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Abstract. We study integrals of the eigenfunctions and associated functions
of the formal Sturm—Liouville operator £(u)(z) = —(p(z) u’(m)), + ¢(z) u(z) defined
on a finite interval G C R. We suppose that the complex-valued potential ¢ = ¢(z)
belongs to the class L1(G) and that piecewise continuously differentiable coefficient
p = p(x) has a finite number of the discontinuity points in G. Order-sharp upper
estimates are established for integrals (over arbitrary closed intervals [y1,y2] C G)
of the eigenfunctions and associated functions in terms of their Ly—norms when G
is finite.

Introduction

1. Definitions. Consider the formal Sturm—Liouville operator

(1) Lw)() = = (p(z) u'(2)) + q(x) u(x),

which is defined on an arbitrary interval G = (a,b) of the real axis R. Let 2o € G
be a point of discontinuity of the coefficient p. If we suppose that

pi(z), x € (a,zo),
p(r) =
pz(l’), HAS (Z’g,b),
then the following conditions are imposed on the coefficients :
1) p1(z) € M (a, 0], and py(z) € CM[zo,b).
2) p1(x) > ay > 0 everywhere on (a, zo], and pa(x) > as > 0 everywhere on

[l'o,b).
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3) q(z) € L'°(G) is a complex-valued function.

Definition 1. A complex-valued function uy(z) # 0 is called an eigenfunction
of the operator (1) corresponding to the (complex) eigenvalue A(A = ReA+i Im \)
if it satisfies the following conditions:

(a)ux () is absolutely continuous on any finite closed subinterval of G.

(b)ag\(m) is absolutely continuous on any finite closed subinterval of the half-
open intervals (a, zo] and [z, b).

(¢)ux(z) satisfies the differential equation
2) —(p1() U (2))" + q(x) ur(z) = Aux(x)

almost everywhere on (a, zg), and the differential equation

(3) —(p2(2) U (2))" + (@) ur(x) = Aua(x)
almost everywhere on (zo,b).

(d)uy () satisfies the junction condition

Oy

pi(@o) ty (zo — 0) = p2(zo) uh (zo +0).

Definition 2. A complex-valued function &A(m) 20 (i =1,2,...) is called
an associated function (of the i-th order) of the operator (1) corresponding to the

eigenfunction ax(w) and the eigenvalue ) if it satisfies the following conditions:

(a*) Conditions (a), (b) and (d) of Definition 1 hold for wy (z).

(b*) &A(m) satisfies the differential equation
(4) —(p1 (@) ()" + qlx) ta(x) = Ntia () = ux (2)
almost everywhere on (a, zp), and the differential equation
(5) —(p2(@) U ()" + q(x) ua(x) = Ntia () — ux ()

almost everywhere on (zo,b).

1.1. Let K be any compact set of positive measure lying strictly within G.
We will use the notation

Kr®{z€G|pxK)<R},

where R € (0, p(K,0G)), and K is the intersection of all closed intervals containing
K. (By p(A4, B) we denote the distance of a set A C R from a set B C R.)
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If A = rei®, then VA &' VT e¥/? where ¢ € (—m/2,31/2).
2. Main theorem. We present the following results.

THEOREM 1. Let q(z) € L1(G), where G is a finite interval. If the functions
p1(x) and p2(x) are bounded together with their first derivatives, then there exist
a closed interval K C G and constants r(G,Imv/X), Di1 (G, Kg,p,q,Im V) (i =
0,1,2,...) such that

Yy
(6) / iAW) dy | < D (G Kropy g, T VA [|da Il

Y1

for every eigenvalue A, and

Y2
i 1 i
(7) / @) dy | < Dt (G, K py g, V) —— [ldin liaticn
p Vx|

if [ReVX| > r(G,Im/X), where R € (0,p(K,dG)) is some fized number. The
estimates (6) and (7) hold uniformly with respect to numbers a < y; < ys <b.

Remark 1. The condition imposed on pf(z) and p5(z) in Theorem 1 can be
replaced by the following one: p}(z) € Li(a, o), p5(x) € Li(xo,b).

Remark 2. Tt is possible to replace ||ty |Lo(kr) in estimates (6)—(7) by
max [ix ()|, with constants Dy (-) changed correspondingly. As a consequence we
FAS
obtain, by virtue of estimate (10) and the proposition stated in 3.1, that the esti-

mates (6)—(7) are valid for an arbitrary closed interval K C G (with corresponding
constants D;; (G, Kr,p,q,Imv/X)).

