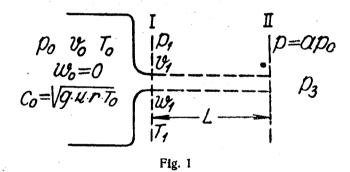
CONTRIBUTION À L'ÉTUDE DE L'ÉCOULEMENT DES GAZ

Par D. MILOSAVLIÉVITCH

Considérons l'écoulement d'un gaz à travers un ajutage bien arrondi et se retrécissant progressivement vers la sortie (fig. 1). Soient p_0 la pression en kg/m^2 et T_0 la température



absolue dans l'espace d'où s'écoule le gaz. On sait¹) que la pression p_m à la sortie de l'ajutage peut descendre au plus jusqu'à la valeur

$$p_m = \left(\frac{2}{k+1}\right)^{\frac{\kappa}{\kappa-1}} \cdot p_0$$

(hypothèse de Saint-Venant et de Wantzel \cdot). La grandeur k représente le rapport des chaleurs spécifiques à pression constante et le volume constant; pour l'air et les gaz diatomique on a

(2)
$$k = 1,40$$
 et $p_m = 5,530 p_0$.

Nous nous proposons d'étudier le problème de l'écoulement du gaz dans le cas où l'ajutage se prolonge par un tuyau cylindrique de longueur arbitraire L (fig. 1); de façon plus précise, nous allons chercher les valeurs que peuvent prendre la pression p_1 au bout de l'ajutage et au commencement du tuyau (section I) et la pression p_2 au bout du tuyau cylindrique (section II), en supposant que la pression extérieure est bien plus petite que la pression p_m (on a, par exemple, $p_0 = 10$ ata, $p_m = 5,3$ ata et $p_3 = -1$ ata).

Nous pouvons supposer que le gaz effectue jusqu'à la section I une détente abiabatique, puisqu'on peut négliger les frottements intérieurs à cause de la petitesse du chemin parcouru. Dans ce cas la vitesse w_1 et la température absolue T_1 pour la section I sont données par les expressions [1].

(3)
$$w_1 = \sqrt{2g\frac{k}{k-1}p_0v_0\left[1-\left(\frac{p_1}{p_0}\right)^{\frac{\kappa-1}{\kappa}}\right]} = C_0\sqrt{\frac{2^*}{k-1}\left[1-\left(\frac{p_1}{p_0}\right)^{\frac{\kappa-1}{\kappa}}\right]}$$
(4) $T_1 = T_0\left(\frac{p_1}{p_0}\right)^{\frac{\kappa-1}{\kappa}},$

où $C_0 = \sqrt{gkrT}$ représente la vitesse du son dans le gaz à la température absolue T_0 (r est la constante du gaz). Soit C_1 la vitesse du son dans le gaz qui se trouve dans la section I: en tenant compte de (4) on a

(5)
$$C_1^2 = gkrT_1 = gkrT_0 \left(\frac{p_1}{p_0}\right)^{\frac{\kappa-1}{\kappa}} = C_0 \left(\frac{p_1}{p_0}\right)^{\frac{\kappa-1}{\kappa}}$$

Pendant l'écoulement à travers le tuyau cylindrique, le gaz effectue la transformation caractérisée par la relation [3]

(6)
$$v(p+bv) = v_1(p_1+bv_1) = \text{const.},$$

b représentant la grandeur constante

(7)
$$b = \frac{k-1}{2gk} \cdot \frac{w_1^2}{v_1^2}.$$

Les frottements intérieurs ne sont plus ici négligeables. La transformation est irréversible et l'entropie ne peut qu'augmenter. C'est pour cette raison que la transformation s'effectuera jusqu'à un point (p_{gr}, v_{rg}) du diagramme p, v tel que la tangente en ce point pour la coubre (6) coïncide avec la tangente à la coubre adiabatique passant par le même point. Le point (p_{gr}, v_{gr}) doit représenter l'état du gaz à la sortie du tuyau (section II, $p_{gr} = p_2$,) et les pressions p_1 et p_2 dans les sections I et II seront liées par [3]

(8)
$$\frac{p_2}{p_1} = \frac{w_1}{c_1} \sqrt{\frac{2}{k+1} + \frac{k-1}{k+1} \left(\frac{w_1}{c_1}\right)^2}.$$

