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1. Introduction

The purpose of this article is to present a user friendly and reasonably de-
tailed exposition of ideas and tools of equivariant Topology which have proven to
be useful in Combinatorics. This paper can also be viewed as a continuation of
the chapter \Topological methods" prepared for the CRC Handbook of Combina-
torics, [57]. Our intention is to develop an overall picture emphasizing a typical
scheme of applications. Some technical details, which are often skipped in existing
expositions, are isolated and discussed. On the technical side we emphasize the
role of the so called cohomological index theory. We hope that the clari�cation and
systematization of ideas will encourage a nonexpert to use freely these tools in his
or her own research.

2. A bridge between Geometry and Topology

The chapter \Topological methods", [57], starts with a general hint how
to use topological methods in combinatorial and geometric problems. The hint
suggests that a typical application consists of two steps.

Step 1: The problem should be rephrased in topological terms.

This often means that the problem should give us a clue how to de�ne a \natural"
con�guration space X and to interpret the question as a question about coincidences
of continuous maps on X or nonempty intersection of subsets of X .

Step 2: The rephrased problem is solved by one of the standard topo-

logical techniques.
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Key words and phrases:

� con�guration space XP ; test space VP and test map: Con�guration
space is the space of all \candidates" for a solution of a geometric problem
P . How far a \candidate" is from a solution is tested by a test map.

� geometric, topological and combinatorial join: These are operation
often used in encoding the geometric data in a topological con�guration space.

� deleted join of simplicial complexes: A special and particularly useful
form of join.

2.1. How to solve it?

The reader remembers the book \How to solve it" by George Polya where the
author collected and analyzed typical ideas and heuristics used in mathematical
problem solving. Our goal is more modest. We concentrate on a single proof scheme
which has been successfully applied in combinatorics and discrete geometry. This
characteristic scheme provides a bridge between the problem itself and a topological
question, typically a problem of the existence of an equivariant map, see section 3.

How does a typical combinatorial or geometric problem P look like? In com-
binatorics it often involves a construction or a proof of the existence of a combi-
natorial object (partition, graph, arrangement) possessing some special properties.
Similarly, in combinatorial geometry one tries to establish the existence of a special
geometric con�guration of points, lines or other geometric objects satisfying some
special conditions. In both cases, the desired con�guration is naturally viewed
inside a con�guration space XP , of more general con�gurations naturally asso-
ciated to the problem P . Then one de�nes a test space VP , which is often an
euclidean space and its subspace ZP . If we are on the right track the test space VP
comes together with a test map f : XP ! VP and the original problem P is found
to be equivalent to the question whether Im(f)\ZP 6= ; i.e., if there exists x 2 XP

such that f(x) 2 ZP . The inner symmetries of the problem P show up at this stage
and lead to a �nite group G which acts naturally on all spaces XP ; VP and ZP ,
so that the test map f : XP ! VP is G-equivariant. Finally, the assumption that

Im(f) \ZP = ; leads to a G-equivariant map f̂ : XP ! VP nZP and the methods
of the equivariant topology should help us reach a contradiction.

In order to make the scheme outlined here more concrete, we review various
forms of join operations which are often used in constructions of con�guration
spaces associated to a problem P . After that we review how a typical test space
shows up and how this construction arises as an answer to a naive question \when
two sets in Rd have a nonempty intersection".

2.2. Geometric, topological and combinatorial join

Let A and B be two convex sets in Rd such that the supporting aÆne sub-
spaces a�(A) and a�(B) are in general position. If dim(a�(A)) + dim(a�(B)) < d,
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then for any x 2 conv(A [ B) n (A [ B) there exist unique a 2 A; b 2 B and
t 2 [0; 1] so that x = t a+(1� t) b. More generally, for any two sets A and B which
are not necessarily convex, if a�(A) and a�(B) satisfy the conditions above, thenS
f[a; b] j a 2 A; b 2 Bg, the union of all line segments with end points in A and B

