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Abstract. We study integrals of the eigenfunctions and associated functions

of the formal Sturm{Liouville operator L(u)(x) = �
�
p(x)u0(x)

�
0

+q(x)u(x) de�ned

on a �nite interval G � R. We suppose that the complex{valued potential q = q(x)
belongs to the class L1(G) and that piecewise continuously di�erentiable coeÆcient
p = p(x) has a �nite number of the discontinuity points in G. Order-sharp upper

estimates are established for integrals (over arbitrary closed intervals [y1; y2] � G)
of the eigenfunctions and associated functions in terms of their L2{norms when G
is �nite.

Introduction

1. De�nitions. Consider the formal Sturm{Liouville operator

(1) L(u)(x) = ��p(x)u0(x)�0 + q(x)u(x);

which is de�ned on an arbitrary interval G = (a; b) of the real axis R. Let x0 2 G
be a point of discontinuity of the coeÆcient p. If we suppose that

p(x) =

�
p1(x); x 2 (a; x0);

p2(x); x 2 (x0; b);

then the following conditions are imposed on the coeÆcients :

1) p1(x) 2 C(1)(a; x0], and p2(x) 2 C(1)[x0; b).
2) p1(x) � �1 > 0 everywhere on (a; x0], and p2(x) � �2 > 0 everywhere on

[x0; b).
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3) q(x) 2 Lloc
1 (G) is a complex-valued function.

De�nition 1. A complex-valued function
Æ

u�(x) 6� 0 is called an eigenfunction
of the operator (1) corresponding to the (complex ) eigenvalue �(� = Re�+ i Im� )
if it satis�es the following conditions:

(a)
Æ

u�(x) is absolutely continuous on any �nite closed subinterval of G.

(b)
Æ

u0�(x) is absolutely continuous on any �nite closed subinterval of the half{
open intervals (a; x0] and [x0; b).

(c)
Æ

u�(x) satis�es the di�erential equation

(2) ��p1(x) Æu0�(x)�0 + q(x)
Æ

u�(x) = �
Æ

u�(x)

almost everywhere on (a; x0), and the di�erential equation

(3) ��p2(x) Æu0�(x)�0 + q(x)
Æ

u�(x) = �
Æ

u�(x)

almost everywhere on (x0; b).

(d)
Æ

u�(x) satis�es the junction condition

p1(x0)
Æ

u0�(x0 � 0) = p2(x0)
Æ

u0�(x0 + 0):

De�nition 2. A complex-valued function
i
u�(x) 6� 0 (i = 1; 2; . . . ) is called

an associated function (of the i-th order ) of the operator (1) corresponding to the

eigenfunction
Æ

u�(x) and the eigenvalue � if it satis�es the following conditions:

(a?) Conditions (a); (b) and (d) of De�nition 1 hold for
i
u�(x).

(b?)
i
u�(x) satis�es the di�erential equation

(4) ��p1(x) i
u0�(x)

�0
+ q(x)

i
u�(x) = �

i
u�(x)� i�1

u� (x)

almost everywhere on (a; x0), and the di�erential equation

(5) ��p2(x) i
u0�(x)

�0
+ q(x)

i
u�(x) = �

i
u�(x)� i�1

u� (x)

almost everywhere on (x0; b).

1.1. Let K be any compact set of positive measure lying strictly within G.
We will use the notation

KR
def
= fx 2 G j �(x;K ) � R g;

where R 2 (0; �(K; @G)), and K is the intersection of all closed intervals containing
K. ( By �(A;B) we denote the distance of a set A � R from a set B � R.)
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If � = r ei', then
p
�

def
=
p
r ei'=2, where ' 2 (��=2; 3�=2].

2. Main theorem. We present the following results.

Theorem 1. Let q(x) 2 L1(G), where G is a �nite interval. If the functions
p1(x) and p2(x) are bounded together with their �rst derivatives, then there exist

a closed interval K � G and constants r(G; Im
p
� ); Di1(G;KR; p; q; Im

p
�) (i =

0; 1; 2; . . . ) such that

(6)

������
y2Z

y1

i
u�(y) dy

������ � Di1(G;KR; p; q; Im
p
� ) k i

u� kL2(KR)

for every eigenvalue �, and

(7)

������
y2Z

y1

i
u�(y) dy

������ � Di1(G;KR; p; q; Im
p
� )

1

j
p
� j k

i
u� kL2(KR)

if jRep� j > r(G; Im
p
� ), where R 2 (0; �(K; @G)) is some �xed number. The

estimates (6) and (7) hold uniformly with respect to numbers a � y1 < y2 � b.

