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Abstract. We make an application of the single or multiple modulus residue
arithmetic in exact computation of the determinants and pseudoinverses of rect-
angular or singular matrices with rational entries, using the notions introduced by
M. Stojakovi�c and M. Radi�c. Proper selections of a prime modulus (or moduli) in
particular algorithms are given. Also, a comparison of di�erent estimates for the
suitable choice of modulus (or moduli) is given.

1. Introduction and preliminaries. The set of r � s rational matrices
with rank g is denoted by Qr�s

g . The rank and the determinant of a matrix A will
be denoted by r(A) and det(A), respectively. Let � = f�1; . . . ; �tg be a subset of
f1; . . . ; rg and � = f�1; . . . ; �tg a subset of f1; . . . ; sg. The matrix and minor of a
rectangular matrix A 2 Qr�s containing rows �1; . . . ; �t and columns �1; . . . ; �t is

denoted by A
h
�1 ... �t
�1 ... �t

i
= A

[�]
[�] and A

�
�1 ... �t
�1 ... �t

�
=
���A[�]

[�]

���, respectively. Also, the
following algebraic complement of the minor A

[�]
[�] is used:

Aij

�
�1 ... �p�1 i �p+1 ... �g
�1 ... �q�1 j �q+1 ... �g

�
= (�1)p+qA

�
�1 ... �p�1 �p+1 ... �t
�1 ... �q�1 �q+1 ... �t

�
=

@

@aij

���A[�]
[�]

��� :
We denote by (p) ([p]) the permutation (combination) p1; . . . ; pt. Index of

the permutation (p) is denoted by J(p), and the sum over all possible permutations
(combinations ) p1; . . . ; pt is denoted by

P
(p) (

P
[p] ). The absolute value of a

given integer i we denote by jij.

Theoretical base of presented algorithms are the notions of determinants for
rectangular matrices (rectangular determinants) and implied de�nitions of gener-
alized inverses, presented in [3, 4, 5, 7].
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16 P. Stanimirovi�c

In an earlier paper [9] we establish algorithms for the exact computation of
rectangular determinants and induced generalized inverses, for rectangular matri-
ces with rational or complex elements. In algorithms described in [9] integers,
real, complex and rational numbers are represented together as the elements of an
adequate structure in programming language C, called the internal form of num-
bers. The internal form of a matrix is two-dimensional array or binary tree of the
internal forms of numbers. Arithmetic operations on the internal forms of ratio-
nal numbers require a considerable number of usual arithmetic operations and slow
shorting of numerators and denominators. We use a possibility to replace computa-
tions on �nite sets of rational numbers by corresponding computations in the ring
of residues with suÆciently large modulus. Similar principles have been already
used for various calculations, see [1, 2, 11]. In [10] residue arithmetic was applied
in the theory of mathematical spectra, introduced by M. Petrovi�c. Also, residue
arithmetic algorithms were used in computing the Moore-Penrose inverse [2, 6, 8].

For the sake of completeness we provide a tutorial description of the residue
arithmetic [1, 2, 11].

De�nition 1.1. [12] For any given base � = fm1; . . . ;mng the residue repre-
sentation of an integer a, denoted by jaj� is another n-tuple fr1; . . . ; rng, where the
ri are integers de�ned by a set of n equations a = qimi + ri ; i = 1; . . . ; n ; and
qi is an integer chosen so that 0 � ri < mi. The quantity ri is the least positive
remainder of the division of a by mi and is designated as the least residue of a
modulo mi or jajmi

.

Theorem 1.1. [12] For the residue system consisting of moduli m1; . . . ;mn

let a and b be represented in the residue form. If M =
Qn

k=1mk, then within the
interval [0;M�1] only one integer, namely ja Æ bj

M
has the residue representation

fj jajm1 Æ jbjm1 jm1
; . . . ; j jajmn

Æ jbjmn
jmn
g, where Æ denotes addition (+), subtrac-

tion (�) or multiplication (�).