Remark 3. Let o(L) be some set of eigenvalues of the operator (1). If there
exists a constant A not depending on the numbers A € ¢(£) and such that

(8) | ImVX| <A,  Xeo(L),

then the constants Do1(:) and r(-) do not depend on the numbers A, which means
that it is possible to define them uniformly with respect to the parameter A € o(L).

If the numbers A € o(L£) satisfy (8) and zero is not a limit point of the set
{|ReVA||X € (L)}, then the constants Dy (-)(i € N) do not depend on these
numbers, too.

Remark 4. The constants D1 (-) (i = 1,2,...) actually do not depend on the
order ¢ of the associated function, which means that they can be the same for all
associated functions corresponding to the specific eigenfunction.

Remark 5. Theorem 1 includes the case when the function p(z) is continuous
at the point zp (and has the required differentiability properties at that point).
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Especially, if pi(z) = p2(z) = 1 for € G, then the operator (1) reduces to the
formal Schrodinger operator

9) L(u)(z) = —u"(z) + q(z) u(z).

In that case the estimates (6)—(7) were established in [2]. The corresponding esti-
mates for integrals of eigenfunctions of an arbitrary nonnegative selfadjoint exten-
sion of the operator (9) were first derived in [1].

Remark 6. The example exposed in [5] shows that the estimates (6)—(7) are
best possible with respect to the order of the parameter A.

Remark 7. For the sake of simplicity we have supposed that the coefficient
p(z) has only one point of discontinuity. But all stated results remain valid when
this function has an arbitrary finite number of such points. In that case definitions
1 and 2 should be formulated in the corresponding way.

3. Estimates of eigenfunctions and associated functions. In the proof
of Theorem 1 we will essentially use the following estimates for eigenfunctions and
associated functions of the operator (1), which were announced in [3] and proved
in [4].

LEMMA 1. (a) If q(z) € L°°(G), then for any compact set K C G there exist

)
a number R € (0,p(K,dQR)) and constants C;(Kg,p,q,Imv/X) (i = 0,1,2,...)
such that

(10) IwI.leaf(( |1lt)\(1’) | S Cz(KR)paq)Im\/X) ||’LZI‘)\ ||L2(KR)

(b) Suppose that q(z) € Li(G), and that &A(w) € Lo(Q) if G is an infinite
interval. If p1(x) and p2(z) are bounded along with their first derivatives, then there
exist constants Ci(G,p,q,Im /) (i =0,1,2,...) such that

(11) sup lur(z) | < Ci(G,p, ¢, Im V) ||t ||1,(c)-
S

LemMMA 2. (a) If q(z) € LY¢(G), then for any compact set K C G there
exist a number R € (0, p(K,0G)) and constants A;(Kg,p,q,Im \/X), Ai(Kg,p,q)
(i=1,2,...) such that

ma |6 (2)| < Ad(Kn,p,q. ImVA) | VA]- max |da(@)| for A#0,
(12) rene

i—1 i
< A; . =0.
max | uy (z) | < 4i(Kr,p,q) - max |ur(z)| for A=0

(b) Suppose that q(x) € Li(G), and that &A(w) € Lo(Q) if G is an infinite
interval. If p1(x) and p2(x) are bounded along with their first derivatives, then there
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exist constants A;(G,p,q,Imv/'X), A;(G,p,q)(i=1,2,...) such that

sup | Ux () | < Ai(G,p, ¢, TmVX) [ VX[ -sup |ux(x)| forA #0,
(13) reG reG

i1 i
sup | ux (z) | < A;(G,p,q) - sup |ur(z)| for A=0.
z€eG zelG

3.1. If G is a finite interval, then the condition imposed on the functions
pi(z) and ph(z) in the propositions (b) of the previous lemmas can be replaced by
the following condition: pj(z) € Li(a,zo),ps(z) € Li(x0o,b).

Also, the global estimate (11) may be sharpened in the following sense: If
G is a finite interval, then for any closed interval K C G there exist constants
Ci(K,p,q,Im+/X) such that

sup |t (z) | < Ci(K,p,q,ImVX) - max | () |.
zeG zeK

3.2. Having in mind the specific applications of estimates (10)—(13), we note
that the constants appearing in these estimates have the following properties of
independence of the parameters A\ and i:

1) If the condition (8) is satisfied, then it is possible to make the constants
Co(-) independent of the numbers A € o(L).