Remark 1. The condition imposed on p01(x) and p02(x) in Theorem 1 can be
replaced by the following one: p01(x) 2 L1(a; x0); p

0

2(x) 2 L1(x0; b).

Remark 2. It is possible to replace k i
u� kL2(KR) in estimates (6){(7) by

max
x2K

j iu�(x)j, with constants Di1(�) changed correspondingly. As a consequence we

obtain, by virtue of estimate (10) and the proposition stated in 3.1, that the esti-
mates (6){(7) are valid for an arbitrary closed interval K � G (with corresponding

constants Di1(G;KR; p; q; Im
p
� )).

Remark 3. Let �(L) be some set of eigenvalues of the operator (1). If there
exists a constant A not depending on the numbers � 2 �(L) and such that

(8) j Im
p
� j � A; � 2 �(L);

then the constants D01(�) and r(�) do not depend on the numbers �, which means
that it is possible to de�ne them uniformly with respect to the parameter � 2 �(L).

If the numbers � 2 �(L) satisfy (8) and zero is not a limit point of the set

f jRep� j j� 2 �(L) g, then the constants Di1(�)( i 2 N ) do not depend on these
numbers, too.

Remark 4. The constants Di1(�) ( i = 1; 2; . . . ) actually do not depend on the
order i of the associated function, which means that they can be the same for all
associated functions corresponding to the speci�c eigenfunction.

Remark 5. Theorem 1 includes the case when the function p(x) is continuous
at the point x0 (and has the required di�erentiability properties at that point).
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Especially, if p1(x) = p2(x) = 1 for x 2 G, then the operator (1) reduces to the
formal Schr�odinger operator

(9) L(u)(x) = �u00(x) + q(x)u(x):

In that case the estimates (6){(7) were established in [2]. The corresponding esti-
mates for integrals of eigenfunctions of an arbitrary nonnegative selfadjoint exten-
sion of the operator (9) were �rst derived in [1].

Remark 6. The example exposed in [5] shows that the estimates (6){(7) are
best possible with respect to the order of the parameter �.

Remark 7. For the sake of simplicity we have supposed that the coeÆcient
p(x) has only one point of discontinuity. But all stated results remain valid when
this function has an arbitrary �nite number of such points. In that case de�nitions
1 and 2 should be formulated in the corresponding way.

3. Estimates of eigenfunctions and associated functions. In the proof
of Theorem 1 we will essentially use the following estimates for eigenfunctions and
associated functions of the operator (1), which were announced in [3] and proved
in [4].

Lemma 1. (a) If q(x) 2 Lloc
1 (G), then for any compact set K � G there exist

a number R 2 (0; �(K; @G)) and constants Ci(KR; p; q; Im
p
�) (i = 0; 1; 2; . . . )

such that

(10) max
x2K

j iu�(x) j � Ci(KR; p; q; Im
p
� ) k i

u� kL2(KR):

(b) Suppose that q(x) 2 L1(G), and that
i
u�(x) 2 L2(G) if G is an in�nite

interval. If p1(x) and p2(x) are bounded along with their �rst derivatives, then there

exist constants Ci(G; p; q; Im
p
�) (i = 0; 1; 2; . . . ) such that

(11) sup
x2G

j iu�(x) j � Ci(G; p; q; Im
p
� ) k i

u� kL2(G):

Lemma 2. (a) If q(x) 2 Lloc
1 (G), then for any compact set K � G there

exist a number R 2 (0; �(K; @G)) and constants Ai(KR; p; q; Im
p
�), Ai(KR; p; q)

(i = 1; 2; . . . ) such that

(12)

max
x2K

j i�1u� (x) j � Ai(KR; p; q; Im
p
� ) j

p
� j � max

x2KR
j iu�(x) j for � 6= 0;

max
x2K

j i�1u� (x) j � Ai(KR; p; q) � max
x2KR

j iu�(x) j for � = 0:

(b) Suppose that q(x) 2 L1(G), and that
i
u�(x) 2 L2(G) if G is an in�nite

interval. If p1(x) and p2(x) are bounded along with their �rst derivatives, then there