Theorem 1.2. [12] If a 6= 0 and (a;M) = 1, i.e. (a;mi) = 1, i = 1; . . . ; n,
then there exists unique integer b such that 0 < b < M and jabjM = 1, i.e. ab �
1(mod M). The integer b is called the multiplicative inverse of a modulo M , and
is denoted by a�1(M).

Theorem 1.3. [2] Let ~Q be the set of rational numbers invertible in ZM =

f0; . . . ; M � 1g, i.e. ~Q = fa=b : (b;M) = 1g: Also, let � be a base-vector which
contains prime moduli m1; . . .mn, M =

Qn
k=1 mk and N the maximal nonnegative

integer such that 2N2+1 �M . If we de�ne a �nite subset FN = fa=b 2 ~Q : (a; b) =

1; 0 � jaj < N; 0 < jbj < Ng of ~Q and �nite subset ~ZM = fja=bjM : a=b 2 FNg

of ZM; then j � jM : FN 7! ~ZM is a bijection.

We also recall de�nitions of determinants of rectangular matrices and induced
notions of generalized inverses, introduced in [3, 4, 5, 7]:

De�nition 1.2. The element in i-th row and j-th column of generalized inverse
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A�1(�;t) of A 2 Q
r�s
g , denoted by

�
A�1(�;t)

��1
ij

is equal to

�
A�1(�;t)

��1
ij

=
A
(�;t)
ij

det�t(A)
=

P
1��1<...<j<...<�t�r
1��1<...<i<...<�t�s

�(�1+...+�t)+(�1+...+�t)
@

@aji

���A[�]
[�]

���
P

1�
1<...<
t�r
1�Æ1<...<Æt�s

�(
1+...+
t)+(Æ1+...+Æt)
���A[
]

[Æ]

��� ;

where � 2 f�1; 1g and 1 < t = r�(A) � r(A) � minfr; sg is the greatest integer
such that det�t(A) 6= 0. For � = 1 we get Stojakovi�c's generalized inverse (denoted
by A�1(S;t) ), and for � = �1 we get Radi�c's generalized inverse (denoted by A�1(R;t)).

The expression det�t(A) =
P

1��1<...<�t�r
1��1<...<�t�s

�(�1+...+�t)+(�1+...+�t)
���A[�]

[�]

��� is called the

rectangular determinant of A, and is denoted by detSt (A), for � = 1 and detRt (A)
for � = �1. Similarly, the expression

A
(�;t)
ij =

X
1��1<...<j<...<�t�r
1��1<...<i<...<�t�s

�(�1+...+�t)+(�1+...+�t)
@

@aji

���A[�]
[�]

���
is called generalized algebraic complement of A corresponding to the element aij .

The matrix adj(�;t)(A) =
�
A
(�;t)
ij

�
,
�
i=1;... ;s

j=1;... ;r

�
is called generalized adjoint matrix

of A.

2. Several new notions. In this section, using presented theory, we intro-
duce several notions which will be useful for the algorithms described later.

De�nition 2.1. Given a matrix A = (aij) 2 Q
r�s and a modulus m, relatively

prime to all denominators in A, the matrix P = (pij) 2 Q
r�s is called the residue

of A modulo m if pij = jaij jm; for all i = 1; . . . ; r; j = 1; . . . ; s. The matrix P
we denote by P = jAjm.

De�nition 2.2. Let a matrix A = (aij) 2 Q
r�s be given and � = [m1; . . . ;mn]

be an n-tuple, representing a base of a residue number system. If each mi is
relatively prime to all denominators in A, then the residue representation of A,
denoted by jAj� , is the ordered n-tuple of matrices [P1; . . . ; Pn], where Pi = jAjmi

.

De�nition 2.3. Residual Gaussian elimination with pivoting and modulus m
of a matrix A 2 Qr�r

g is the following transformation:

mik =
��� a(k)ik

a
(k)
kk

���
m
; a

(k+1)
ij =

��a(k)ij �
��mika

(k)
kj

��
m

��
m
;

�
k=1;... ;g�1
i;j=k+1;... ;r

�
;

a(1)pq = japqjm ; p; q = 1; . . . ; r:

De�nition 2.4. For A 2 Qr�sg residue representation of det(A), denoted by
jdet(A)jm is equal to

jdet(A)jm= jdet(jAjm) jm=(�1)�
�� �� a(1)11 a

(2)
22

��
m
� � � a

(g)
gg

��
m
;
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where � represents the number of interchanges of rows (and columns), performed
during the residual Gaussian elimination.