is called the geometric join of spaces A and B. If A and B are spaces which are
not necessarily embedded in some Rd, we need the concept of a topological join,
A � B, [12], [17], [47], of spaces A and B, which permits us not only to extend
the concept of a geometric join but to preserve the usual notation and intuition. If
A = jKj, and B = jLj are geometric realizations of abstract simplicial complexes,
then A � B �= jK � Lj where K � L is an abstract simplicial complex, called the
combinatorial join of complexes K and L. Assuming that K and L are vertex
disjoint, a typical simplex ! 2 K � L is described as the union ! = � [ �, of two
simplices � 2 K and � 2 L. One easily checks that jK � Lj �= jKj � jLj. This is a
reason why, by usual simpli�cation and abuse of language, we simply say join for
all joins described above.

There is one more combinatorial join, de�ned for posets. If P and Q are
posets then P �Q is the set P [Q with the order relation which extends the existing
orders so that 8p 2 P 8q 2 Qp � q. If �(P ) and �(Q) are the corresponding order
complexes than obviously �(P �Q) �= �(P ) ��(Q) which means that this concept
is a natural join operator for posets. Recall that the order complex �(P ) of a poset
P is the simplicial complex with simplices corresponding to �nite chains in P .

2.3. Deleted join of a simplicial complex

Let K be a simplicial complex. Then the iterated join K � . . . �K of n copies
of K is denoted by K�(n). More precisely, K�(n) is de�ned as the join K1 � . . .�Kn,
of n vertex disjoint complexes isomorphic to K. If Ji : K ! Ki denotes the
isomorphism above, the typical simplex in K�(n) is of the form J1(�1)[ . . .[Jn(�n)
where �i 2 K, but we will often simplify the notation and denote this simplex by

(�1; . . . ; �n). The nth deleted join K
�(n)
Æ of K is de�ned as the subcomplex of

K�(n) de�ned by K
�(n)
Æ := f(�1; . . . ; �n) j 8 i 6= j �i \ �j = ;g.

The reader can supply the proof of the following simple and important propo-
sition, see also [33], [44], [45], as a test of her/his understanding of the concepts
and notations introduced above.

Proposition 2.1 Joins and deleted joins of simplicial complexes commute.
In other words, if K and L are simplicial complexes than

(K � L)
�(n)
Æ

�= K
�(n)
Æ � L

�(n)
Æ :

2.4. When do two sets in Rd have a nonempty intersection?

The initial geometric or combinatorial problem P is often reduced to a ques-
tion about existence of equivariant maps in several steps. Some of these steps occur
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in majority of applications and deserve a brief comment. If A and B are two sets
(spaces) in Rd then we �nd it convenient to rephrase the statement A \ B 6= ; in
a suitable language involving products or joins of spaces A and B. An elementary
observation is that A�B is a subspace of R2d �= Rd �Rd and that the statement
above is equivalent to (A�B)\� 6= ; where � � Rd�Rd is the diagonal. Having
in mind our emphasis on joins shown in previous sections, it would be useful to
rephrase the last condition in these terms. Knowing that A � B � A � B where
(a; b) 2 A�B is identi�ed with 1

2 a+
1
2 b 2 A�B we see that A\B 6= ; is equivalent

to (A�B)\� 6= ; where � � Rd�Rd � Rd �Rd is the diagonal in Rd �Rd viewed
as the set of all points of the form 1

2 x+
1
2 x. It is convenient to view the topological

join Rd �Rd as a geometric join inside R2d+1. It suÆces to choose two embeddings
ei : R

d ! R2d+1; i = 1; 2 , so that e1(R
d) and e2(R

d) are two aÆne spaces in
general position, and to identify Rd � Rd with the geometric join e1(R

d) � e2(R
d).

