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Abstract. Starting with a given function k, as the kernel of a convolution
operator, the auxiliary function H is constructed, which is the kernel of a normal
operator. Establishing the connection between this operator and the previous one,
the exact asymptotic of singular values is obtained. The method is used to �nd the
exact asymptotic of the singular values of integral operators with the kernel of the
form T (x; y)k(x = y), where k is not necessary a homogeneous function.

0. Introduction. We study the asymptotic singular value behavior of
integral operators de�ned by kernels of the form

(�) K(x; y) = T (x; y)k(kx = ykm); x; y 2 


where 
 is a Jordan measurable set in Rm, and T , k are some suitably chosen
functions.

Asymptotic properties of the spectrum of operators with convolution kernels
are considered in many papers [1], [2], [3], [8], [9], [12], [13], [14], [17], [18]. The
exact asymptotics are obtained under the condition that the Fourier transform of
the kernel satis�es some conditions concerning the growth rate.

Kac [8], obtained the exact asymptotic of eigenvalues of the operators with
kernel �(y)jx�yj��1 (0 < � < 1, % 2 C[a; b], % > 0 on [a; b]). He used a probabilistic
method and Karamata Tauberian theorem.

Birman, Solomjak, Kostometov and Rotfeld in [1], [2], [9], [14] considered
the asymptotic of the spectrum of operators with the kernel of the form (�). They
assumed that k is a homogeneous function from the class C1(Rnf0g) and that T
is a function which is smooth of some order. They obtained the exact asymptotic
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or the upper estimate of eigenvalues, depending on the assumptions mode on the
smoothness.

Cobos and Kuhn [3] treated the problem of estimating the singular values of
operators with the kernel of the form (�) where

k(x) = jxj��1(1 +m�1j ln jxk)
 ; 
 2 R; 0 < � � 1=2:

They found an upper estimate for singular values of such operators and proved their
optimality (in the sense of the growth order) in the case m = 1, 
 = [�1=2; 1=2]
and

T (x; y) =

� jx� yj��1 � (1� ln jx� yj)
 ; jx� yj � 1=2

0; jx� yj > 1=2
:

Oehring [11] proved the convergence of series of singular values (with weights
de�ned by regularly varying sequences) for Hilbert Schmidt operators with the
kernel which is 2� periodical function on the second variable.

In the cited papers the problem of determining the exact singular values
asymptotic of integral operators with the kernel of the form (�) (where k is not a
homogeneous function) is not considered.

Here we propose a new method for solving such a problem. In the special
case when

k(x) = jxj��1
�
1 +

1

m
j ln jxk

�

; 
 2 R; 1

2
� 1

2m
< � <

1

2

the exact asymptotic of singular values of operators considered in [3] is obtained.

1. Preliminaries. SupposeH is a complex Hilbert space and T is a compact
operator on H. The singular values of T (sn(T )) are the eigenvalues of (T

�T )1=2

(or (TT �)1=2). The eigenvalues of (T �T )1=2 arranged in a decreasing order and
repeated according to their multiplicity, form a sequence s1; s2; . . . tending to zero.

Denote the set of compact operators on H by C1.

The operator T is a Hilbert{Schmidt one (T 2 C2) if (
P1

n=1 s
2
n(T ))

1=2 =
jT j2 <1.

If T 2 C2 is an integral operator on L2(
) de�ned by

Tf(x) =

Z



M(x; y)f(y)dy

then [7]

jT j22 =
Z



Z



jM(x; y)j2dxdy:

Denote by
R

K(x; y) � dy the integral operator on L2(
) with the kernel K.
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Let Nt(T ) be the singular value distribution function

Nt(T ) =
X

sn(T )�t

1 (t > 0):

A positive function L is a slowly varying function on [a;+1) if it is measurable
and for each � > 0 the equality

lim
x!+1

L(�x)=L(x) = 1

holds. It is well known [15] that for every 
 > 0 we have

lim
x!+1

x
L(x) = +1 lim
x!+1

x
L(x) = 0:

In what follows we need some lemmas

Lemma 1. Suppose L is a slowly varying function such that '(x) = x�rL(x)
and  (x) = xrL(x) (r > 0) are monotone for x � x0 and

(0) lim
x!+1

L(x(L(x))�1=r)

L(x)
= 1

Then

'�1(y) �
�
L(y�1=r)=y

�1=r
y ! 0+;

 �1(y) �
�
y=L(y1=r)

�1=r
y ! +1;

where '�1,  �1 are the inverses of ' and  .

Proof. Directly follows from (0) by substitution.