Si nous posons

$$(9) p_2 = ap_0,$$

où a représente une quantité inconnue, et si nous remplaçons w_1 et C_1 par les valeurs de (3) et (5), l'equation (8) deviendra

$$\frac{ap_{0}}{p_{1}} = \sqrt{\frac{2}{k-1} \left[\left(\frac{p_{0}}{p_{1}} \right)^{\frac{\kappa-1}{\kappa}} - 1 \right]} \cdot \sqrt{\frac{2}{k+1} + \frac{k-1}{k+1} \cdot \frac{2}{k-1} \left[\left(\frac{p_{0}}{p_{1}} \right)^{\frac{\kappa-1}{\kappa}} - 1 \right]},$$

$$a^{2} \left(\frac{p_{0}}{p_{1}} \right)^{2} = \frac{4}{k^{2}-1} \left[\left(\frac{p_{0}}{p_{1}} \right)^{\frac{\kappa-1}{\kappa}} - 1 \right] \left(\frac{p_{0}}{p_{1}} \right)^{\frac{\kappa-1}{\kappa}},$$

$$\frac{k^{2}-1}{4} \cdot a^{2} \left(\frac{p_{1}}{p_{0}} \right)^{\frac{\kappa+1}{\kappa}} = \left(\frac{p_{0}}{p_{1}} \right)^{\frac{\kappa-1}{\kappa}} - 1$$

L'équation (10) peut être résolue par rapport à $\left(\frac{p_0}{p_1}\right)$ graphiquement en traçant les

$$y = \frac{k^2 - 1}{4} \cdot a^2 \cdot \left(\frac{p_0}{p_1}\right)^{\frac{\kappa + 1}{\kappa}} \text{ et } z = \left(\frac{p_0}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} - 1.$$

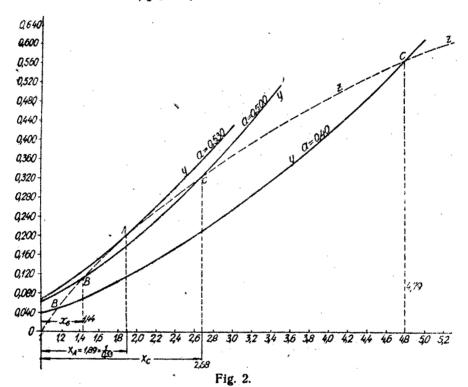
La figure 2 montre que les coubres y et z ne se coupent pas du tout pour a>0.530, d'où la conclusion, d'après (9), que la pression p_2 ne peut jamais atteindre la valeur $0.530p_0$. Pour a=0.530 les courbes y et z sont tangentes au point A dont l'abscisse est

$$x_A = \left(\frac{p_0}{p_1}\right)_A = 1,89 = \frac{1}{0,530},$$
 d'où $p_1 = 0,530p_0$.

On a donc $p_1 - p_2$ pour a = 0.530, ce qui correspond' à une longueur infiniment petite du tuyau.

Enfin, pour a < 0.530 les courbes y et z se coupent en deux points B et C (fig. 2) d'abscisses

$$x_B = \left(\frac{p_0}{p_1}\right)_B < \frac{1}{0.530}$$
, d'où $(p_1)_B > 0.530 p_0$ et $x_C = \left(\frac{p_0}{p_1}\right)_C > \frac{1}{0.530}$, d'où $(p_1)_C < 0.530 p_0$.



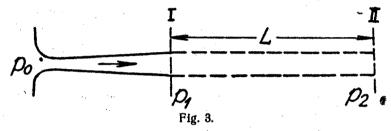
On a, par exemple,

$$\left(\frac{p_0}{p_1}\right)_B = 1,44$$
 ou $(p_1)_B = 0,69 p_0$ et $\left(\frac{p_0}{p_1}\right) = 2,68$
ou $(p_1)_C = 0,37 p_0$ pour $a = 0,500$; pour $a = 0,400$ on $a\left(\frac{p_0}{p_1}\right)_B = 1,17$ ou $(p_1)_B = 0,85 p_0$ et $\left(\frac{p_0}{p_1}\right)_C = 4,79$ ou $(p_1)_C = 0,21 p_0$.