If the diagonal � is identi�ed with f 12 e1(x) +
1
2 e2(x)gx2Rd � R2d+1, then

A \ B 6= ; () (e1(A) � e2(B)) \� 6= ; :

The space R2d+1 is a typical test space VP which arises if the group is Z2
and � is the space ZP . More generally, qif we want to test whether

Tk

i=1 Ai 6= ;
for a collection of spaces fAig

k
i=1, then we choose k general position embeddings

ei : R
d ! RD where D := (d + 1)k � 1. The `general position' requirement means

that the aÆne spaces Li := ei(R
d) (i = 1; . . . ; k) are supposed to span the ambi-

ent D-dimensional space RD. For example one can identify RD with the hyper-
plane L := a�fvjgj2I where fvjgj2I is an orthonormal basis in RD+1 �= (Rd+1)�k

and I = f0; 1; . . . ; Dg. Then the spaces Li de�ned by Li := a�fvjgj2Ii , where
Ii := fj 2 I j(d+1)(i� 1) � j � (d+1)i� 1g, provide a very convenient collections
of spaces ei(R

d). The natural group G of symmetries is the symmetric group Sk, or
one of its subgroups, and it acts on the test space RD by permuting aÆne subspaces
fei(Rd)gki=1. This action is in our special choice of embeddings inherited from the
space RD+1 �= (Rd+1)�k where Sk permutes the factors in this decomposition. The
space ZP is again the diagonal � := f 1

k
e1(x) + . . . + 1

k
ek(x)gx2Rd , and the target

space VP nZP for a G-equivariant test map is found to be G-homotopy equivalent
to a G-sphere of dimension (k � 1)(d+ 1)� 1.

2.5. Examples

We illustrate the general scheme of constructing con�guration spaces and the
corresponding test maps by a few examples. These examples should provide an
initial evidence that the proof scheme outlined above has been successfully applied
in diverse combinatorial geometric problems. The reader is invited to focus her
attention at the general scheme, rather than on the technical details, and to observe
the similarities and di�erences between the con�guration spaces and test maps used
in these examples. Some of these examples will be met again in section 4 for others
the reader is suggested to consult the original sources.
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Equipartition of masses. The problem is [41] to check if a given mea-
surable set A � Rd can be partitioned into 2k-measurable sets of equal mea-
sure, A =

S
!22k A! , by k hyperplanes Hi; i = 1; . . . ; k; d; k 2 N . A con-

venient con�guration space is XP = Sd�1 � . . . � Sd�1 = (Sd�1)k where each
a = (a1; . . . ; ak) 2 XP encodes a k-tuple of oriented hyperplanes fHa

i g
k
i=1 so

that Ha
i bisects A for every i = 1; . . . ; k. We need 2k scalar functions to test if

a = (a1; . . . ; ak) 2 XP determines an equipartition of A so the test space VP
is isomorphic to R2k while ZP = f0g. The appropriate group of symmetries
turns out to be G = Z2 � . . . � Z2 = (Z2)

�(k) and the problem is reduced to
the question under which conditions there does not exist a (Z2)

�k-equivariant map

f : (Sd�1)k ! S2
k
�1.

Colored Tverberg problem. A set of (k + 1) colors is a collection C =
fC0; . . . ; Ckg of disjoint subsets of Rd, d � k. A set B � Rd is multicolored
if it contains a point from each of the sets Ci; in this case conv(B) is called a
rainbow simplex. The problem is to �nd the size t of each of the colors which
guarantees that there always exist r multicolored sets Ai; i = 1; . . . ; r that are
pairwise disjoint such that the corresponding rainbow simplexes �i := conv (Ai)
have a nonempty intersection,

Tr

i=1 �i 6= ;. The con�guration space turns out to

be the join XP = �
�(k+1)
r;t of \chess board" complexes �r;t

�= [t]
�(r)
Æ , while the

test space VP is isomorphic to Rr(d+1)�1. The role of the space ZP is played by
a d-dimensional subspace of XP while the group of symmetries is the cyclic group
G = Zr.

The splitting necklace problem. The problem is to split a necklace con-
sisting of d + 1 beads of di�erent color among q di�erent people (thieves) with a
minimal number of cuts, [1]. Equivalently but more precisely, the unit interval [0; 1]
is expressed as a disjoint union of measurable sets A0; . . . ; Ad representing beads of
di�erent color. What is the minimum number t of cuts of [0; 1] so that the remaining
intervals fIig

t
i=0 can be rearranged in q disjoint groups, Tj = fIkgk2Pj ; j = 1; . . . ; q

such that
P

k2Pj
m(Ik \ Aj) = (1=q)m(Aj) for all j. It turns out ([53]) that the

con�guration space XP of all partitions of [0; 1] and allocations of subintervals to q

di�erent persons coincides with the deleted join XP = (��)
�(q)
Æ of a �-dimensional

simplex, � = (q�1)(d+1). The spaces VP and ZP are the same as in the previous
example while the group of symmetries is G = Zq .