2) If the numbers A € o(L) satisfy (8) and zero is not a limit point of the set
{|ReVX|| X € (L)}, then the constants C;(-) and A;(-)(i € N) do not depend on
those numbers.

3) The constants C;(+), A;(-)(7 € N) are independent of the parameter i.

As will be shown in the proof of Theorem 1, the statements from Remark 3
are actually consequences of 1)-2).

3.3. The estimates (6)—(7) are proved by using only estimates (10)—(13).
They play a basic role in study of the uniform equiconvergence (on compact sub-
sets of G) of the first derivatives of partial sums of spectral expansions (for any ab-
solutely continuous function) corresponding to two nonselfadjoint Sturm-Liouville
(or Schrédinger) operators.

1. Estimates for the integrals of an eigenfunction
1. The estimate (7). In this section the proof of Theorem 1 in the case
1 = 0 will be given.

1.1. Let us establish first the estimate (7). Let uy(£) be an eigenfunction
of the operator (1) corresponding to the (complex) eigenvalue A # 0. We need a
convenient form for the integral

(14) / () dy,
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where [y1,y2] C (a,b) is an arbitrary closed interval.

1.2. Let « € G be an arbitrary fixed point. Suppose that ¢ > 0 is a number
satisfying conditions = + p2(z,t) € G and o € (z,z + p2(z,t)). We will start from
the integral

z+p2(z,t)

(P(€) 85(9)" sin VA (py(w, & — z) — 1) dE =

T

(15) - / (01(6) #4(6))' sin VA (B, € — ) — £) dE+
w+zpz(x,t)
T / (p2(6) #4(6))" sin VA (B, € — ) — 1) de.

Using the partial integration twice, by virtue of the junction condition and
the differential equations (2)—(3), we get from (15) that the following equality holds:

(16) P2 (x + pa(z,t)) un(x + pa(z,t)) = /D1 () ur(x) cos VAE+
+ (V/p2(z0) = V/p1(20) ) ua(x0) cos VX (By(w,z0 — z) — 1)+

. z+p2(z,t) ,
GRS
J

ux(€) cos VX (By(x, € — z) — t) dé—

z+p2(z,t)

—% / 2(6) 2 () sin VX (7 (, € — 7) — 1) dE.

T

1.3. If we suppose that ¢ > 0 is such that = + p2(z,t) < xo, then instead of
(16) we have the equality

p1( + p2(@,0)) (@ + p (1)) = V/pr(@) a () cos VA t+

1 (2) 4 (2) S“;?H

z+pa(z,t)

% A (E) cos VA (B (. € — ) — £) de—

z+pa(z,t)

LS / 2(6) () sin VX (7, € — 7) — 1) dE.
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1.4. Let y1,y2 € (a,b) be arbitrary numbers such that g € (y1,y2). Put
x = y1 in (16)—(17), and suppose that ¢t € [0,5,(y1,y2 — y1)]. Then integrate
(17) with respect to the variable ¢ € [0,D5(y1, 20 — y1)] and (16) with respect to
t € [po(y1,%0 — y1), P (y1,y2 — y1)]. Therefore, we get

P2(y1,y2—y1)

VPi(n + p2(u1.0) i + pa(3,1)) di =

0
= V) o) Sinﬁﬁg%,yg—yl)_
—(Vp2(z0) = V/p1(20) ) )t (z0) sin VX (7, (y1, 7o _\3;%) —Pa(y1,y2 —y1))
1 —p1(y1) a&(yl) COS\/Xm(yl)’\yQ —y) =1 +
Po(y1,y2—y1)  yit+p2(yi,t) . (6)

¥ T () cos VA (s, € = 11) = ) )=

0 Y1 pJ

1 Po(y1,y2—y1)  y1+p2(y1,t)
VY / ( / (&) ux(€) sin VX (B (y1, € — 1) — t) d§> dt.

0 Y1

Transforming the first integral on the right-hand side of (18) by Fubini’s
theorem, and introducing a new variable by y1 4+ p2(y1,t) = y in the integral on the
left-hand side of (18), we obtain the desired form of the integral (14):

