLLARY. If% =3 < a < i then the following holds (A is cube in R™)

— Y
A lz =yl

5 <|A|1/m>””” am/2.20m  T(am/2)  (Inn)?
7Co mY  T(m(l-—a«)/2) n> °

Proof. Directly follows from Theorem 33 and Lemma 4.
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THEOREM 4. Let @ C R™ be a bounded Jordan measurable set. If T €

L>(Q x Q) is continuous in the neighborhood of the diagonal y = z, T(xz,z) > 0
onQ,yER and 1/2 -1/2m < a < 1/2 then

— Y
Q |z —y|m-=)

“(s&) e ot (e ae) G

Proof. Consider first the case Q = [a,b]™. Let

L+ |Inflz = yll)”
o =yl

A:/QT(:E,y)( dy

Divide the cube € into N cubes A; and denote by z; the center of A;.

As in the proof of Theorem 2 we introduce the operators

AN L2(Q) - L*(Q)  i=1,2,...N
A L () — L*(Q) i#j, i,j=12...N

defined by

aj) = [T s, 0T e )
o Te—ul

Auf) = [ SRS s s, 0T @ )

Let Ay = Ei\il AN, Then A = Ay + Egé] A;j + By, where By is the operator
defined by

By = [ At tnlle D" G o) 7y) dy,

o llz—ylmt=
N
Gn(z,y) = ZXAi (@)xa; (T (2,y) — T(xi, ).

From continuity the function T'(,-) in the neighborhood of the diagonal y = =z
follows that for an arbitrary ¢ > 0 and for IV large enough we have

| T(z,y) — T(xs, ;) |[< € for (z,y) € Ay xA; (1=1,2,...N)

Then for (z,y) € @ x Q we have | Gny(z,y) |< €. The previous inequality and
Lemma 1 [3] give

(28) sp(Bn) < C-e(Inn)? /n”
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where the constant C does not depend on n and .
It can be easily verified that if 1 — 5= < a < 1 and i # j then

141 — 2y
) [ an [ Grlnleosllig, o
Ai AJ'

[l — y||Pmt=e)

holds. From (29) it follows A;; € Cy (for i # j), lim, o n'/?s,(4;;) = 0 and
lim,,_,o n'/%s,, (Zgﬁ] Aij) = 0. Combining this with (28) and using the properties

of singular values, we conclude that for each ¢ > 0 there exists a natural number
N such that

o N
(30) nlgr;o (lnnVSn ;Aij +Bn | <e
i#]

Since 3 — 5= < a < 3, from (27) it follows that

|Ai|1/m>“m7rm/22am I(am/2) (Inn)”

’/TC[) ‘

NY ~ Ty, 2
sn(A;) ~ T( ) ( mY  I(m(l—a)/2) n*

Applying Lemma 1 we get

(31)  N(AN) ~ a7 (= It ot G (T (g, ) Ay, (= 04),
am-m/2 (am/2
where dy = (ﬂéo) — 7r(m((1—é))/2)‘

Since the operator Ay is the orthogonal sum of the operators AN (i =
1,2,...N), we have

N
Ni(Aw) = S N(AN)

and from (31) it follows that

N

. 1/af —v/a _ /o 1/a . )1/« .
g 1170 /N A) = T S ) 1

Using A = Ay + By + Zgé] A;; and (30), by Lemma 2 we get

(32) tgr&_ £/ (= Int) TN (4) = C“_W/adtl)/a / (T (z,))"/* da.
Q

Putting ¢ = s,(A4) in (32) by Lemma 1 we get

(In n)”’-

na

(33) 5n(A) ~ do ( [ @y m)“ .
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the theorem is proved in the case when 2 is a cube.
Remark 6. The equalities (32) and (33) can be obtained in the same way when
2 is the union of some cubes with disjoint interiors.

Suppose i, Qs C R™ are bounded measurable sets, ; C 5. Let
At LA(Y) — L2(Q;) i = 1,2, be the linear operators defined by

(1 +[Inflz — yll)”

d p=1,2.
||.’If_y||m(17a) f(y) y ? I

As@ = [ Ty

LEMMA 5. The singular value distribution functions of the operators A;
(1 = 1,2) satisfy the inequality N'(A;1) < Ni(A42) (t > 0).

Proof. Let P:L%*(Q) — L?(Q;) be orthoprojector (Pf(z) = xq,(z)f(z)).
Since A; = PAyP we have s,(A41) < s,(As) and hence Ni(A;1) < Ni(As).

We continue with the proof of Theorem 4 in the general case. Let Q be a
bounded Jordan measurable set. Let Q, C Q C Qun where the sets Q5 and Qy
are the unions of equal cubes (with disjoint interiors) such that m(Qy) — m(Q2)
m(Qn) = m(Q); N = +oo (m is Lebesgue measure). Denote by T the function
obtained continuously extending 7" in some neighborhood of the diagonal y = z,
so that T is zero in the other points outside Q2 x 2. Let Ay and Apn be the linear

operators acting on L?(Qy) and L?(Qy), defined by

(1 +[Inflz — yll)”

Anf@) = | T S 0
_ ~ In ||z —
As) = [ o) S ) ay

respectively. From Lemma 5 we get NV;(Ay) < NV;(A) < N;(Ay) and therefore
/2 (= Int) T ON(Ay) < /(= 1nt) T ONG(A) < 2 (—Int) AN (AN).

Next we have

lim t/%(=Int) 7" Ni(Ay) < lim t/%(=Int) "N (A)

(34) tm—i— t—0+
< Tim tY%(=Int)"7°N(A) < Tim /9 (= Int) "7/ *N;(AN)
t—0+ t—0+

Since the limits

: 1o v/« : 1o v/ a
tg%1+t (—Int) Ni(AN) and tg%1+t (—Int) Nt(AN)

exists, (Remark 6) and since they are equal to

a*A’/“dé/a/ (T(z,z))"* dzx and cf”/ad(l)/a/i (T(z,z))"/* dz,
Q

QN Qn
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respectively, from (34) we get

a~v/egl/e /Q (T (x, )/ dz < tn_r;l+ /(= 1nt) N (A)
22N —

< t@+ tl/a(_ lnt)fﬂ//a‘/\/‘t(A) < a*“//ad(l)/a/ (T(Z’,l’))l/a dz
—

Qn

Letting here N — 400 we obtain

lim /% (=Int) /%N (4) = a7/ / (T (2,))"/* da.
t—0+ Q

Putting here t = s,,(A4), by Lemma 1 we get

“ (Inn)Y

(35) sn(A) ~ dy (/Q(T(a:,a:))l/“ dm)

Theorem 4 is proved.

Remark 7. Putting m = 1in (35) and applying Legendre duplication formula
we obtain (18).
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