De�nition 2.5. Residual rank of A 2 C r�sg corresponding to the given modulus
m, denoted by r(A;m) is the number of nonvanishing elements lying on the main
diagonal after the residual Gaussian elimination with modulo m.

The relation r(A;m) � r(A) is evident. In the following example we show the
existence of a matrix A and modulusm which satisfy the inequality r(A;m) < r(A).

Example 2.1 For the matrix A =

0
@ 1

2
7
6

2
3

�1 95
3

98
3

1
A we have r(A) = 2, r(A;m) =

1 and r(A; 17) = 1.

De�nition 2.6. Generalized rank of A 2 Qr�s
g corresponding to the modulus

m, denoted by r(A; �;m) is the greatest integer 1 < r(A; �;m) � g such that

��det�
r(A;�;m)(jAjm)

��
m 6= 0:

3. Computing determinants applying residue arithmetic. Let

A =
�
bjk
ijk

�
,
�
1�j�r

1�k�s

�
be a rectangular rational matrix of rank g. Selecting the

base-vector � = [m1; . . . ;mn] is an important item and should ensure that the
numerator and the denominator of the rectangular determinant can be represented
into the corresponding sets ~ZM and FN , introduced in Theorem 1.3. At �rst, we
do not know the rectangular determinant . So, we use an adequate upper bound
N for the numerator and the denominator of the result which is estimated in the
procedure MODUL. Also, using the estimated value N for the result we select mo-
duli m1; . . . ;mn in the same algorithm. The formal parameter l of the procedure
MODUL is an integer representing the size of selected minors. The number n of
moduli depends on N and it can be obtained from the following two conditions:

(K1) Elements of the base-vector � = [m1; . . . ;mn] are the smallest successive
primes such that M =

Qn
p=1mp � 2N2 + 1, and

(K2) m1 is the smallest prime such that m1�2u
2+1, where u=max

j;k
fjijk j ;jbjkjg :

Remarks 3.1. 1. Note that the criterion (K1), according to Theorem 1.3,

ensures that j � j
M

: FN 7! ~ZM is a bijection, and the criterion (K2) ensures
(mi; ijk) = 1, for all denominators and for each of selected moduli.

2. The modulus m1 is computed independently from N .

3. Modulus m1 can be obtained as the smallest prime such that m1 �
max
j;k
fj ijk jg: But, assuming the principle: \it is desirable to have as few moduli

as possible, because all the operations which involve a mixed-radix conversion have
execution times proportional to n, the number of moduli" [12], we use the condition
(K2).
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Algorithm MODUL(l)

STEP 1. Compute values

IPQ = ji�(p1)q1 jji�(p2)q2 j . . . ji�(pl)ql j and BPQ = jb�(p1)q1 jjb�(p2)q2 j . . . jb�(pl)ql j;

where ji�(pk)qk j and jb�(pk)qk j, 1 � k � l denote the absolute values of the numbers
i�(pk)qk and b�(pk)qk respectively, for all combinations [p] = (1 � p1 < . . . < pl � r);
[q] = (1 � q1 < . . . < ql � s) and all permutations (�) of the set fp1; . . . ; plg. The
sets of corresponding values will be denoted by fIPQg and fBPQg respectivelly.

STEP 2. Compute the lowest common denominator for elements of the set
fIPQg, denoted by lcd(fIPQg).

STEP 3. Compute d =
P

[q];[p]

P
(�)

BPQ
lcd(fIPQg)

IPQ
:

STEP 4. N = maxfd; lcd(fIPQg)g:

STEP 5. Determine the number of moduli n and the set of moduli
fm1; . . . ;mng:

(5:1) n 1

(5:2) m1 is the �rst prime such that m1 � 2u2 + 1, u=max
j;k
fj ijk j ;jbjk jg:

(5:3) pr  m1.