Higher dimensional analogs of nonplanarity. Some of the results in
section 4 can be interpreted as higher dimensional analogues of nonplanarity of
graphs K3;3 and K5. The following result can be also seen as an analogue of
nonplanarity of the Kuratowski graph K3;3, (proposition 4.1,where K3;3 is replaced
by K6;6, R

2 by R3 and a common point, viewed as a 0-dimensional transversal, is
now a line, a 1-dimensional transversal, intersecting four edges of K6;6 embedded
in R3.
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Theorem 2.2 [58] Let K6;6 ! R3 be an embedding of a complete bipartite
graph in R3. Then there exist four vertex disjoint edges e1; e2; e3; e4 of this graph
and a line L � R3 so that L \ ei 6= ; for all i = 1; . . . ; 4.

A natural con�guration space for this problem is the space of all lines in R3

but the actual proof requires a mixed strategy involving a re�nement of ideas from
sections 3 and 4.

3. Equivariant maps and the index theory

This section is intended to be a fairly self contained and detailed exposition
of elementary ideas and techniques of equivariant topology. Our goal is to develop
the theory to the level necessary for a foundation of a numerical index theory. The
reader is encouraged to take the axioms of the index theory for granted and see the
applications in section 4.

Key words and phrases:

� group action, G-spaces, equivariant maps: De�nition 3.5, De�nition
3.3, [5], [14], [16].

� EG
n -spaces, fundamental poset AG, G-degrees of complexity: De�ni-

tion 3.5, De�nition 3.3, [37]. The fundamental poset AG is a collection of
G-spaces organized in a hierarchy according to their complexities.

� Numerical index IndG(X), Yang and Sarkaria inequality, index the-

orem: De�nition 3.13, Theorem 3.15, [54], [21], [24], [29]. Index is a nu-
merical measure of complexity of a G-space X .

3.1. Group actions on spaces

Let G be a �nite group. In many applications G is either a cyclic group or a
product of such groups. The choice of a group is dictated by the symmetries that
occur naturally in the problem.

De�nition 3.1 A (left) action or operation of a group G on a topological space
X is a collection of continuous maps f�ggg2G so that

(a) �g : X ! X is a homeomorphism for all g 2 G

(b) �e = idX if e is the unit element of the group G.

(c) 8g; h 2 G �g�h = �g Æ �h .

The action of an element g 2 G on x 2 X , which is by de�nition the element
�g(x), is often denoted by g � x or simply gx. The action is free if gx = x for some
x 2 X implies g = e.

Examples of \geometric" group actions: 1. G = Z2 = f1; !g and X = R1.
The homeomorphism �! : R1 ! R1 is de�ned by �!(r) = �r.

2. G = Dn is the dihedral group viewed as a subgroup of all plane isometries
which �x a regular n-gon and X the n-gon itself.
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3. G = A5 is the group of all symmetries of an icosahedron and X the
icosahedron itself.

4. G � O(n;R) any �nite subgroup of the group of all orthogonal matrices
and X any subset of Rn invariant with respect to this group.

5. Choose X = Sn�1 to be the unit sphere in the previous example.

Note that none of these actions is free. However, in examples 1�3 free actions
arise if a suitable point (the point �xed by the action) is removed from X .

The examples above are \natural" examples arising from geometric consider-
ations and they are closely linked with the de�nition of the group itself. There is a
second circle of examples which are more of combinatorial nature.

Examples of \combinatorial" group actions: 1. Let Y be a topological space
and X := Y n its n-th cartesian power. Then the symmetric group G = Sn of all
permutations \in n letters" acts on the space X by permuting the coordinates i.e.,
for � : [n] ! [n]; ��(x1; . . . ; xn) = (x�(1); . . . ; x�(n)). Obviously any subgroup
G � Sn also acts on X .