Y2

(19) /a)\(y) dy = pl(yl) &)\(yl) Sin\/xﬁ2fg//§a Y2 — yl) _
(Va0 V() ) () YA Bl 2o —3%) ~Pa(yr,y2 —yn))
o1 COS\/Xﬁz(ymn—yl)—l_

—p1(y1) uy(y1) by

S\

/ \/j— &) sin VA By (y1,€ = y2) — Pa(y1,y2 — 1)) dé—

y17y2 Y1) y1+02 y1,t)

- ( €)% (6) sin VA (B (41, € — 91) — 1) dg) dat
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1.5. If we suppose that xo ¢ (z,z + p2(z,t)) (or, equivalently, zo & (y1,y2)),
then the following equality corresponds to (19):

/a)‘(y) dy = \/M ux(y1) sinﬁm%, Y2 = 1) _

cos VA, (y1,ys —y1) =1
A

Oy

s (1) i (1)
G
\/Xy1 2/p;(€)

P2(y1,92—y1)  yi1+p2(y1,t)

— 0/ ( / q(&)i’u(&)sinmm(yl,f—yl)—t)d&)dt,

U (€) sin VX (B (y1,€ — y1) — Do (y1, Y2 — 1)) dé—

Y1
where j; =2 if g < y1, and 53 =1 if y» < xo.

1.6. When the point x is equal to o, then y; = xg, and for integral (14) the
equality (20) holds, with p;, (y1), &; (y1) replaced by pa(zo), 733\(3:0—#0) respectively.

In the case when y» = xy we have to consider the integral

(p1(&) ©A (&))" sin VX (B4 (z0, w0 — &) — 1) dE
zo—p1(zo,t)

(where t > 0 is such that 29 — p1(20,t) € G). The procedure analogous to the one
used in 1.2-1.3 implies that

sin VAP, (y2,y2 — y1)

o

/ ix(y) dy = v/p1(ma) i (v2)

% +
1) By (0 — 0) YA vz =) =1,
(21) woe
+% / % (&) sin VA (7 (y2, 92 = €) = 71 (v, 32 — 1)) dé =
P1(y2,y2—v1) Y2
_% / < / (&) ur(§) sin VX (7 (2,52 — §) — 1) d§> dt.

0 y2—p1(y2,t)
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1.7. Now, we can estimate the integral (14). In order to do that, introduce
the notations v(G,p) and v'(G, p), where

(G, p) & max{ sup V/pi(@), sup Pz(m)},

z€(a,zo) z€[zo,b)

7’(G,p)d=efma><{ sup |py(x)], sup Ipé(w)l}-

z€(a,zo] zE€[xo,b)
It follows then from (19) that

Y2

/&A(y) dy‘ < <3V(G,p)+

Y1

22 b—a b—a 1 o
B e ) e VA s )

v'(G,p)
2«

(b—a)+

« |\/X| yeG
2 b—a ]. o,
+7%(G,p) /2 + sh?( Im V) - — -sup |u}(y)].
« |>\| yed

Let K, r(G,Im v/X) be the closed interval and the number defined in 1.1-1.2
83 [5]. According to the content of 3.1 §3 [5], the estimate

sup | @4 (y) | < Cor(Kgy,p,q,ImVA) [VA|- max |ux(y)|
yeG yEKR,

holds if | Rev/A| > 7(G,Imv/A). On the other hand, from 3.1 in Introduction it
follows the existence of a constant Co(Kg,, p, ¢, Imv/X) such that

(23) sup |ux(y)| < Co(Kro,p, ¢, ImVA) - max | ux(y) .
yeG yEKR,

Finally, if we put K ef g Ry, then Lemma 1 gives us the estimate
(24) Iynea}}(( |1OL)\(y)| S CO(KR)paq)Im\/X)||’B‘)\||L2(KR)7

for some number R € (0, p(K,0G)).

Hence, applying (in the appropriate order) the mentioned three estimates to
the right-hand side of (22), we get that the inequality

7&@)@‘ < [(37(G’p)+%

b—a
+ T || q||L1(G)> OO(K>p7q>Im\/X) +72(G)p) OOl(Kap)(bIm\/X) x

(25)

b—a)+

b—a 1 o
X \/2+Sh2(7 Im\/X) : CO(KRapat,ZaIm\/X) W ||U’>\ ||L2(KR)
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holds if | Re vVA| > r(G,Tm v/X) and o € (y1,72).