We observe that the functions

L(x) =

sY
i=1

(lnmi(x))
�i (lnmi(x) = ln ln . . . ln| {z }

mi

x)

satisfy conditions of Lemma 1.

Lemma 2. Suppose the operator H 2 C1 is such that for every " > 0 there
exist a decomposition H = H 0

" +H 00
" (H 0

"; H
00
" 2 C1) with the following properties:

1Æ There exists lim
t!0+

�
t

L(t�1=r)

�1=r
Nt(H

0
") = c(H 0

") 2Æ lim
n!1

nr

L(n)
sn(H

00
" ) < ".

Then there exists lim
"!0+

C(H 0
") = C(H) and lim

t!0

�
t

L(t�1=r)

�
Nt(H) = C(H)

Proof. Lemma 2 can be proved by a slight modi�cation of the proof of Ky
Fan theorem [7].
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2. Main result. Suppose k is an even complex valued function from
Cr(Rnf0g) having a compact support. Let K(�) =

R
R
eit�k(t) dt. Consider the

operator A:L2(�1; 1)! L2(�1; 1) de�ned by

Af(x) =

Z 1

�1

k(x� y)f(y) dy

Theorem 1. Let the function jK(�)j be decreasing for � large enough, and
jK(�)j � ��rL(�) (r 2 N) and L is some slowly varying function). If the operator
B:L2(0; 2)! L2(0; 2) de�ned by

Bf(x) =

Z 2

0

k(x+ y)f(y) dy

satis�es the condition

(1) lim
n!1

nr

L(n)
sn(B) = 0;

then sn(A) � L(n)

(n�=2)r
.

Proof. Consider the function

H(x; y) =
1X

n=�1

[k(x� y + 4n)� k(x+ y + 4n+ 2)]; x; y 2 [�1; 1]:

Let 'n(x) = sinn�(1 + x)=2, n 2 N . The system of functions f'ng1n=1 is an
orthonormal basis of L2(�1; 1). By a direct computation we getZ 1

�1

H(x; y)'n(y) dy = K
�n�
2

�
'n(x); x 2 [�1; 1]; n = 1; 2; 3; . . .

The operator A0:L
2(�1; 1) ! L2(�1; 1) de�ned by A0f(x) =

R 1
�1
H(x; y)f(y) dy

is a normal one and fj�n(A0)jgn�1 are its singular values.
By assumption of Theorem 1 we have

(2) sn(A0) � (n�=2)�rL(n):

Let

H1(x; y) = k(x� y � 4) +
X
n6=0
n6=�1

[k(x� y + 4n)� k(x+ y + 4n+ 2)];

H2(x; y) = �k(x+ y + 2); H3(x; y) = �k(x+ y � 2)
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and let Ai be linear operators on L
2(�1; 1) de�ned by

Aif(x) =

Z 1

�1

Hi(x; y)f(y) dy (i = 1; 2; 3):

Then A0 = A+A1 +A2 +A3. Since @
rH1=@y

r is a bounded function on [�1; 1]2,
we have [7] sn(A1) = o(n�r�1=2) and consequently

(3) sn(A1) = o(L(n)=nr):

From the properties of singular values [7] and (1) it follows

(4) sn(Ai) = o(L(n)=nr) i = 2; 3:

Finallly, from A = A0 �A1 �A2 �A3, (2), (3), (4) and Ky Fan theorem we get

sn(A) � (n�=2)�rL(n):

Remark 1. Let � be an interval in R. If the function k satisfy the conditions
of Theorem 1, then

sn

�Z
�

k(x� y) � dy
�
�
�
n�

j�j
��r

L(n);

where j�j denotes the length of the interval � (Consequence of Theorem 1).

Remark 2. It is not necessary to assume that k has the compact support; it is
enough to suppose that the series de�ningH is convergent and r times di�erentiable
by y term by term. It is easy to prove Theorem 1 in some cases when r 62 N.
Namely, in the case 0 < r � 1=2 the condition (1) can be substituted byZ 2

0

Z 2

0

jk(x+ y)j2 dx dy <1 (i.e. B 2 C2):

Then it is not necessary to assume that k is smooth. It is enough that k 2 C(Rnf0g)
(with compact support). The function k is not supposed to be homogeneous, and
so the method from [1], [2] cannot be used to obtain the asymptotic behavior of
the associated operators.