Le point C correspond au cas de l'écoulemnt du gaz d'après la figure 3.

En résumé, nous arrivons aux conclusions suivantes: Cas de la fig. 1

 $p_2 < 0.530 p_0$ et $p_1 > 0.530 p_0$ (point B sur la fig. 2)



Cas de la fig. 3

 $p_2 < 0.530 p_0$ et $p_1 < 0.530 p_0$ ainsi que $p_1 < p_2$ (point C sur la fig 2).

Dans le cas de la fig. 1 les pressions p_1 et p_2 s'écartent d'autant plus de la valeur $0.530 p_0$ que la lonqueur L du tuyau cylindrique est plus grande; quand L tend vers 0, p_1 et p_2 tendent vers la valeur commune $0.530 p_0$.

ПРИЛОГ ИЗУЧАВАЊУ ПРОТИЦАЊА СТВАРНИХ ГАСОВА

Од Д. МИЛОСАВЉЕВИЋА

Посматрајмо истицање гаса из суда, где владају притисак $p_0 \frac{kg}{m^2}$ и апсолутна температура T_0 , кроз добро заокругљен отвор (сл. 1). Познато је [1] да притисак на излазу отвора може опасти само до вредности p_m дате под (1).

Циљ нам је да испитамо какве ће појаве наступити кад се на отвор кроз који се врши истицање наглави цилиндрична цев произвољне дужине L (сл. 1), тј. да испитамо које ће вредности имати притисак p_1 на крају отвора и почетку цеви (пресек I), као и притисак p_2 на крају цилиндричне цеви (пресек II), при чему је узето да је спољашни притисак p_3 знатно мањи од p_m .

При кретању све до пресека I делићи гаса врше адијабатски процес, јер се појаве трења могу апстраховати због малог пређеног пута. Стога су брзина w_1 и температура T_1 за пресек I дате изразима¹) (3) и (4). Ако се са C_1 означи брзина звука у средини пресека I добива се, с обзиром на (4), једначина (5).

Промена стања гаса при протицању кроз цилиндричну цев дата је једначином³) (6). За време протицања гаса кроз цев дужине L појаве трења не могу се занемарити. Процес је неповратан; ентропија може само расти. Стога ће промена стања гаса ићи само до т. зв. граничне тачке (p_{gr}, v_{gr}) дијаграма p, v, у којој се тангента за криву (6) поклапа са тангентом за адијабату кроз ову тачку. Гранична тачка претставља стање гаса на излазу цеви (пресек II, $p_{gr} = p_2$), те притисци пресека I и II задовољавају једначину³) (8).

Ако се стави $p_2 = a \cdot p_0$, где је a засад непозната количина, и ако се w_1 и c_1 смене вредностима из (3) и (5), добиће једначина (8) облик (10).

Једначина (10) може се решити по $\frac{p_0}{p_1}$ графички, цртањем кривих

$$y = \frac{k^2 = 1}{4} \cdot a^2 \left(\frac{p_0}{p_1}\right)^{\frac{\kappa + 1}{\kappa}}$$
 w $z = \left(\frac{p_0}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} - 1$.

При томе могу наступити ова три случаја:

- 1) a > 0.530; криве у и z се уопште не секу.
- 2) a = 0,530; криве у и z се додирују у тачки A (сл. 2). Тада је $p_1 = p_2$, што одговара случају када је L = 0.
- 3) a < 0.530; криве y и z се секу у двема тачкама B и C (сл. 2).

На основу горњег излагања долазимо до закључка да постоји увек $p_2 < 0.530\,p_0$ и $p_1 > 0.530\cdot p_0$ за сл. 1 (тачка B на сл. 2) или $p_1 < 0.530\cdot p_0$ и $p_1 < p_2$ за сл. 3 (тачка C на сл. 2).

¹⁾ Müller-Pouillet, Lehrbuch der Physik, Band III, erste Häffle, S. 968 Braunschweig, 1926.

²⁾ Saint-Venant et Wantzel, Mémoires et expériences sur l'écoulement de l'air, Journ. ec. polyt. 27, 85, 1839

³⁾ W. Schüle, Technische Thermodynamik, Band I, erster Teil-S. 327-330, Berlin, 1930