Estimates for derivatives and integrals ... 35

exist constants Ai(G; p; q; Im
p
� ); Ai(G; p; q)( i = 1; 2; . . . ) such that

(13)

sup
x2G

j i�1u� (x) j � Ai(G; p; q; Im
p
� ) j

p
� j � sup

x2G
j iu�(x) j for� 6= 0;

sup
x2G

j i�1u� (x) j � Ai(G; p; q) � sup
x2G

j iu�(x) j for � = 0:

3.1. If G is a �nite interval, then the condition imposed on the functions
p01(x) and p02(x) in the propositions (b) of the previous lemmas can be replaced by
the following condition: p01(x) 2 L1(a; x0); p

0

2(x) 2 L1(x0; b).

Also, the global estimate (11) may be sharpened in the following sense: If
G is a �nite interval, then for any closed interval K � G there exist constants
Ci(K; p; q; Im

p
� ) such that

sup
x2G

j iu�(x) j � Ci(K; p; q; Im
p
� ) �max

x2K
j iu�(x) j:

3.2. Having in mind the speci�c applications of estimates (10){(13), we note
that the constants appearing in these estimates have the following properties of
independence of the parameters � and i:

1) If the condition (8) is satis�ed, then it is possible to make the constants
C0(�) independent of the numbers � 2 �(L).

2) If the numbers � 2 �(L) satisfy (8) and zero is not a limit point of the set

fjRep� j j� 2 �(L)g, then the constants Ci(�) and Ai(�)( i 2 N ) do not depend on
those numbers.

3) The constants Ci(�); Ai(�)(i 2 N) are independent of the parameter i.

As will be shown in the proof of Theorem 1, the statements from Remark 3
are actually consequences of 1){2).

3.3. The estimates (6){(7) are proved by using only estimates (10){(13).
They play a basic role in study of the uniform equiconvergence (on compact sub-
sets of G) of the �rst derivatives of partial sums of spectral expansions (for any ab-
solutely continuous function) corresponding to two nonselfadjoint Sturm{Liouville
(or Schr�odinger) operators.

1. Estimates for the integrals of an eigenfunction

1. The estimate (7). In this section the proof of Theorem 1 in the case
i = 0 will be given.

1.1. Let us establish �rst the estimate (7). Let
Æ

u�(�) be an eigenfunction
of the operator (1) corresponding to the (complex) eigenvalue � 6= 0. We need a
convenient form for the integral

(14)

y2Z
y1

Æ

u�(y) dy;
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where [y1; y2] � (a; b) is an arbitrary closed interval.

1.2. Let x 2 G be an arbitrary �xed point. Suppose that t > 0 is a number
satisfying conditions x+ �2(x; t) 2 G and x0 2 (x; x+ �2(x; t)). We will start from
the integral

(15)

x+�2(x;t)Z
x

�
p(�)

Æ

u0�(�)
�0

sin
p
� (�2(x; � � x)� t) d� =

=

x0Z
x

�
p1(�)

Æ

u0�(�)
�0

sin
p
� (�2(x; � � x)� t) d�+

+

x+�2(x;t)Z
x0

�
p2(�)

Æ

u0�(�)
�0

sin
p
� (�2(x; � � x)� t) d�:

Using the partial integration twice, by virtue of the junction condition and
the di�erential equations (2){(3), we get from (15) that the following equality holds:

(16)
p
p2(x+ �2(x; t))

Æ

u�(x+ �2(x; t)) =
p
p1(x)

Æ

u�(x) cos
p
� t+

+
�p

p2(x0)�
p
p1(x0)

� Æ
u�(x0) cos

p
� (�2(x; x0 � x)� t)+

+ p1(x)
Æ

u0�(x)
sin

p
� tp
�

+

x+�2(x;t)Z
x

p0j(�)

2
p
pj(�)

Æ

u�(�) cos
p
� (�2(x; � � x)� t) d��

� 1p
�

x+�2(x;t)Z
x

q(�)
Æ

u�(�) sin
p
� (�2(x; � � x)� t) d�:

1.3. If we suppose that t > 0 is such that x + �2(x; t) < x0, then instead of
(16) we have the equality

(17)

p
p1(x+ �2(x; t))

Æ

u�(x+ �2(x; t)) =
p
p1(x)

Æ

u�(x) cos
p
� t+

+p1(x)
Æ

u0�(x)
sin

p
� tp
�

+

+

x+�2(x;t)Z
x

p01(�)