Example 1. Let k(x) = jxj��1, 0 < � < 1. The series

1X
n=�1

�
1

jx� y + 4nj1�� �
1

jx+ y + 4n+ 2j1��
�

is convergent and Z
R

eitxjtj��1 dt = 2�(�) cos
��

2
jxj��:
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So, K(�) = 2�(�) cos ��2 j�j��. If we prove

(5) sn

�Z 2

0

(x+ y)��1 � dy
�
= o(n��)

then by Theorem 1 we obtain

sn

�Z 1

�1

jx� yj��1 � dy
�
� 2�(�) cos

��

2

�
2

n�

��
:

The operator
R 1
�1 jx � yj��1 � dy (0 < � < 1) is a positive one. From the

previous relation we get

�n

�Z 1

�1

jx� yj��1 � dy
�
� 2�(�) cos

��

2

�
2

n�

��
:

Observe that the direct application of Theorem from [18] to the kernel k(x) =
jxj��1 can not give the corresponding asymptotic formula, because the function K
is not bounded on Rnf0g.

Now, we prove (5).

Lemma 3. For the operator C:L2(0; 2)! L2(0; 2) de�ned by

Cf(x) =

Z 2

0

(x+ y)��1f(y) dy (0 < � < 1)

we have limn!1 n�sn(C) = 0.

Proof. Let % > 0 be an arbitrary real number (% < 2) and let P%:L
2(0; 2)!

L2(0; 2) be an operator de�ned by

P�f(x) =

�
f(x); x 2 [0; %]

0; x 2 (%; 2]
:

Then C = C(I � P%) + (I � P%)CP% + P%CP%. Form Krein Theorem [7] it follows

(6)
sn(C(I � P%)) = o(n�3=2)

sn((I � P%)CP%) = o(n�3=2)

Since P%CP%f(x) =
R %
0
(x + y)��1f(y) dy, then applying the partial integration of

order � and the Hardy-Littlewood inequality [16] we get

(7) n�sn(P%CP%) � C0%;

where the constant C0 does not depend on % and n. (This method we use in [5]).
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From (6), (7) and the properties of singular values we obtain n�sn(C) � V0 �%
for n � n0, where the constant V0 does not depend on n and %. Lemma is proved.

Now, consider the case � > 1, � 62 N. Start with the function,

G�(x) =
2(1��)=2p
��(�=2)

� K(1��)=2

jxj(1��)=2 (2 C1(Rnf0g))

where K� is McDonald function [16]. It is well known [16] that G� 2 L1(R) for
each � > 0,Z

R

eitxG�(t) dt = (1 + x2)��=2 G�(x) � jxj(��2)=2e�jxj
2�=2�(�=2)

; jxj ! +1:

By Theorem 1 we have

(8) sn

�Z 1

�1

G�(x� y) � dy
�
�
��n
2

���
:

Since

G�(x) =
jxj��1

2�(�) cos��=2
+ jxj��1'(x) +  (x); '(0) = 0;

where ' and  are even entire functions, then from (8), Ky Fan and Krein theorem
[7] it follows

sn

�Z 1

�1

jx� yj��1
2�(�) cos��=2

� dy
�
�
��n
2

���
; i.e.

sn

�Z 1

�1

jx� yj��1 � dy
�
� 2�(�)

���cos ��
2

��� � � 2

n�

���
:

Example 2. Let k(x) =
(ln 
=jxj)m
jxj1�� , 0 < � < 1, 
 > 0, m = 0; 1; 2 . . . Since

Z 2

0

Z 2

0

���ln 

x+y

���2m
(x + y)2�2�

dx dy <1 (for � > 0, m = 0; 1; 2 . . . )

we have that for 0 < � � 1=2

(9) lim
n!1

n�

(lnn)m
sn

�Z 2

0

(ln 
=(x+ y))m

(x+ y)1��
� dy

�
= 0

holds. Since Z
R

eitxk(t) dt � 2�(�) cos
��

2

(ln jxj)m
jxj� (x! +1)
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(which is obtained by di�erentiating
R
R e

itxjtj��1 dt = 2�(�) cos ��2 jxj�� by �),
then from (9) and Theorem 1 we obtain

sn

�Z 1

�1

(ln 
=jx� yj)m
jx� yj1�� � dy

�
� 2�(�) cos

��

2

(lnn)m

(n�=2)�
:

Theorem 2. Suppose k is an even complex valued function satisfying the
following conditions:

1Æ k 2 L1(0;1), k 2 L2(1=�;+1) for each a > 0 andZ 1=a

0

jk(t)j dt+ a�1=2

 Z +1

1=a

jk(t)j2 dt
!1=2

= O

�
L(a)

ar

�
(0 < r < 1=2, L is a function from Lemma 1).

2Æ The function jK(�)j, where K(�) =
R
R e

it�k(t) dt, is decreasing for � large
enough.

3Æ The series
P

n6=0
n6=�1

[k(a(x � y + 4n))� k(a(x + y + 4n+ 2))] is convergent

and its sum is a bounded function on [�a; a]2 for each a > 0.