2. Let Y = X�(n) := X�. . .�X be the join of n copies of the spaceX . Then Sn
acts on this space by permuting the n-copies of X . Let K be a simplicial complex

and X = jKj its geometric realization. Then the deleted join K
�(n)
Æ � X�(n)

is obviously invariant with respect to the action of the group Sn. This is a key
example and we usually restrict our attention to the action of the cyclic subgroup
Zn � Sn which cyclically permutes the coordinates (simplices) in the deleted join.

3.2. Fundamental poset and G-degrees of complexity

We have provided a basic supply of spaces with group actions which is more
than suÆcient for our purposes. If the group G is known, then a space X with
an action of a group G is called a G-space. Given two G-spaces X and Y , a
continuous map f : X ! Y is called G-equivariant if for any g 2 G and x 2
X; f(g � x) = g � f(x) or in the original notation �g Æ f = f Æ �g . Informally
speaking, an equivariant map f mirrors the space X in Y in which case we may
say that the space X is of smaller G-complexity than the space Y or that X is
dominated by the space Y . Of course an equivariant map does not have to be 1�1
so this relation of dominance is slightly more subtle than it may appear on the �rst
sight. Many combinatorial problems are reduced to the question whether a G-space
X is of \smaller complexity" than a G-space Y i.e., if there is a G-equivariant map
f : X ! Y .

De�nition 3.2 We say that a G-space X is dominated by a G-space Y , and
denote this by X �G Y , if there exists a G-equivariant map f : X ! Y . We say
also that X is of smaller G-complexity then Y or that X is G-reducible to Y .

The relation �G is reexive and transitive but obviously not antisymmetric.
The relation X �G Y , X �G Y and Y �G X is an equivalence relation. Assum-
ing that we restrict our attention to a reasonably big \universe" UG of G-spaces, e.g.
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the class of all �nite G-CW -complexes, we denote by [X ] := fY 2 UG jY �G Xg
the corresponding equivalence class. The universe UG is in the usual language,
[31], a small, full subcategory of the category G-Top of all G-topological spaces.
We may here and there, if it doesn't lead to a confusion, instead of an equiva-
lence class [X ] write X and vice versa. A simple but theoretically important is the
following concept.

De�nition 3.3 Let AG := f[X ] jX 2 UGg be the set of all �G equivalence
classes and let �G be the induced relation i.e., [X ] �G [Y ] , X �G Y . The
relation �G is reexive, transitive and antisymmetric and the poset AG is the
poset of \G-degrees of complexity" or simply the poset of G-degrees. If X �G Y
and [X ] 6= [Y ] we write X <G Y .

Example 3.4 Let G = Z2 and let Sn be the n-dimensional sphere with the G-
action de�ned by !(x) = �x. Then obviously Sn�1 �G Sn since the map sending
Sn�1 to the equator of Sn is obviously Z2-equivariant. On the other hand the well
known Borsuk-Ulam theorem says that there does not exist a Z2-equivariant map
f : Sn ! Sn�1 which in our notation means that Sn�1 <G Sn.

De�nition 3.5 A free G-space X is of type EG
n or simply a En-space if it

satis�es the following conditions:

(i) X is a �nite CW -complex equipped with a G-invariant CW -structure,

(ii) X is (n� 1)-connected,

(iii) X is n-dimensional i.e., the cells of top dimension are n-dimensional.

Proposition 3.6 EG
n -spaces exist.

Proof: The join G�. . .�G = G�(n+1) of n+1 copies of the group G viewed as a
0-dimensional simplicial complex is an example. The property (ii) is easily checked
by induction. Alternatively it can be shown that this complex is (lexicographically)
shellable, [12].

Proposition 3.7 For any two En-spaces X and Y , both X �G Y and
Y �G X i.e., there exist G-equivariant maps between any two En-spaces. In par-
ticular, the equivalence class [EG

n ] := fX jX �G G�(n+1)g is described as the class
containing all EG

n -spaces.