2
p
p1(�)

Æ

u�(�) cos
p
� (�2(x; � � x)� t) d��

� 1p
�

x+�2(x;t)Z
x

q(�)
Æ

u�(�) sin
p
� (�2(x; � � x)� t) d�:
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1.4. Let y1; y2 2 (a; b) be arbitrary numbers such that x0 2 (y1; y2). Put
x = y1 in (16){(17), and suppose that t 2 [0; �2(y1; y2 � y1)]. Then integrate
(17) with respect to the variable t 2 [0; �2(y1; x0 � y1)] and (16) with respect to
t 2 [�2(y1; x0 � y1); �2(y1; y2 � y1)]. Therefore, we get

(18)

�
2
(y1;y2�y1)Z

0

q
pj(y1 + �2(y1; t))

Æ

u�(y1 + �2(y1; t)) dt =

=
p
p1(y1)

Æ

u�(y1)
sin

p
� �2(y1; y2 � y1)p

�
�

��pp2(x0)�
p
p1(x0) )

Æ

u�(x0)
sin

p
� (�2(y1; x0 � y1)� �2(y1; y2 � y1))p

�
�

�p1(y1) Æu0�(y1)
cos

p
� �2(y1; y2 � y1)� 1

�
+

+

�
2
(y1;y2�y1)Z

0

� y1+�2(y1;t)Z
y1

p0j(�)

2
p
pj(�)

Æ

u�(�) cos
p
� (�2(y1; � � y1)� t) d�

�
dt�

� 1p
�

�
2
(y1;y2�y1)Z

0

� y1+�2(y1;t)Z
y1

q(�)
Æ

u�(�) sin
p
� (�2(y1; � � y1)� t) d�

�
dt:

Transforming the �rst integral on the right-hand side of (18) by Fubini's
theorem, and introducing a new variable by y1+�2(y1; t) = y in the integral on the
left-hand side of (18), we obtain the desired form of the integral (14):

(19)

y2Z
y1

Æ

u�(y) dy =
p
p1(y1)

Æ

u�(y1)
sin

p
� �2(y1; y2 � y1)p

�
�

� �p
p2(x0)�

p
p1(x0) )

Æ

u�(x0)
sin

p
� (�2(y1; x0 � y1)� �2(y1; y2 � y1))p

�
�

� p1(y1)
Æ

u0�(y1)
cos

p
� �2(y1; y2 � y1)� 1

�
�

� 1p
�

y2Z
y1

p0j(�)

2
p
pj(�)

Æ

u�(�) sin
p
� (�2(y1; � � y2)� �2(y1; y2 � y1)) d��

� 1p
�

�
2
(y1;y2�y1)Z

0

� y1+�2(y1;t)Z
y1

q(�)
Æ

u�(�) sin
p
� (�2(y1; � � y1)� t) d�

�
dt:
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1.5. If we suppose that x0 =2 (x; x+ �2(x; t)) (or, equivalently, x0 =2 (y1; y2)),
then the following equality corresponds to (19):

(20)

y2Z
y1

Æ

u�(y) dy =
q
pj1(y1)

Æ

u�(y1)
sin

p
� �2(y1; y2 � y1)p

�
�

�pj1(y1)
Æ

u0�(y1)
cos

p
� �2(y1; y2 � y1)� 1

�
�

� 1p
�

y2Z
y1

p0j(�)

2
p
pj(�)

Æ

u�(�) sin
p
� (�2(y1; � � y1)� �2(y1; y2 � y1)) d��

� 1p
�

�
2
(y1;y2�y1)Z

0

� y1+�2(y1;t)Z
y1

q(�)
Æ

u�(�) sin
p
� (�2(y1; � � y1)� t) d�

�
dt;

where j1 = 2 if x0 < y1, and j1 = 1 if y2 < x0.

1.6. When the point x is equal to x0, then y1 = x0, and for integral (14) the

equality (20) holds, with pj1(y1);
Æ

u0�(y1) replaced by p2(x0);
Æ

u0�(x0+0) respectively.