If T 2 L1((�1; 1)2) is a continuous function in some neighborhood of the
diagonal y = x and T (x; x) > 0 on [�1; 1], then

sn

�Z 1

�1

T (x; y)k(x� y) � dy
�
� L(n)

nr

�
1

�

Z 1

�1

(T (x; x))1=r dx

�r

Proof. Let �i = [�1 + 2(i � 1)=N;�1 + 2i=N ], i = 1; 2; . . .N and let xi be
the midpoint of �i. From the assumptions of the theorem, by Theorem 1 (having
in mind Remarks 1 and 2) we have

sn

�Z
�i

k(x� y) � dy
�
�
�
n�

j�ij
��r

L(n)

Condition 1Æ (for a = n) and Lemma 1 from [3] imply

(10) sn

�Z 1

�1

T (x; y)k(x� y) � dy
�
� CkTk1L(n)

nr

for each T 2 L1((�1; 1)2) where the constant C does not depend on n and T .

Let AN
i ; Aij :L

2(�1; 1)! L2(�1; 1) (i; j = 1; 2; . . .N) be the linear operators
de�ned by

AN
i f(x) = ��i(x)

Z 1

�1

k(x� y)��i(y)T (xi; xi)f(y) dy

Aijf(x) = ��j (x)

Z 1

�1

k(x� y)��i(y)T (x; y)f(y) dy
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(��(�) is the characteristic function of the set �). Let AN =
PN

i=1 A
N
i and

let BN :L
2(�1; 1) ! L2(�1; 1) be the linear operator de�ned by BNf(x) =R 1

�1
GN (x; y)k(x � y)f(y) dy, where

GN (x; y) =

NX
i�1

��i(x)��i(y)(T (x; y)� T (xi; xi)):

Then A = AN + BN +
P

i6=j Aij . Suppose " > 0. Then from continuity of
T in the neighborhood of the diagonal y = x, it follows that for N large enough
jT (x; y)� T (xi; xi)j < " for (x; y) 2 �i ��i. Then

(11) jGN (x; y)j < "; (x; y) 2 [�1; 1]2:

Since BNf(x) =
R 1
�1GN (x; y)k(x � y)f(y) dy, then from (10) (for T = GN )

and (11) it follows

(12) sn(BN ) � C � " � L(n)=nr

where the constant C does not depend on " and n.

Now, we prove that Aij 2 C2 (i 6= j). From the condition 1Æ of Theorem 2 it
follows

1

a

Z 1

1=a

jk(t)j2 dt � const (L(a))2=a2r (a large enough)

and therefore

(13)

Z 1

y

jk(t)j2 dt � const y2r�1
�
L

�
1

y

��2
:

To prove Aij 2 C2 (i 6= j) it is enough to prove

(14)

Z
�i

Z
�j

jk(x� y)j2 dx dy <1

because T 2 L1((�1; 1)2). In the case �i \ �j = ; (14) is true because k 2
L1(�i � �j). Now, suppose that the intervals �i and �j are neighbours (for
example j = i+ 1).

SinceZ
�i

dx

Z
�i+1

jk(x� y)j2 dy =
Z 2=N

0

dy

Z 2=N

0

����k�x� y � 2

N

�����2 dx
=

Z 2=N

0

dy

Z y+ 2
N

y

jk(t)j2 dt �
Z 2=N

0

dy

Z 1

y

jk(t)j2 dt;
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then from (13) it followsZ
�i

Z
�j

jk(x� y)j2 dx dy � const

Z 2=N

0

y2r�1
�
L

�
1

y

��2
dy

= const

Z 1

N=2

t�1�2r(L(t))2 dt <1:

Since Aij 2 C2 (i 6= j), then CN =
PN

i6=j
i;j=1

Aij is Hilbert-Schmidt operator

and limn!1 n1=2sn(CN ) = 0, i.e.

(15) sn(CN ) = o(L(n)=nr) (because 0 < r < 1=2)

From (12) and (15) it follows that for each " > 0 there exists a suÆciently large
positive integer N such that

(16) lim
n!1

nr

L(n)
sn(BN + CN ) � ":

Since the operator AN is the orthogonal sum of the operators AN
i , we have

(17) Nt(AN ) =

NX
i=1

Nt(A
N
i )

From conditions 2Æ and 3Æ of Theorem 2 and Theorem 1 it follows

sn(A
N
i ) � T (xi; xi)

j�ijr
�r

L(n)

nr
(i = 1; 2; . . .N):

Applying Lemma 1 we obtain

lim
t!0+

�
t

L(t�1=r)

�1=r
Nt(A

N
i ) =

j�ij
�

(T (xi; xi))
1=r:

Combining this with (17) we get

lim
t!0

Nt(AN ) �
�

t

L(t�1=r)

�1=r
=

NX
i=1

j�ij
�

(T (xi; xi))
1=r :

Having in mind (16) and A = AN +BN + CN by Lemma 2 we obtain

lim
t!0+

Nt(A) �
�

t

L(t�1=r)

�1=r
=

1

�
lim

N!+1

NX
i=1

j�ij(T (xi; xi))1=r = 1

�

Z 1

�1

(T (x; x))1=r dx
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Substituting t = sn(A) we get

n
1
�

R 1
�1(T (x; x))

1=r dx
�
�
L((sn(A))

�1=r)

sn(A)

�1=r
:

Applying Lemma 1 we obtain

sn(A) �
�
1

�

Z 1

�1

(T (x; x))1=r dx

�r
L(n)

nr
:

which ends the proof of Theorem 2.

Example 3. Let k(x) = jxj��1(1+j ln jxjj)
 , 0 < � < 1=2, 
 2 R. The function
k satis�es conditions of Theorem 2 and

K(�) =

Z
R

eit�k(t) dt = 2�(�) cos
��

2

(ln �)


��
� (1 + o(1)) � ! +1 [6]:

According to Theorem 2 we have

(18) sn

�Z 1

�1

T (x; y)
(1 + j ln jx� yjj)


jx� yj1�� � dy
�

� 2�(�) cos
��

2

�
1

�

Z 1

�1

(T (x; x))1=� dx

��
� (lnn)




n�
:

Remark 3. In [3] Cobos and K�uhn obtained the asymptotic order of the sin-
gular values of the operatorZ 1

�1

T (x; y)
(1 + j ln jx� yjj)


jx� yj1�� � dy

for a special case of T . Exact asymptotic behavior is not derived.

Remark 4. If we put T (x; y) = %(y) in (18) where % 2 C[�1; 1], % > 0 on
[�1; 1] and 
 = 0, then for 0 < � < 1=2 we get

(19) sn

�Z 1

�1

%(y)jx� yj��1 � dy
�
� 2�(�) cos

��

2

�
1

�

Z 1

�1

(%(x))1=� dx

��

� n��:

Having in mind the proof of Theorem 2, as in Lemma 5 we get that asymptotic
formula (19) is also valid in the case 1=2 � � < 1. From [4, Theorem 1] it follows

�n

�Z 1

�1

%(y)jx� yj��1 � dy
�
� 2�(�) cos

��

2

�
1

�

Z 1

�1

(%(x))1=� dx

��

� n��:
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Kac [8] obtained the asymptotic behavior of eigenvalues of the operator
R 1
�1
%(y)jx�

yj��1 � dy using a probabilistic method and Karamata Tauberian Theorem.

3. Multidimensional case Suppose k0: (0;1) ! R is a rapidly enough
decreasing function (for example one having a compact support) and let k(x) =
k0(kxkm) (kxk = (

Pm
i=1 x

2
i )
1=2 x = (x1; x2; . . .xm)).

It is known [16] that

(20)

Z
Rm

eix�yk0(kykm) dy = (2�)
m
2

kxk(m�2)=2
Z 1

0

k0(%
m)%m=2Jm=2�1(%kxk)d%

where J� is Bessel function.

We introduce the functions k1; k2; . . . km�1 in the following way:

k1(t1; t2; . . . tm�1) =
X
nm2Z

[k(t1; . . . tm�1; xm � ym + 4nm)

� k(t1; . . . tm�1; xm + ym + 4nm + 2)]

k2(t1; t2; . . . tm�2) =
X

nm�12Z

[k1(t1; . . . tm�2; xm�1 � ym�1 + 4nm�1)

� k1(t1; . . . tm�2; xm�1 + ym�1 + 4nm�1 + 2)]

...

km�1(t1) =
X
n22Z

[km�2(t1; x2 � y2 + 4n2)� km�2(t1; x2 + y2 + 4n2 + 2)]:

De�ne the function H by

(21) H(x; y) =
X
n2Z

[km�1(x � y + 4n)� km�1(x+ y + 4n+ 2)]

Suppose that the function k0 is chosen such that all the series de�ning functions
k1; k2; . . . km�1, H are convergent. By a direct computation we obtain

(22)

Z
Im
H(x; y)'n1n2...nm(y) dy = K

�n1�
2
;
n2�

2
; . . .

nm�

2

�
'n1n2...nm(x)

where I = [�1; 1],

'n1n2...nm(x) =
mY
i=1

sin
�ni(1 + xi)

2

K(t1; t2; . . . tm) =

Z
Rm

eit��k(�)d�; t = (t1; t2; . . . tm):

Let

K0(�) =
(2�)m=2

�(m�2)=2

Z +1

0

k0(%
m)%m=2Jm=2�1(%�)d% (� > 0):
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Then from (20) it follows that K(t1; t2; . . . tm) = K0(ktk).
Theorem 3. Let the function k0 satisfy following conditions

1Æ k0 is measurable and bounded on (";+1) for each " > 0 and all the series
de�ning the function k1; . . . km�1, H are convergent.