(5:4) while pr < 2N2 + 1 do

n n+ 1

mn is the �rst prime greater than mn�1

pr  pr �mn. �

Theorem 3.1. The rectangular determinant det�t(A) of A 2 Qr�sg can be

computed exactly using a base-vector � = [m1; . . . ;mn] which is obtained applying
the algorithm MODUL(t), for t = rc(A):

Proof. The denominator of det�t(A) is equal to lcd(fIPQg) � N . Also, the
numerator is

X
[q];[p]

�(p1+...+pt)+(q1+...+qt)
X
(�)

(�1)J(�)b�(p1)q1 . . . b�(pt)qt
lcd(fIPQg)

i�(p1)q1 . . . i�(pt)qt
�d�N:

In view of M =
Qn

k=1mk � 2N2 + 1, we easily conclude that selected base-vector
� = [m1; . . . ;mn] from the Algorithm MODUL(t) satis�es the requirements of
Theorem 1.3, and consequently suÆces for the exact computation of det�t(A). �

The following function computes the residue representation of the rectangular
determinant of a rational matrix A 2 Qr�sg , for a given single modulus m and
generalized rank l.
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function DET(A; l; �;m)

STEP 1. Compute W = jAjm.

STEP 2. Denote by G = G
h
p1 ... pl
q1 ... ql

i
the matrix obtained applying the

residual Gaussian elimination with pivoting and with module m on the submatrix

W
h
p1 ... pl
q1 ... ql

i
. Then

DET(A; l; �;m) =

���� P
[p];[q]

�
�(p1+...+pt)+(q1+...+qt)

���� tQ
k=1

Gpkqk

����
m

� ����
m

: �

Algorithm R1, given below, for a given matrix A 2 Qr�sg , using the pro-
cedure MODUL, computes the base-vector � = [m1; . . . ;mn] suÆcient for exact
computation of the rectangular determinant corresponding to the generalized rank
t = r(A; �;m1).

Algorithm R1

STEP 1. Compute m1, as the smallest prime such that m1 � 2u2 + 1, and
the residual rank r(A;m1), introduced in De�nition 2.5.

STEP 2. Select moduli m1; . . . ;mn using procedure MODUL(t).

STEP 3. Compute DET(A; t; �;m1).

STEP 4. if DET(A; t; �;m1) 6= 0 then r(A; �;m1) = t

else t = t� 1 and go to STEP 2. �

The algorithm DM describes the application of single-module residue arith-
metic for computing the rectangular determinant of a given rectangular matrix
A 2 Qr�sg . This algorithm is applicable in the case m1 � 2N2 + 1 � 2u2 + 1.

Algorithm DM

STEP 1. Applying Algorithm R1 select prime modulus m = m1 and compute
t = r(A; �;m) and DET(A; t; �;m).

STEP 2. The value of det�t(A) can be obtained converting DET(A; t; �;m)
into corresponding fraction using modulus m. �

The determinant of a rational rectangular matrix can be computed by means
of the multiple-modulus residue arithmetic, as follows:

Algorithm DBETA

STEP 1. Applying the algorithm R1 select a base-vector � = [m1; . . . ;mn]
and compute t = r(A; �;m1).

STEP 2. for i 1 to n compute DET(A; t; �;mi).
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(Obtain the residue representation jdet�t(A) j� =
�
jdet�t(A) jm1

; . . . ; j det�t(A) jmn

	
):

STEP 3. Convert given multiple residue representation into the residue
modulo M =

Qn
k=1mk, i.e., into the mixed-radix representation using the radices

m1; . . . ;mn.