In the case when y2 = x0 we have to consider the integral

x0Z
x0��1(x0;t)

�
p1(�)

Æ

u0�(�)
�0

sin
p
� (�1(x0; x0 � �)� t) d�

(where t > 0 is such that x0 � �1(x0; t) 2 G). The procedure analogous to the one
used in 1.2{1.3 implies that

(21)

y2Z
y1

Æ

u�(y) dy =
p
p1(y2)

Æ

u�(y2)
sin

p
� �1(y2; y2 � y1)p

�
+

+p1(y2)
Æ

u0�(x0 � 0)
cos

p
� �1(y2; y2 � y1)� 1

�
+

+
1p
�

y2Z
y1

p01(�)

2
p
p1(�)

Æ

u�(�) sin
p
� (�1(y2; y2 � �)� �1(y2; y2 � y1)) d��

� 1p
�

�
1
(y2;y2�y1)Z

0

� y2Z
y2��1(y2;t)

q(�)
Æ

u�(�) sin
p
� (�1(y2; y2 � �)� t) d�

�
dt:
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1.7. Now, we can estimate the integral (14). In order to do that, introduce
the notations 
(G; p) and 
0(G; p), where


(G; p)
def
= max

�
sup

x2(a;x0]

p
p1(x) ; sup

x2[x0;b)

p
p2(x)

�
;


0(G; p)
def
= max

�
sup

x2(a;x0]

j p01(x) j ; sup
x2[x0;b)

j p02(x) j
�
:

It follows then from (19) that

(22)

����
y2Z

y1

Æ

u�(y) dy

���� �
�
3 
(G; p) +


0(G; p)

2�
(b� a)+

+
b� a

�
k q kL1(G)

�r
1 + sh2(

b� a

�
Im

p
� ) � 1

j
p
� j � supy2G

j Æu�(y) j+

+
2(G; p)

r
2 + sh2(

b� a

�
Im

p
� ) � 1

j� j � supy2G
j Æu0�(y) j:

Let ~K; r(G; Im
p
� ) be the closed interval and the number de�ned in 1.1{1.2

x3 [5]. According to the content of 3.1 x 3 [5], the estimate

sup
y2G

j Æu0�(y) j � C01( ~KR0
; p; q; Im

p
� ) j

p
� j � max

y2 ~KR0

j Æu�(y) j

holds if j Re
p
� j > r(G; Im

p
� ). On the other hand, from 3.1 in Introduction it

follows the existence of a constant C0( ~KR0
; p; q; Im

p
� ) such that

(23) sup
y2G

j Æu�(y) j � C0( ~KR0
; p; q; Im

p
� ) � max

y2 ~KR0

j Æu�(y) j:

Finally, if we put K
def
= ~KR0

, then Lemma 1 gives us the estimate

(24) max
y2K

j Æu�(y) j � C0(KR; p; q; Im
p
� ) k Æu� kL2(KR);

for some number R 2 (0; �(K; @G)).

Hence, applying (in the appropriate order) the mentioned three estimates to
the right-hand side of (22), we get that the inequality

(25)

����
y2Z

y1

Æ

u�(y) dy

���� �
��

3 
(G; p) +

0(G; p)

2�
(b� a)+

+
b� a

�
k q kL1(G)

�
C0(K; p; q; Im

p
� ) + 
2(G; p)C01(K; p; q; Im

p
� )

�
�

�
r
2 + sh2(

b� a

�
Im

p
� ) � C0(KR; p; q; Im

p
� )

1

j p� j k
Æ

u� kL2(KR)
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holds if j Rep� j > r(G; Im
p
� ) and x0 2 (y1; y2).

1.8. Comparing (19) with (20){(21), we see that estimate (25) also holds in
cases considered in 1.5 and 1.6. Therefore, we may conclude that the estimate
(7) is proved, with D01(G;KR; p; q; Im

p
� ) denoting the constant from (25).

Note that D01(G;KR; p; q; Im
p
� ) does not depend on the numbers y1; y2.

1.9. Throughout this section we have been assuming that [y1; y2] � (a; b). If
y1 = a or/and y2 = b, then the corresponding estimates (7) can be established in the
following way. Fix some closed interval [~y1; ~y2] � (a; b) and write estimate (7) for
this interval. Then pass to the limit(s) lim

~y1!a+0
or/and lim

~y2!b�0
(in this inequality).

By
Æ

u�(�) 2 L1(G) and the independence of D01(G;KR; p; q; Im
p
� ) of ~y1; ~y2, it

results that the estimate (7) also holds in the considered cases.

2. The estimate (6). Proof of this estimate is very simple. It will directly
show that the two statements formulated in Remark 2 are valid in the considered
case.