1.8. Comparing (19) with (20)—(21), we see that estimate (25) also holds in
cases considered in 1.5 and 1.6. Therefore, we may conclude that the estimate
(7) is proved, with Do, (G, Kg,p,q,Imv/X) denoting the constant from (25).

Note that Do, (G, Kg,p,q,Imv/X) does not depend on the numbers y;, ys.

1.9. Throughout this section we have been assuming that [y;,y2] C (a,b). If
y1 = aor/and y» = b, then the corresponding estimates (7) can be established in the
following way. Fix some closed interval [§1,92] C (a,b) and write estimate (7) for

this interval. Then pass to the limit(s) _lim or/and lim (in this inequality).
f1—a+0 J2—b—0

By ux(€) € Li(G) and the independence of Doi (G, Kg,p,q,Imv/X) of G, §2, it
results that the estimate (7) also holds in the considered cases.

2. The estimate (6). Proof of this estimate is very simple. It will directly
show that the two statements formulated in Remark 2 are valid in the considered
case.

2.1. Let uy(€) be an eigenfunction of the operator (1) corresponding to the
eigenvalue A. Then, using estimates (23) and (24), we have the inequalities

Y2

/wy)dy‘ < (0= a)-swp |in(0)] <

Y1

S (b—(l) CO(Kapaanm\/X) . Gai)(( |’Z/>\(y)| S
Y
< (b - a’) CO(Kapaanm\/X) CO(KRapat,ZaIm\/X) ||8’>\ ||L2(KR)7

where y1,y2 € [a,b](y1 < ya2) are arbitrary numbers, and K C G is the closed
interval defined in 1.7.

Hence, the estimate (6) holds true for any eigenvalue A, with
(26) DOI(GaKRapaanm\/X) (l:ef (b - Cl) CO(Kapaanm\/X) CO(KR7p7Q7Im\/X)'

3. On Remarks 1-3. In order to verify Remark 1, it is sufficient to re-
o b
place sup (-), sup (-) in definition of 7/(G,p) by integrals [(-)dz and [(-)dx
z€(a,zo] z€[z0,b) a xo
respectively.

3.1 It follows from estimates (22)—(23) that the first statement from Remark
2 holds true.

3.2. As we know, if o(L£) is a set of eigenvalues satisfying condition (8),
then it is possible to define constants Co (K, p, q,-), Co(Kgr,p,q,+) and Co1 (K, p,q, *)
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uniformly with respect to A € (£). Therefore, replacing Tm+v/A by A in sh?(-),
we conclude from (25)-(26) that the constants Do (G, Kgr,Dp,q,-) can be chosen
independently of numbers A € o(£).

2. Estimates for the integrals of an associated function

1. The estimate (7). We begin consideration of the case i € N by estab-
lishing the corresponding estimate (7).

1.1. Let ﬁx(f)be an associated function of the i—th order corresponding to
the eigenfunction n A(€) and the eigenvalue A # 0. As in the case of eigenfunctions,
the major step in the proof is getting a convenient form for the integral

2
(21) [ isw .
Y1

where [y1,y2] C (a,b) is an arbitrary closed interval.
1.2. Let x € G be an arbitrary fixed point. Let ¢ > 0 be a number such that
x + pa(z,t) € G and zg € (z,x + p2(z,t)). Consider the integral

z+p2(,t)
(p(&) uh(€))" sin VX (By (2, — z) — 1) dE,
x
and apply to it the procedure described in 1.2-1.4 §1. (Instead of differential

equations (2)—(3) it is necessary to use equations (4)—(5).) In that way we obtain
the following;:

Y2
/&A(y) dy = R19)(y1;y2; \; tir) —
Y1

1 P2(y1,92—y1)  y1+p2(y1,t)

—= ( / "di(g)sinmm(yl,f—yl)—t)ds)dt,

Y1

where R(19)(-) denotes the right-hand side of equality (19), with u, replaced by 1iu.
Using the Fubini’s theorem, transforme the integral on the right-hand side of
(28). Therefore, it follows from (28) that
Y2
/fu(y) dy = R(19) (W15y2; 0 &A)_

Y1

(29)

>

[ @ [eos VA Bl = 1) = Poluns vz — ) 1] .
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1.3. It is not necessary to write explicitly the expressions for integral (27) in
the other cases: zo ¢ (y1,y2),y1 = To or Y2 = xo. Namely, analysing the content
of 1.5-1.6 § 1, we can conclude that in those cases the mentioned integral has the
same form, "up to” the indices and the second member on the right-hand side of
(19), as in (29). Thus, any upper-bound estimate of the integral (29) will be valid
for the other ones.

