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ON GENERALIZATION OF FUNCTIONS n! AND !n

Zoran �Sami

Communicated by Aleksandar Ivi�c

Abstract. A sequence yn is de�ned, and its relation to -Duro Kurepa's left
factorial hypothesis is discussed. Also, a generalization of functions n!, !n and yn, a
sequence un;m is de�ned, and a number of its properties is proved.

1. Introduction. Kurepa in [6] de�ned !n (left factorial) by:

!n = 0! + 1! + 2! + � � �+ (n� 1)!; n 2 N (1.1)

and stated the hypothesis that

(!n; n!) = 2; for n > 1; (KH)

where (a; b) denotes the greatest common divisor of integers a and b. In [6] was
proved that (KH) is equivalent to assertion that

!p 6� 0 (mod p); for all primes p > 2 (1.2)

and this is the usual form of KH.

In [8], [9], [11], [12] and [13] there are several statements equivalent to KH,
which are all exposed in [5]. Here we cite, for example, the assertion proved in [14],
that KH is equivalent to

p�2X
k=1

(k + 1)p�kkk�1 6� 0 (mod p); for all primes p > 2 (1.3)

KH is veri�ed in [2] for n < 106. In this paper we will try to open some new
possibilities for considering KH.
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2. The sequence yn. Let f(x) =
e�x

1� x
and n 2 N [ f0g. We de�ne a

sequence yn by:

yn = f (n)(0): (2.1)

It is easy to see that

yn =
nX

k=0

(�1)n�k
�
n

k

�
k!: (2.2)

The �rst few members, are: y0 = 1, y1 = 0, y2 = 1, y3 = 2, y4 = 9, y5 = 44; . . . .
Let us notice that the sequence yn has a combinatorial meaning to. Namely, yn,
n > 0, is the number of derangements of the set of n elements, i.e. number of
permutations of an n-element set, in which no element is �xed. Let us establish
some properties of the sequence yn.

Proposition 2.1. For every n 2 N we have

yn = nyn�1 + (�1)n; (2:3)

nX
k=0

�
n

k

�
yk = n!; (2.4)

nX
k=1

�
n

k

�
yk�1 =!n; (2:5)

nX
k=1

�
n

k

�
(�1)n�k(!k) = yn�1: (2.6)

Proof. Since (1� x)f(x) = e�x, it follows that

(�1)n = [(1� x)f(x)]
(n)
x=0 = f (n)(0)� nf (n�1)(0) = yn � nyn�1;

so the equality (2.3) is correct. Further we have:

1

1� x
= exf(x)) n! = [exf(x)]

(n)
x=0 =

nX
k=0

�
n

k

�
yk;

!n =

n�1X
k=0

k! =

n�1X
k=0

kX
i=0

�
k

i

�
yi =

n�1X
i=0

yi

n�1X
k=0

�
k

i

�
=

n�1X
i=0

�
n

i+ 1

�
yi;

i.e. the equalities (2.4) and (2.5) are correct. From (2.5) it follows that:

!n = u
(n)
1 (0); u1(x) = ex

xZ
0

f(t)dt; (!0 = 0) (2.7)

and further u1(x)e
�x =

xR
0

f(t)dt ) f (n�1)(0) = yn�1 = [u1(x)e
�x]

(n)
x=0, i.e. the

equality (2.6) also holds.
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Proposition 2.2. For every n 2 N , and every m 2 N [ f0g the following

holds:
nX

k=0

�
n

k

�
yk+m = n!

mX
i=0

(�1)m�i
�
m

i

��
n+ i

i

�
(i!): (2.8)

The proof is easy and can be omitted.

Let us notice, that from proven equalities, one can obtain a number of con-
gruences by module p, when p 2 P , and P denotes the same set as above. From
(2.3) it follows

yp � �1 (mod p); (2:9)

yp�1 + yp�2 � 1 (mod p); (2:10)

Also, the substitution n = p� 1 in (2.4) give

p�1X
k=0

(�1)kyk � �1 (mod p); (2.11)

Finally, by substitution n = p in (2.6) and (2.8) we obtain

yp�1 � !p (mod p) (2:12)

ym + ym+p � 0 (mod p); m 2 N [ f0g (2:13)

Bearing in mind (1.2), one can, without great e�ort, formulate a number of as-
sertions equivalent to KH. Really, according to congruences (2.9)-(2.13), KH is
equivalent to every one of the following statements:

yp�1 6� 0 (mod p); for all primes p � 3; (2.14)

yp�2 6� 1 (mod p); for all primes p � 3; (2.15)

yp 6� �1 (mod p2); for all primes p � 3; (2.16)

p�2X
k=0

(�1)kyk 6� �1 (mod p); for all primes p � 3: (2.17)

Obviously, one can formulate a number of similar statements.