2Æ The function jK0(�)j is monotone if � is large enough and jK0(�)j �
��rL(�) (� ! +1), 0 < r < m=2, where L is a slowly varying function from
Lemma 1.

3Æ All the integralsZ
[0;2]m

Z
[0;2]m

���k0�� mX
i=1

(xi � yi)
2
�m=2����2 dx dy

are �nite for all the combinations of + and �, except for the one with all signs �.
Then for the operator A:L2(Im)! L2(Im) de�ned by

Af(x) =

Z
Im
k(x� y)f(y) dy we have

sn(A) �
�

2

�C0

�r
L(n1=m)

nr=m
where C0 =

2p
�

�
�
�
1 +

m

2

��1=m
:

Proof. From (21) and assumptions 1Æ and 3Æ of Theorem 3 it follows thatZ
Im

Z
Im
jH(x; y)� k(x� y)j2 dx dy < +1

and therefore the operator Bf(x) =
R
Im(H(x; y) = k(x � y))f(y) dy is a Hilbert-

Schmidt one. So,

(23) lim
n!1

n1=2sn(B) = 0

Let D:L2(Im)! L2(Im) be a linear operator de�ned by

Df(x) =

Z
Im
H(x; y)f(y) dy:

From (22) it follows that

sn1;n2;...nm(D) =

����K0

�
�

2

q
n21 + n22 + � � �+ n2m

����� :
(by sn1...nm(D) we denote singular values of D). Clearly A = D = B. Let m0(�) =
jK0(�)j. From condition 1Æ it follows that m0 is a monotone function for � � �0
and m0(�) � ��rL(�) � !1, 0 < r < m=2.
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Then sn1...nm(D) = m0

�
�
2

p
n21 + � � �n2m

�
. For large enough n1; n2; . . . ; nm

we have
n21 + n22 + � � �+ n2m = 4��2(m�1

0 (sn1;... ;nm(D)))
2;

where m�1
0 is the inverse function of m0 (� � �0).

Let the sequence fsn1n2...nmg be arranged in a nonincreasing order s1 �
s2 � . . . . The sequence fm�1

0 (sn)g is nondecreasing for n large enough and hence

m�1
0 (sn) = m�1

0 (sn1...nm(D)) for n and n1 . . .nm large enough.

Let N be a positive integer such that

n21 + n22 + � � �+ n2m = 4��2(m�1
0 (sn1...nm(D)))

2 = 4��2(m�1
0 (sn))

2 = N2

Denote by �1 and �2 the smallest and largest values of such that

n21 + n22 + � � �+ n2m = 4��2(m�1
0 (sn))

2 = N2

It is known [10] that

(24)

�1 =
�m=2

m2m�1�(m=2)
Nm + o(Nm)

�2 =
�m=2

m2m�1�(m=2)
Nm + o(Nm)

From N2 = 4��2(m�1
0 (sn))

2 we get

(25) sn = m0(�N=2):

Since �1 � n � �2, from (24) it follows that

n =
�m=2

m2m�1�(m=2)
Nm + o(Nm); i.e.

N = C0n
1=m(1 + o(1)); where C0 =

2p
�

�
�
�
1 +

m

2

��1=m
:(26)

From (25), (26) and condition 2Æ (Theorem 3) it follows that

sn(D) �
�

2

�C0

�r
L(n1=m)

nr=m
:

Combining this with (23) and Ky Fan Theorem, we get

sn(A) �
�

2

�C0

�r
L(n1=m)

nr=m
:

Theorem 3 is proved.
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Remark 5. Let � = [�a; a]m. If the function t! k(at) satis�es conditions of
Theorem 3, then

sn

�Z
�

k(x� y) � dy
�
�
� j�j1=m

�C0

�r
� L(n

1=m)

nr=m
;

where j�j denote the measure of the cube �.
Lemma 4. Let k0(t) = t��1

�
1 + 1

m j ln tj
�

, 
 2 R, 1=2� 1=2m < � < 1=2.