2.1. Let
Æ

u�(�) be an eigenfunction of the operator (1) corresponding to the
eigenvalue �. Then, using estimates (23) and (24), we have the inequalities

����
y2Z

y1

Æ

u�(y) dy

���� � (b� a) � sup
y2G

j Æu�(y) j �

� (b� a)C0(K; p; q; Im
p
� ) �max

y2K
j Æu�(y) j �

� (b� a)C0(K; p; q; Im
p
� )C0(KR; p; q; Im

p
� ) k Æu� kL2(KR);

where y1; y2 2 [a; b](y1 < y2) are arbitrary numbers, and K � G is the closed
interval de�ned in 1.7.

Hence, the estimate (6) holds true for any eigenvalue �, with

(26) D01(G;KR; p; q; Im
p
� )

def
= (b� a)C0(K; p; q; Im

p
� )C0(KR; p; q; Im

p
� ):

3. On Remarks 1{3. In order to verify Remark 1, it is suÆcient to re-

place sup
x2(a;x0]

(�); sup
x2[x0;b)

(�) in de�nition of 
0(G; p) by integrals
x0R
a

(�) dx and
bR

x0

(�) dx
respectively.

3.1 It follows from estimates (22){(23) that the �rst statement from Remark
2 holds true.

3.2. As we know, if �(L) is a set of eigenvalues satisfying condition (8),
then it is possible to de�ne constants C0(K; p; q; �); C0(KR; p; q; �) and C01(K; p; q; �)
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uniformly with respect to � 2 �(L). Therefore, replacing Im
p
� by A in sh2(�),

we conclude from (25){(26) that the constants D01(G;KR; p; q; �) can be chosen
independently of numbers � 2 �(L).

2. Estimates for the integrals of an associated function

1. The estimate (7). We begin consideration of the case i 2 N by estab-
lishing the corresponding estimate (7).

1.1. Let
i
u�(�)be an associated function of the i{th order corresponding to

the eigenfunction
Æ

u�(�) and the eigenvalue � 6= 0. As in the case of eigenfunctions,
the major step in the proof is getting a convenient form for the integral

(27)

y2Z
y1

i
u�(y) dy;

where [y1; y2] � (a; b) is an arbitrary closed interval.

1.2. Let x 2 G be an arbitrary �xed point. Let t > 0 be a number such that
x+ �2(x; t) 2 G and x0 2 (x; x+ �2(x; t)). Consider the integral

x+�2(x;t)Z
x

�
p(�)

i
u0�(�)

�0
sin

p
� (�2(x; � � x)� t) d�;

and apply to it the procedure described in 1.2{1.4 x 1. ( Instead of di�erential
equations (2){(3) it is necessary to use equations (4){(5).) In that way we obtain
the following:

(28)

y2Z
y1

i
u�(y) dy = R(19)(y1; y2;�;

i
u�)�

� 1p
�

�
2
(y1;y2�y1)Z

0

� y1+�2(y1;t)Z
y1

i�1
u� (�) sin

p
� (�2(y1; � � y1)� t) d�

�
dt;

where R(19)(�) denotes the right-hand side of equality (19), with
Æ

u� replaced by
i
u�.

Using the Fubini's theorem, transforme the integral on the right-hand side of
(28). Therefore, it follows from (28) that

(29)

y2Z
y1

i
u�(y) dy = R(19)(y1; y2;�;

i
u�)�

� 1

�

y2Z
y1

i�1
u� (�)

�
cos

p
� (�2(y1; � � y1)� �2(y1; y2 � y1))� 1

�
d�:
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1.3. It is not necessary to write explicitly the expressions for integral (27) in
the other cases: x0 =2 (y1; y2); y1 = x0 or y2 = x0. Namely, analysing the content
of 1.5{1.6 x 1, we can conclude that in those cases the mentioned integral has the
same form, "up to" the indices and the second member on the right-hand side of
(19), as in (29). Thus, any upper-bound estimate of the integral (29) will be valid
for the other ones.

1.4. Now, let us estimate integral (27). We obtain from (29) the inequality

(30)

����
y2Z

y1

i
u�(y) dy

���� � R(22)(G; p; q;�;
i
u�)+

+(b� a)

r
2 + sh2(

b� a

�
Im

p
� ) � 1

j� j � supy2G
j i�1u� (y) j;

where R(22)(�) denotes the right{hand side of inequality (22), with
Æ

u� replaced by
i
u�.