The sequence yn can be represented in another way.

Proposition 2.3. For every n 2 N

yn =

�
n!

e

�
+

1 + (�1)n

2
; (2.18)

where [x] denotes integer part of x, i.e. [x] 2 Z and [x] � x < [x] + 1.
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Proof. From (2.2) it follows

yn =

nX
k=0

(�1)n�k
�
n

k

�
�(k + 1) =

+1Z
0

e�x
nX

k=0

(�1)n�k
�
n

k

�
xkdx

=

+1Z
0

(x � 1)ne�xdx =

1Z
0

(x � 1)ne�xdx+
1

e

+1Z
0

tne�tdt

=
n!

e
+

1Z
0

(x� 1)ne�xdx:

Since we have

���
1Z

0

(x� 1)ne�xdx
��� �

1Z
0

jx� 1je�xdx =
1

e
:

It follows that yn =
�
n!
e

�
+ 1, for n even and yn =

�
n!
e

�
, for n odd and thus, the

equality (2.18) holds.

Bearing in mind properties of the sequence yn from (2.18) one immediately
obtains �

n!

e

�
=

�
e�x

1� x
�

ex + e�x

2

�(n)
x=0

(2.19)

Also, according to Proposition 2.1, it follows that for every n 2 N , the following
equalities hold:

�
n!

e

�
= n

�
(n� 1)!

e

�
+

1� (�1)n

2
(n� 1); (2:20)

nX
k=0

�
n

k

��
k!

e

�
= n!� 2n�1; (2:21)

nX
k=1

�
n

k

��
(k � 1)!

e

�
=!n� 2n�1: (2:22)

Bearing in mind (2.9){(2.13), it follows that for every prime p � 3, the following
congruences hold:

�
p!

e

�
� �1 (mod p); (2:23)

�
(p� 1)!

e

�
+

�
(p� 2)!

e

�
� 0 (mod p); (2:24)
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p�1X
k=0

(�1)k
�
k!

e

�
�

p� 3

2
(mod p); (2:25)

�
(p� 1)!

e

�
� !p� 1 (mod p); (2:26)

�
m!

e

�
+

�
(m+ p)!

e

�
� �1 (mod p); m 2 N [ f0g: (2:27)

The statements (2.14){(2.17) all equivalent to KH, could be reformulated similarly.
From the discussion above, it is clear, that the sequence yn is closely related to the
functions n! and !n.

3. The sequence un;m. Let f(x) =
e�x

1� x
and let um(x), m 2 Z, be the

sequence of functions de�ned by:

um(x) =

8><
>:

ex
xR
0

dt1

t1R
0

dt2 � � �
tm�1R
0

f(tm)dtm; m > 0

exf (�m)(x); m � 0

: (3.1)

The sequence of numbers un;m, n 2 N [ f0g, is de�ned by

un;m = u(n)m (0): (3.2)

Let us �rst notice, that the sequence un;m, in some special cases represents the
functions n!, !n and yn.

Proposition 3.1. For every n 2 N [ f0g following equalities hold:

un;0 = n!; (3:3)

un;1 = !n; (!0 = 0); (3:4)

u0;�n = yn: (3:5)

Proof. Referring to (2.1) and (3.1) and bearing in mind (2.7), it follows
immediately that

un;0 =

�
1

1� x

�(n)
x=0

= n!;

un;1 =
h
ex

xZ
0

f(t)dt
i(n)
x=0

=!n;

u0;�n =
h
exf (n)(x)

i
x=0

= f (n)(0) = yn;

which proves the assertion.
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Considering further properties of the sequence un;m, let us show, that the
sequence un;m has some properties similar to those of binomial coeÆcients.