Then the function jK0(�)j has the following asymptotic behavior

jK0(�)j � (ln �)


��m
�m=22�m

�(�m=2)

�(m(1� �)=2)
; � ! +1;

where

K0(�) =
(2�)m=2

�(m�2)=2

Z +1

0

k0(%
m)%m=2J(m=2)�1(%�)d%:

Proof.

K0(�) = (2�)m=2���m(ln �)

Z 1

0

�
1

ln �
+

���� lnuln �
= 1

�����
 u�m�m=2J(m=2)�1(u)du

� (2�)m=2���m(ln �)
 �
Z 1

0

u�m�m=2J(m=2)�1(u)du

= (2�)m=2���m(ln �)
 � 2�m�m=2 � �
��m

2

�.
�

�
m(1� �)

2

�
:

�
by Veber formula [16],

R1
0 %�J�(%)d% = 2��

�
�+�+1

2

�.
�
�
�+1=�

2

��
.

If 1
2 = 1

2m < � < 1
2 then the functions k0 and K0 satisfy conditions of

Theorem 3 (which can be easily veri�ed). Then we have r = �m and

L(�) = �m=22�m
�(�m=2)

(m(1� �)=2)
(ln �)
 :

Corollary. If 1
2 = 1

2m < � < 1
2 then the following holds (� is cube in Rm)

(27) sn

�Z
�

(1 + j ln kx� ykj)

kx� ykm(1��)

� dy
�

�
� j�j1=m

�C0

��m
�m=2 � 2�m

m


�(�m=2)

�(m(1� �)=2)
� (lnn)




n�
:

Proof. Directly follows from Theorem 33 and Lemma 4.
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Theorem 4. Let 
 � Rm be a bounded Jordan measurable set. If T 2
L1(
 � 
) is continuous in the neighborhood of the diagonal y = x, T (x; x) > 0
on 
, 
 2 R and 1=2� 1=2m < � < 1=2 then

sn

�Z



T (x; y)
(1 + j ln kx� ykj)

kx� ykm(1��)

� dy
�

�
�

2

�C0

��m
�m=2

m


�(�m=2)

�(m(1� �)=2)

�Z



(T (x; x))1=� dx

��
(lnn)


n�

Proof. Consider �rst the case 
 = [a; b]m. Let

A =

Z



T (x; y)
(1 + j ln kx� ykj)

kx� ykm(1��)

� dy

Divide the cube 
 into N cubes �i and denote by xi the center of �i.

As in the proof of Theorem 2 we introduce the operators

AN
i :L

2(
)! L2(
) i = 1; 2; . . .N

Aij :L
2(
)! L2(
) i 6= j; i; j = 1; 2 . . .N

de�ned by

AN
i f(x) =

Z



(1 + j ln kx� ykj)

kx� ykm(1��)

��i(x)��i(y)T (xi; xi)f(y) dy

Aijf(x) =

Z



(1 + j ln kx� ykj)

kx� ykm(1��)

��i(x)��j (y)T (x; y)f(y) dy:

Let AN =
PN

i=1A
N
i . Then A = AN +

PN
i6=j Aij + BN , where BN is the operator

de�ned by

BNf(x) =

Z



(1 + j ln kx� ykj)

kx� ykm(1��)

GN (x; y)f(y) dy;

GN (x; y) =

NX
i=1

��i(x)��i(y)(T (x; y)� T (xi; xi)):

From continuity the function T (�; �) in the neighborhood of the diagonal y = x
follows that for an arbitrary " > 0 and for N large enough we have

j T (x; y)� T (xi; xi) j< " for (x; y) 2 �i ��i (i = 1; 2; . . .N)

Then for (x; y) 2 
 � 
 we have j GN (x; y) j< ". The previous inequality and
Lemma 1 [3] give

(28) sn(BN ) � C � "(lnn)
=n�
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where the constant C does not depend on n and ".

It can be easily veri�ed that if 1
2 � 1

2m < � < 1
2 and i 6= j then

(29)

Z
�i

dx

Z
�j

(1 + j ln kx� ykj)2

kx� yk2m(1��)

dy < +1

holds. From (29) it follows Aij 2 C2 (for i 6= j), limn!1 n1=2sn(Aij) = 0 and

limn!1 n1=2sn

�PN
i 6=j Aij

�
= 0. Combining this with (28) and using the properties

of singular values, we conclude that for each " > 0 there exists a natural number
N such that

(30) lim
n!1

n�

(lnn)

sn

0@ NX
i6=j

Aij +BN

1A < "

Since 1
2 � 1

2m < � < 1
2 , from (27) it follows that

sn(A
N
i ) � T (xi; xi)

� j�ij1=m
�C0

��m
�m=22�m

m


�(�m=2)

�(m(1� �)=2)
� (lnn)




n�
:

Applying Lemma 1 we get

(31) Nt(A
N
i ) � ��
=�(� ln t)
=�t�1=�d

1=�
0 (T (xi; xi))

1=�j�ij; (t! 0+);

where d0 =
�

2
�C0

��m
�m=2

m


�(�m=2)
�(m(1��)=2) .