STEP 4. Convert given mixed-radix representation into the corresponding
fraction using the modulus M . �

Example 3.1. In this example we demonstrate an exact computation of Ra-

di�c's determinant of a given matrix A =

0
@� 1

2 2 5
20 0

12
16 �2 9

6 1

1
A. The modulus m1 is

the smallest prime greater than or equal to 2�42+1, i.e. m1 = 37, and r(A;m1) = 2:
Now, using t = 2, according to the algorithm MODUL(2) we get

lcd(fIPQg) = lcd(f2; 4; 4; 16; 2; 4; 2; 4; 1; 1; 4; 2g) = 16;

fBPQg = f2; 6; 3; 3; 1; 0; 6; 2; 2; 0; 1; 0g;

dpq = 2
16

2
+ 6

48

4
+ 3

48

4
+ 3

48

16
+ 1

48

2
+0+6

48

2
+2

48

4
+2

48

41
+0+1

48

4
+0 =

= 155 = N:

Applying the step 5 of the algorithm MODUL(2) we get n = 3, � = [37; 41; 43].
Also, in the step 3 of the algorithm R1 we obtain DET(A; 2; �; 37) = 4 6= 0, and
consequently t = r(A; �; 37) = 2.

The standard residue representation of detR2 (A) is j det
R
2 (A) j� = (4; 35; 42),

the mixed-radix representation is 44848. Finally, recovering this value with modulus

M =
3Q

k=1

mk = 65231 into the resulting fraction we get detR2 (A) = 27=16.

Example 3.2. For A =

0
BBB@

1
5 1 38

57 �1 12

� 15
18

1
4 2 39

27 �1

2 85
119 1 � 78

65 0

1
CCCA we describe the compu-

tation of detSt (A). Application of the algorithm R1 leads to: lcd(fIPQg) = 18900,
d = 4477952 = N . This implies n = 6, � = [347; 349; 353; 359; 367; 373],
t = r(A; �; 347) = 2: Standard residue representation of detS2 (A) is jdet

S
2 (A)j� =

(83; 239; 310; 176; 59; 298). Mixed-radix representation of detS2 (A), with radices

m1; . . . ;m6 is 1234065952988185: Recovering this value from ~ZM with modulus
M =

Q6
k=1mk = 2100868898529971 we get detS2 (A) = �217253=1350:

4. Computing generalized inverses using residue arithmetic. In

this section we also consider a rational matrix A =

�
bjk
ijk

�
,
�
1�j�r

1�k�s

�
of rank g.

In the algorithms described below we use the following notations: consider two
integers 1 � u � s ; 1 � v � r. Denote by [p1] = fp11 < . . . < p1t�1g and
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[q1] = fq11 < . . . < q1t�1g the combinations derived from the combinations [p] =
f1 � p1 < . . . < v < . . . < pt � rg and [q] = f1 � p1 < . . . < v < . . . < pt � rg
deleting the elements v and u respectively. We denote by �1(p11); . . . ; �

1(p1t�1) the
permutations of the set fp11 < . . . < p1t�1g. The set of values

IPQ1 = ji�1(p11)q11 jji�1(p12)q12 j . . . ji�1(p1t�1)q1t�1 j

BPQ1 = jb�1(p11)q11 jjb�1(p12)q12 j . . . jb�1(p1t�1)q1t�1 j

de�ned for all combinations [p1] and [q1] and all permutations (�1) of the set
fp11; . . . ; p

1
t�1g is denoted by fIPQ1g and fBPQ1g, respectively.

Theorem 4.1. Generalized adjoint matrix adj(�;t)(A) of A 2 Qr�sg can be
exactly computed using base-vector � = [m1; . . . ;mn], de�ned by (K1) and (K2),
where the upper bound N for all numerators and denominators of the inverse matrix
can be computed as follows: N = max flcd(fIPQg);maxfduv :1� u� s; 1� v� rgg,
where

(*)

d =
X
[q];[p]

X
(�)

BPQ
lcd(fIPQg)

IPQ
;

duv =

8><
>:
��� ivu
bvu

��� d; if lcd(fIPQ1g) is not divisible by ivu

1

j bvu j
d; otherwise:

�
1 � u � s
1 � v � r

�

Proof. The denominator of A
(�;t)
uv is equal to

lcd(fIPQ1g) = lcd(fji�(p11)q11 jji�(p12)q12 j . . . ji�(p1t�1)q1t�1 jg) � lcd(fIPQg) � N:

Similarly, the numerator can be estimated as follows:X
[q1];[p1]

�(p1+...+pt)+(q1+...+qt)
X
(�1)