Proposition 3.2. For every n 2 N [ f0g we have:

un;m + un;m+1 = un+1;m+1; m 2 Z; (3.6)

m > n) un;m = 0; m 2 N; (3.7)

un;n = 1; (3.8)

un;n�1 = n: (3.9)

Proof. Referring to (3.1) we have

um(x) = ex(um+1(x)e
�x)0 = u0m+1(x)� um+1(x))

un;m = u(n)m (0) = [u0m+1(x)� um+1(x)]
(n)
x=0 = un+1;m+1 � un;m+1;

and thus, the equality (3.6) holds.

Let m > n, then

u(n)m (x) = ex
nX

k=0

�
n

k

�h xZ
0

dt1

t1Z
0

dt2 � � �

tm�1Z
0

f(tm)dtm

i(k)

= ex
nX

k=0

�
n

k

� xZ
0

dtk+1 � � �

tm�1Z
0

f(tm)dtm;

and after substituting x = 0, we obtain (3.7).

Further, from (3.6) and (3.7) it follows

un;n = un�1;n�1 + un�1;n = un�1;n�1 = � � � = u0;0 = 1

un;n�1 = un�1;n�2 + un�1;n�1 = un�1;n�2 + 1 = � � � = u1;0 + (n� 1) = n

and thus, the assertion is proved.

We can easily calculate members of the sequence un;m. For example, for
jmj < 5 and n < 6, we have:

� � ��4 �3 �2 �1 0 1 2 3 4 � � �
0 9 2 1 0 1 0 0 0 0
1 53 11 3 1 1 1 0 0 0
2 362 64 14 4 2 2 1 0 0
3 2790 426 78 18 6 4 3 1 0
4 24024 3216 504 96 24 10 7 4 1
5 229080 27240 3720 600 120 34 17 11 5
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Proposition 3.3. For every n 2 N , and every m 2 Z, the following

equalities hold:

nX
k=m

(�1)k�mun;k = un�1;m�1; (3:10)

n�1X
k=0

uk;m = un;m+1 � u0;m+1: (3:11)

Proof. Referring to (3.6) and (3.7) we obtain

nX
k=m

(�1)k�mun;k =

nX
k=m

(�1)k�m(un�1;k�1 � un�1;k)

= un�1;m�1 +

nX
k=m+1

(�1)k�mun�1;k�1 + (�1)n�mun�1;n +

n�1X
k=m

(�1)k�mun�1;k

= un�1;m�1 +

n�1X
k=m

(�1)k�m+1un�1;k +

n�1X
k=m

(�1)k�mun�1;k = un�1;m�1:

Also

n�1X
k=0

uk;m =

n�1X
k=0

(uk+1;m+1�uk;m+1) =

nX
k=1

uk;m+1�

n�1X
k=0

uk;m+1 = un;m+1�u0;m+1:

and that proves the proposition.

Proposition 3.4. For every k; n 2 N [f0g and every m 2 Z, the following

equalities hold:

nX
i=0

(�1)n�1
�
n

i

�
uk+i;m = uk;m�n; (3:12)

nX
i=0

�
n

i

�
uk;m�i = un+k;m: (3:13)

Proof. According to (3.1), we have

um�n(x) = ex(um(x)e
�x)(n) =

nX
i=0

(�1)n�i
�
n

i

�
u(i)m (x):

Di�erentiating the last equality k times and substituting x = 0 we obtain (3.12).
Further we have

u(n)m (x) =

nX
i=0

�
n

i

�
um�i(x)) u(n+k)m (x) =

nX
i=0

�
n

i

�
u
(k)
m�i(x);

and by substituting x = 0 we obtain (3.13).
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Let us notice, that by substituting k = 0 in (3.13) and considering (3.5) and
(3.7) we obtain

un;m =
nX

i=0

�
n

i

�
u0;m�i =

nX
i=0

�
n

i

�
yi�m (m � 0); i.e.

un;m =
m�1X
i=0

�
n

i

�
u0;m�i +

nX
i=m

�
n

i

�
u0;m�i =

nX
i=m

�
n

i

�
yi�m; (0 < m � n):

We can conclude that, for every n 2 N [ f0g and every m 2 Z, m � n holds

un;m =
nX
i=s

�
n

i

�
yi�m; s = max(0;m): (3.14)