Proof: The proof is by the standard inductive procedure, [16]. An elementary
and detailed exposition can be found in [52].

Proposition 3.8 Every n-dimensional, free G-CW -complex X can be com-
pleted to a EG

n -space. As a consequence dim(X) � n) X �G EG
n :

Proof: The proof is again standard, [52], [16]. The idea of the proof is to
\kill" homotopy groups in dimensions < n by adding new free G-cells of dimension
at most n.

Corollary 3.9 If X is n-dimensional, free G-CW -complex then X �G Y
for any (n� 1)-connected free G-CW -complex Y .
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Remark 3.10 Clearly any two G-spaces X and Y which have a G-�xed point
belong to the same �G-equivalence class. So the relation �G is certainly more
informative if restricted to the class of free G-spaces. On the other hand if EG is a
natural \limit" of spaces EG

n , i.e., it is a G-free, contractible CW -complex, then we
can replace X by X 0 := X�EG. The new space X 0 is always free, albeit in�nitely
dimensional CW -complex. In case X is free itself the new space X 0 and X have
the same G-homotopy type which implies that X �G X 0.

Let us formulate now a key technical result which permits us to decide in
some cases that X 6�G Y for two G-spaces X and Y .

Theorem 3.11 Let X be a (n � 1)-connected G-CW -complex and Y a G-
CW -complex of dimension at most n� 1. Assume that the action of the group G
on these spaces is free. Under these conditions X 6�G Y . In other words if the
connectedness of X is greater or equal to the dimension of Y then there does not
exist a G-equivariant map f : X ! Y .

Proof: Since by proposition 3.8 an (n� 1)-dimensional, free G-CW -complex
can be completed to an EG

n�1-space, which means that Y �G EG
n�1, without loss of

generality we can assume that Y itself is a EG
n�1-space. Assume that there exists an

equivariant map f : X ! EG
n�1. Since f is an equivariant map for each nontrivial

subgroup of G, let us assume that G is a cyclic group of order m; G �= Zm. By
proposition 3.9 there exists an equivariant map g : EG

n�1 ! X . Moreover, since

X is (n � 1)-connected, we conclude that g� : Hn�1(E
G
n�1;Z) ! Hn�1(X ;Z) is a

trivial map. In order to reach a contradiction, let us show that the composition
map h� = f� Æ g� : Hn�1(E

G
n�1;Z)! Hn�1(E

G
n�1;Z) cannot be trivial. First of all

we observe that Hn�1(E
G
n�1;Z) has no torsion since EG

n�1 is (n � 1)-dimensional

and (n � 2)-connected. The composition map h = f Æ g : EG
n�1 ! EG

n�1 can be
assumed to be cellular. Let us compute the Lefschetz number L(h) of this map,
[18], by using the cellular structure �rst and than on the level of homology. Since
G �= Zm is a cyclic group we claim that L(h) is divisible by m. Indeed, if e is a

k-dimensional cell in EG
n�1, f!

j � egmj=1 its orbit and ĥk the map induced by h on

the level of cellular chains, then ĥk(e) = �m
j=1 xj �!

j �e+cells from other orbits, and
the contribution to the Lefschetz number of this orbit is m �x1. On the other hand
the homology of EG

n�1 is nontrivial only in dimension 1 and maybe in dimension

n�1 so we have L(h) = 1�t where t = Trfh� : Hn�1(E
G
n�1;Z)! Hn�1(E

G
n�1;Z)g

is the trace of the corresponding linear map. So t is an integer which is congruent
to �1 modulo m which means that it must be nonzero, a contradiction.

Corollary 3.12 For all n; EG
n�1 < EG

n . As a consequence, for every �nite

group G, the poset AG contains a chain f[EG
n ]gn2N which has the order type of

natural numbers. The ideal BG in AG described by BG := f[X ] 2 AG j 9n 2
N [X ] �G EG

n g is characterized as the set of equivalence classes of �nite, free
G-CW -complexes.
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3.3. Index functions and the Sarkaria inequality

A fundamental problem is to compare G-complexities of two G-spaces X and
Y . An integer valued function measuring the complexity of G-spaces is usually
called an index. There are many forms of the index function and some of them
are not integer valued, see [21], [24], [29], [54]. Once we de�ned this function
and established its basic properties, the reader should feel encouraged to use these
properties as some sort of axioms of the complexity function IndG. This should al-
low him to compare G-complexity of spaces and prove the corresponding geometric
results even if the consistency of these axioms is not his primary concern.