(�1)J(�
1)b�1(p11)q11 . . . b�1(p1t�1)q1t�1

�
lcd(fIPQ1g)

i�1(p11)q11 . . . i�1(p1t�1)q1t�1

�
X
[q];[p]

X
(�)

b�(p1)q1 . . . bvu . . . b�(pt)qt
lcd(fIPQ1g)

i�(p1)q1 . . . ivu . . . i�(pt)qt
�
ivu
bvu

:

Using

lcd(fIPQ1g) =

8<
:

lcd(fIPQg); if lcd(fIPQ1g) is not divisible by ivu

lcd(fIPQg)

ivu
; otherwise

it is easy to conclude that the numerator of A
(�;t)
uv is less than or equal to duv ,

de�ned in (*). Consequently, the numerators in adj(�;t)(A) are limited by the value
maxfduv : 1 � u � s; 1 � v � rg � N:
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As we mentioned above, the condition (K2) ensures the existence of the
residue representations for the given fractions with each of the selected moduli.
Finally, the criterion (K1) is generated by the requirements of Theorem 1.3. �

The algorithm MODULI prevaluate an upper bound N and selects an ade-
quate base-vector � = [m1; . . . ;mn] for exact computation of adj(�;t)(A).

Algorithm MODULI(l)

STEP 1. Generate the sets fIPQg and fBPQg, and corresponding values
lcd(fIPQg) and d, applying step 1, step 2 and step 3 of the algorithm MODUL(l).

STEP 2. Compute duv from (�).

STEP 3. d1 = maxfduv : 1 � u � s; 1 � v � rg, N = maxflcd(fIPQg); d; d1g:

STEP 4. Moduli m1; . . . ;mn are the successive primes such that M =Qn
k=1mk�2N

2 + 1, and can be obtained applying step 5 of Algorithm MODUL.

Generalized inverse A�1(�;t) of A 2 Q
r�s can be exactly computed using single

modulus m according to the following algorithm.

Algorithm IM

STEP 1. Select the smallest modulus m = m1 � 2N2+1 � 2u2+1 and �nd
t = r(A; �;m), according to the algorithm R1, applying in his step 2 the algorithm
MODULI(t).

STEP 2. Obtain fraction I = det�t(A), applying Algorithm DM.

STEP 3. for j = 1 to s do

for i = 1 to r do

(3.1)
�� �adj(�;t)(W )

�
ji

��
m
=
��� P
[p];[q]

�
�(p1+...+pt)+(q1+...+qt)jSjm

� ���
m
,

where S =

(
(�1)u+vW

�
p1 ... pu�1 pu+1 ... pt
q1 ... qv�1 qv+1 ... qt

�
; i 2 [p]; j 2 [q]

0; otherwise.

(3.2) Convert the value
�� �adj(�;t)(W )

�
ji

��
m
into fraction B, using modulem.

(3.3) The value of
�
A�1(�;t)

�
ji
is equal to the shorted fraction B=I . �

In the following algorithm is described a computation of Radi�c's and Sto-
jakovi�c's generalized inverse using multiple modulus residue arithmetic.

Algorithm IBETA

STEP 1. Select the corresponding base-vector � = [m1; . . . ;mn] and compute
generalized rank t = r(A; �;m), according to the algorithmR1, applying in his step 2
the Algorithm MODULI(t).

STEP 2. Compute I = det�t(A), accomplishing STEP 2, STEP 3 and STEP
4 of the algorithm DBETA.
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STEP 3. for j = 1 to s do

for i = 1 to r do

(3.1) for k = 1 to n do

compute
�� �adj(�;t)(W )

�
ji

��
mi
, according to the step (3:1)

of the algorithm IM. fThus, we get
�� �adj(�;t)(A)�

ij

��
�
.g

(3.2) Convert
�� �adj(�;t)(A)�

ij

��
�
into the corresponding fraction B

using the modulus M =
Qn

k=1mk.