Referring to (2.8), substitution m = �k, k 2 N [ f0g in (3.14), gives

un;�k =

nX
i=0

�
n

i

�
yi+k = n!

kX
i=0

(�1)k�i
�
k

i

��
n+ i

i

�
i!: (3.15)

Especially, for k = 1 we obtain

un;�1 = n � n!: (3.16)

It is obvious that for m � 0

un;m � 0 (mod n!): (3.17)

Substitution n = p, p 2 P in (3.13), gives us

uk;m + uk;m�p � up+k;m (mod p): (3.18)

According to (3.17) and (3.18), for m � p � k, we obtain

uk;m � up+k;m (mod p): (3.19)

Let us notice, that for n = p + 1, p 2 P , p > 2, in (3.14), referring to (2.10) we
obtain:

up+1;2 � 1 (mod p): (3.20)

At last, let us prove two recurrent formulas for the sequence un;m.

Proposition 3.5. For every n 2 N and every m 2 Z following equality

holds

(m� 1)un;m = (n�m+ 1)un;m�1 � un;m�2 + a(n;m); (3.21)
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where

a(n;m) =

� �
n

m�2

�
; m � 2

0; m < 2
:

Proof. For m = 1, the equality holds, since (3.21) reduces to (3.16). For
m < 1, according to (2.3), (3.6) and (3.14), we obtain

un;m�1 + un;m�2 = un+1;m�1 =

n+1X
i=0

�
n+ 1

i

�
yi�m+1

=

n+1X
i=0

�
n+ 1

i

�
(i�m+ 1)yi�m + (�1)1�m

n+1X
i=0

�
n+ 1

i

�
(�1)i

= (n+ 1)

n+1X
i=1

�
n

i� 1

�
yi�m � (m� 1)

n+1X
i=0

�
n+ 1

i

�
yi�m

= (n+ 1)un;m�1 � (m� 1)(un;m + un;m�1):

and, after putting this in order, we obtain (3.21).

For m > 1, we have

un;m�1 + un;m�2 = un+1;m�1 =

n+1X
i=m�1

�
n+ 1

i

�
yi�m+1

=

�
n+ 1

m� 1

�
+

n+1X
i=m

�
n+ 1

i

�
yi�m(i�m+ 1) + (�1)1�m

n+1X
i=m

�
n+ 1

i

�
(�1)i

=

�
n+ 1

m� 1

�
+ (n+ 1)

n+1X
i=m

�
n

i� 1

�
yi�m � (m� 1)

n+1X
i=m

�
n+ 1

i

�
yi�m

+ (�1)m
m�1X
i=0

�
n+ 1

i

�
(�1)i

=

�
n+ 1

m� 1

�
+ (n+ 1)

nX
i=m�1

�
n

i

�
yi�m+1 � (m� 1)un+1;m �

�
n

m� 1

�

=

�
n

m� 2

�
+ (n+ 1)un;m�1 � (m� 1)(un;m + un;m�1);

and, after putting this in order, we obtain (3.21).

Proposition 3.6. For every n 2 N [ f0g and every m 2 Z, the following

equality holds:

un+2;m = (n�m+ 3)un+1;m � (n+ 1)un;m + a(n;m): (3.22)
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Proof. According to (3.6), (3.12) and (3.21), we obtain

un+2;m � 2un+1;m + un;m = un;m�2

= (n�m+ 1)un;m�1 � (m� 1)un;m + a(n;m)

= (n�m+1)(un+1;m�un;m)� (m�1)un;m + a(n;m);

and, after putting this in order, we get (3.22).

Notice that, according to (3.4) and (3.6), after substituting m = 2 in (3.22),
we obtain

un+2;2 = (n+ 1)(!n) + 1: (3.23)

From properties of the sequence un;m, it is clear that one can state num-
ber of assertions equivalent to KH. For example KH is equivalent to all following
assertions:

(9k)(k � p ^ uk;2 6� 1 (mod p)); for all primes p > 2; (3:24)

up�1;2 6� 0 (mod p); for all primes p > 2; (3:25)

up�2;2 6� 0 (mod p); for all primes p > 2; (3:26)

up+1;2 6� p+ 1 (mod p2); for all primes p > 2: (3:27)

Really, (3.24) and (3.27) are direct corollaries of (1.2) and (3.23), while (3.6) implies
(3.25) and (3.26).
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