Let ~K; r(G; Im
p
� ) be the closed interval and the number de�ned in 1.1{1.2

x 3 [5]. According to the content of 3.1 x 3 [5], the estimate

sup
y2G

j iu0�(y) j � Ci1( ~KR0
; p; q; Im

p
� ) j

p
� j � max

y2 ~KR0

j iu�(y) j

holds if j Rep� j > r(G; Im
p
� ). On the other{hand, from 3.1 in Introduction it

follows the existence of a constant Ci( ~KR0
; p; q; Im

p
� ) such that

(31) sup
y2G

j iu�(y) j � Ci( ~KR0
; p; q; Im

p
� ) � max

y2 ~KR0

j iu�(y) j:

Also, if we put K
def
= ~KR0

, then Lemma 1 gives us the estimate

(32) max
y2K

j iu�(y) j � Ci(KR; p; q; Im
p
� ) k i

u� kL2(KR);

for some number R 2 (0; �(K; @G)). Finally, by the proposition (b) of Lemma 2 it

follows the existence of a constant Ai(G; p; q; Im
p
� ) such that

sup
y2G

j i�1u� (y) j � Ai(G; p; q; Im
p
� ) j

p
� j � sup

y2G
j iu�(y) j

if � 6= 0.
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Using the listed above estimates in the appropriate order, we obtain from
(30) that the inequality

(33)

����
y2Z

y1

i
u�(y) dy

���� �
��

3 
(G; p) +

0(G; p)

2�
(b� a)+

+
b� a

�
k q kL1(G)

�
Ci(K; p; q; Im

p
� ) + 
2(G; p)Ci1(K; p; q; Im

p
� )+

+2 (b� a)Ai(G; p; q; Im
p
� )Ci(K; p; q; Im

p
� )

�
�

�
r
2 + sh2(

b� a

�
Im

p
� ) � Ci(KR; p; q; Im

p
� )

1

j
p
� j k

i
u� kL2(KR)

holds if j Re
p
� j > r(G; Im

p
� ) and x0 2 (y1; y2).

This inequality also holds in all cases of other positions of the point x0 with
respect to the points y1; y2.

Hence, it results that the estimate (7) holds, with Di1(G;KR; p; q; Im
p
� )

denoting the constant from (33). Note that this constant does not depend on the
numbers y1; y2.

1.5. If y1 = a or/and y2 = b, then the proof of the corresponding estimates
(7) is the same as in the case of an eigenfunction (see 1.9 x 1 ).

2. The estimate (6). As in the case of an eigenfunction, the following proof
of estimate (6) directly shows that Remark 2 holds true.

2.1. If y1; y2 2 [a; b]( y1 < y2 ) are arbitrary numbers and K is the closed
interval de�ned in 1.6 x 1, then using estimates (31) and (32), we have the inequal-
ities

����
y2Z

y1

i
u�(y) dy

���� � (b� a) � sup
y2G

j iu�(y) j �

� (b� a)Ci(K; p; q; Im
p
� ) �max

y2K
j iu�(y) j �

� (b� a)Ci(K; p; q; Im
p
� )Ci(KR; p; q; Im

p
� ) k i

u� kL2(KR):

By these inequalities we conclude that the estimate (6) is valid, with

(34) Di1(G;KR; p; q; Im
p
� )

def
= (b� a)Ci(K; p; q; Im

p
� )Ci(KR; p; q; Im

p
� ):

Proof of Theorem 1 is completed.
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3.On Remarks 1{4. The statement from Remark 1 holds true; the neces-
sary changes in the proof are described in 3 x 1.

3.1. It is not diÆcult to verify, by virtue of 1.4, that Remark 2 is valid.

3.2. Under the two conditions on the set �(L) described in Remark 3, all the
constants Ci1(�); Ci(�); Ai(�) appearing in (33){(34) do no depend on the numbers

� 2 �(L). Thus, using the replacement Im
p
� ! A in (33), we conclude that the

constants Di1(G;KR; p; q; �) can be de�ned uniformly with respect to � 2 �(L).
3.3. It has been already shown that the constants Ci1(�); Ci(�); Ai(�) appear-

ing in (33){(34) do not depend on the parameter i. That is why the constants
Di1(�) have the same property.
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