(3.3)
�
A�1(�;t)

�
ij
is equal to the shorted fraction B=I:

Example 4.1. In this example we compute Stojakovi�c's inverse of

A =

2
66664

1
2 �4 3

3 42
9 �11

65
26

130
15 �14

2 266
21 �17

3
77775 :

Modulus m1 = 2987 is the smallest prime greater than or equal to 2 � 382 + 1.
The starting value for t = r(A; �;m1) is r(A;m1) = 2. Now, using the algorithm
MODULI(2) we get

N = maxf6; 8301; 8301g = 8301; n = 3; � = [2897; 2903; 2909]:

Now, DET(A; 2; �; 2897) 6= 0, and r(A; �;m1) = 2. Applying the algorithm DBETA
we get detS2 (A) = 1253=6:

The standard residue representation of adj(S;2)(A) is

jadj(A)j� =

2
64
(2881;2887;2893) (957;959;961) (3;3;3) (1944;1948;1952)

(1399;1402;1405) (2859;2865;2871) (1441;1444;1447) (28;28;28;28)

(1415;1418;1421) (1902;1906;1910) (1438;1441;1444) (981;983;985)

3
75 :

The mixed-radix representation of adj(S;2)(A) is

jadj(S;2)(A)jM =

2
64
167375697 111583800 3 55791917

83687807 167375675 83687849 28

83687823 55791875 83687846 11583824

3
75 :

Converting all elements with module M into the corresponding fractions we obtain
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adj(S;2)(A) =

2
664
�16 � 26

3 3 38
3

� 99
2 �38 � 15

2 28

� 67
2 � 88

3 � 21
2

46
3

3
775 :

Finally,

A�1(S;2) =

2
6664

�96
1253 � 52

1253
18
1253

76
1253

� 297
1253 � 228

1253 � 45
1253

24
179

� 201
1253 � 176

1253 � 9
179

92
1253

3
7775 :

5. The eÆciency. In [9] we obtained the following number of operations
on the internal representation of rational numbers suÆcient for exact computation
of rectangular determinants and induced generalized inverses: Let r�(A) be shortly
denoted by t and let Dt(A); Kt(A); Ut(A) be the number of such operations suÆ-
cient for the computations of determinant, adjoint matrix and inverse of A 2 Qr�s

g ;
according to Stojakovi�c's and Radi�c's de�nition. Then:

Dt(A) =

�
r

t

��
s

t

��
1

6

�
4t3 + 3t2 � t

�
+ 1

�
� 1;

Kt(A) = rs

��
r � 1

t� 1

��
s� 1

t� 1

��
1

6

�
4(t� 1)3 + 3(t� 1)2 � (t� 1)

�
+ 1

��
+

+ rs

��
r � 1

t� 1

��
s� 1

t� 1

�
� 1

�
=

= rs

��
r � 1

t� 1

��
s� 1

t� 1

��
1

6

�
4t3 � 9t2 + 5t

�
+ 2

�
� 1

�
;

Ut(A) = Dt(A) +Kt(A) + rs:

For a residue number system � consisting of n moduli, the execution time
is proportional to n, because of the repetition of the computation for each of se-
lected moduli from �. The main advantage of the residue arithmetic related to
algorithms in [9] is speed-up induced by performing elementary arithmetic oper-
ations in the ring of residues instead of more complex operations on the internal
forms of numbers. This compensates simple transformations of rational numbers
into corresponding residues and multiplicative increase of the number of necessary
operations.
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The main defects of residue arithmetic are:

- a considerable number of arithmetic operations necessary for computation
of an adequate base-vector;

- successive computations of det�n(A), for n = r(A;m) to n = r(A; �;m),
during the computation of the generalized rank r(A; �;m), in the case when
r(A; �;m) < r(A;m).

These algorithms can be used in the following two cases:

1. In exact computation of the Moore-Penrose inverse, in the cases when it
coincides with one of the de�ned pseudoinverses [11].

2. Since the Radi�c's and Stojakovi�c's pseudoinverse are the least f1; 2g-
inverses, in the case r(A; �;m) = r(A) [11], described methods can be used for
exact computation of fi; j; kg generalized inverses.

Acknowledgement. The author is grateful to the referee for helpful com-
ments and suggestions concerning the paper.
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