1.4. Now, let us estimate integral (27). We obtain from (29) the inequality

P
/&A(y) dy‘ < Raa) (G ps g3 s )+
(30) 1

+®—a)¢2+ﬁﬁ(

a 1 i—1
ImVA) - = -sup | u(y) |,
«a | Al yed

where R(2)(-) denotes the right-hand side of inequality (22), with uy replaced by
Uy

Let K, r(G,Im v/X) be the closed interval and the number defined in 1.1-1.2
§3 [5]. According to the content of 3.1 §3 [5], the estimate

sup |&’)\(y) | < Cil(KRoap)(bIm\/X) | \/X| © max |’Lll‘)\(y) |
yeG yEKR,

holds if | Rev/A| > 7(G,Tm v/X). On the other-hand, from 3.1 in Introduction it
follows the existence of a constant C;(Kg,,p, ¢, Im+/X) such that

(31) sup | ux(y) | < Ci(Kry,p, ¢, ImVX) - max |ur(y)|.
yeG yEKR,

Also, if we put K def K’RO, then Lemma 1 gives us the estimate

(32) Iyneai)(( |’&>\(y)| S CZ(KRapat,ZaIm\/X)||&A||L2(KR)7

for some number R € (0, p(K,0@G)). Finally, by the proposition (b) of Lemma 2 it
follows the existence of a constant A;(G,p, g, Im+/\) such that

i—1 1
sup | ux (y) | < Ai(G,p, ¢, Im V) [ VX] - sup |up(y) |
yeG yeld

if \ # 0.
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Using the listed above estimates in the appropriate order, we obtain from
(30) that the inequality

721%(1/) dy‘ < [(M(G,p) + 7I(2Go’ép) (b—a)+

Y1

b—a

+2 (b - a’) AZ(Gapat,ZaIm\/X) CZ(Kapaanm\/X) X

b— 1 i
X\/2+sh2( aIm\/X)-C’i(KR,p,q,Im\/X)W||U>‘||L2(KR)

«a

holds if | Re vVA| > r(G,Tm v/X) and o € (y1,72).

This inequality also holds in all cases of other positions of the point zy with
respect to the points y1, yo.

Hence, it results that the estimate (7) holds, with D;; (G, Kg,p,q,Imv/X)
denoting the constant from (33). Note that this constant does not depend on the
numbers y1, yo.

1.5. If y; = a or/and ys = b, then the proof of the corresponding estimates
(7) is the same as in the case of an eigenfunction (see 1.9 §1).

2. The estimate (6). As in the case of an eigenfunction, the following proof
of estimate (6) directly shows that Remark 2 holds true.

2.1. If y1,y2 € [a,b](y1 < y2) are arbitrary numbers and K is the closed
interval defined in 1.6 § 1, then using estimates (31) and (32), we have the inequal-
ities

Y2

/wy)dy\ < (b= ) s |in(0)] <

Y1

< (b= ) Ci(K,p.q. I V) - max | (4) | <
< (b—a) Ci(K,p,q,ImVX) Ci(Kg,p, ¢, Im V) | ux |Lo(KR)-
By these inequalities we conclude that the estimate (6) is valid, with
(34) Du(G,Kg,p,¢,ImVX) = (b - a) Ci(K, p,q, Im V) C;(Kr, p, ¢, Im VX).

Proof of Theorem 1 is completed.
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3.0n Remarks 1-4. The statement from Remark 1 holds true; the neces-
sary changes in the proof are described in 3 §1.

3.1. It is not difficult to verify, by virtue of 1.4, that Remark 2 is valid.

3.2. Under the two conditions on the set o(£) described in Remark 3, all the
constants C;1(-), Ci(-), Ai(-) appearing in (33)—(34) do no depend on the numbers
X € o(£). Thus, using the replacement Im /X — A in (33), we conclude that the
constants D;1 (G, Kr,p,q,+) can be defined uniformly with respect to A € o(L).

3.3. It has been already shown that the constants Cj (+), C;(+), 4;(+) appear-
ing in (33)—(34) do not depend on the parameter i. That is why the constants
D;j; () have the same property.
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