Since the operator AN is the orthogonal sum of the operators AN
i (i =

1; 2; . . .N), we have

Nt(AN ) =

NX
i=1

Nt(A
N
i )

and from (31) it follows that

lim
t!0+

t1=�(� ln t)�
=�Nt(AN ) = ��
=�d
1=�
0

NX
i=1

(T (xi; xi))
1=�j�ij:

Using A = AN +BN +
PN

i 6=j Aij and (30), by Lemma 2 we get

(32) lim
t!0+

t1=�(� ln t)�
=�Nt(A) = ��
=�d
1=�
0

Z



(T (x; x))1=� dx:

Putting t = sn(A) in (32) by Lemma 1 we get

(33) sn(A) � d0

�Z



(T (x; x))1=� dx

��

� (lnn)



n�
:
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the theorem is proved in the case when 
 is a cube.

Remark 6. The equalities (32) and (33) can be obtained in the same way when

 is the union of some cubes with disjoint interiors.

Suppose 
1, 
2 � Rm are bounded measurable sets, 
1 � 
2. Let
Ai:L

2(
i)! L2(
i) i = 1; 2, be the linear operators de�ned by

Aif(x) =

Z

i

T (x; y)
(1 + j ln kx� ykj)

kx� ykm(1��)

f(y) dy i = 1; 2:

Lemma 5. The singular value distribution functions of the operators Ai

(i = 1; 2) satisfy the inequality N (A1) � Nt(A2) (t > 0).

Proof. Let P :L2(
2) ! L2(
1) be orthoprojector (Pf(x) = �
1(x)f(x)).
Since A1 = PA2P we have sn(A1) � sn(A2) and hence Nt(A1) � Nt(A2).

We continue with the proof of Theorem 4 in the general case. Let 
 be a
bounded Jordan measurable set. Let 
N � 
 � 
N where the sets 
N and 
N

are the unions of equal cubes (with disjoint interiors) such that m(
N ) ! m(
)

m(
N ) ! m(
); N ! +1 (m is Lebesgue measure). Denote by eT the function
obtained continuously extending T in some neighborhood of the diagonal y = x,

so that eT is zero in the other points outside 
� 
. Let AN and AN be the linear
operators acting on L2(
N ) and L

2(
N ), de�ned by

ANf(x) =

Z

N

T (x; y)
(1 + j ln kx� ykj)

kx� ykm(1��)

f(y) dy;

ANf(x) =

Z

N

eT (x; y) (1 + j ln kx� ykj)

kx� ykm(1��)

f(y) dy;

respectively. From Lemma 5 we get Nt(AN ) � Nt(A) � Nt(AN ) and therefore

t1=�(� ln t)�
=�Nt(AN ) � t1=�(� ln t)�
=�Nt(A) � t1=�(� ln t)�
=�Nt(AN ):

Next we have

(34)

lim
t!0+

t1=�(� ln t)�
=�Nt(AN ) � lim
t!0+

t1=�(� ln t)�
=�Nt(A)

� lim
t!0+

t1=�(� ln t)�
=�Nt(A) � lim
t!0+

t1=�(� ln t)�
=�Nt(AN )

Since the limits

lim
t!0+

t1=�(� ln t)�
=�Nt(AN ) and lim
t!0+

t1=�(� ln t)�
=�Nt(AN )

exists, (Remark 6) and since they are equal to

��
=�d
1=�
0

Z

N

(T (x; x))1=� dx and ��
=�d
1=�
0

Z

N

( eT (x; x))1=� dx;
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respectively, from (34) we get

��
=�d
1=�
0

Z

N

(T (x; x))1=� dx � lim
t!0+

t1=�(� ln t)�
=�Nt(A)

� lim
t!0+

t1=�(� ln t)�
=�Nt(A) � ��
=�d
1=�
0

Z

N

( eT (x; x))1=� dx
Letting here N ! +1 we obtain

lim
t!0+

t1=�(� ln t)�
=�Nt(A) = ��
=�d
1=�
0

Z



(T (x; x))1=� dx:

Putting here t = sn(A), by Lemma 1 we get

(35) sn(A) � d0

�Z



(T (x; x))1=� dx

��

� (lnn)



n�
:

Theorem 4 is proved.

Remark 7. Putting m = 1 in (35) and applying Legendre duplication formula
we obtain (18).
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