De�nition 3.13 Let IndG : BG ! N be a function de�ned by

IndG(X) := minfn 2 N jX �G EG
n g

In other words, IndG(X) > n is equivalent to nonexistence of a G-equivariant map
f : X ! EG

n .

Theorem 3.14 The index function IndG has the following properties:

(1) (Naturality) IndG(E
G
n ) = n ,

(2) (Monotonicity) X �G Y =) IndG(X) �G IndG(Y )

(3) (Index theorem) IndG(L) � IndG(K)� IndG(�(QL))� 1 under the assump-
tion that K is a free G-simplicial complex, L its G-subcomplex and �(QL) the order
complex of the poset QL := PK n PL where PK is the poset (K;�) (see theorem
3.15).

The �rst two properties are obvious consequences of de�nitions. The third is
re�ered to as the index theorem or the Sarkaria inequality and it is a versatile tool
for proving combinatorial and geometric result which can be reduced to questions
of (non)existence of equivariant maps. There exist more complex index functions
and the corresponding index theorems, see [24].

Recall that every simplicial complex K de�nes a poset PK := (K n f;g;�)
consisting of all nonempty simplices in K ordered by the containment relation. For
an arbitrary poset P , the simplicial complex of all chains in P is called the order
complex and denoted by �(P ). It is well known, [12], that �(PK) is the �rst

barycentric subdivision K̂ of K.

Theorem 3.15 [The index theorem; Sarkaria inequality] Let K be a �nite and
free G-simplicial complex. In other words, K is a simplicial complex equipped with
a free action of a �nite group G acting simplicially on K. Let L be a G-invariant
subcomplex. Let PK be the associated poset and PL the subposet associated to L.
Let QL := PK nPL be the complementary subposet and �(QL) the associated order
complex. Then

IndG(L) � IndG(K)� IndG(�(QL))� 1 :

Proof: A simplicial complex K and its �rst barycentric subdivision �(PK)

are obviously simplicially equivalent as G-complexes i.e., K �G K̂. The reader can
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easily check this fact by repeating the usual proof of equivalence of a simplicial
complex K and its barycentric subdivision K̂ using the fact that this equivalence
is constructed inductively a simplex at a time so it can be easily made equivari-
ant. Let f1 : K ! K̂ be the simplicial equivalence obtained by this procedure.
The following step is to observe that there exists a natural G equivariant map
f2 : �(PK) ! �(PL) � �(QL). Indeed, each chain c = fco < . . . < ckg in PK
is decomposed into a disjoint union of two chains, c0 := c \ PL and c00 := c \ QL.
Finally, let us choose, as in the proof of proposition 3.6, EG

m and EG
n to be simplicial

complexes which implies that EG
m �EG

n
�= EG

m+n+1.

Let IndG(L) = m and IndG(�(QL)) = n. Then there exist two G-equivariant
maps g : �(PL) ! EG

m and h : �(QL) ! EG
n which by the equivariant simplicial

approximation theorem can be assumed to be simplicial. Than the map g � h :
�(PL) ��(QL)! EG

m �EG
n
�= EG

m+n+1 is well de�ned. The map (g � h) Æ f2 Æ f1 is
G-equivariant which implies IndG(K) � m+ n+ 1 and the theorem follows.

Remark 3.16 Theorem 3.15 is an example of a result from a noble family
of index theorems. Very general forms of index functions and the corresponding
index theorems are known; a good example is Fadell-Husseini index theorem [24].
An early index function and an inequality of the type above is found by Yang,
[54]. Early ideas appeared apparently for the �rst time in connection with the
embeddability problem of simplicial complexes in papers of A. Flores and E.R. van
Kampen. They proved, (see [7]), that there is no continuous one-to-one map from
�2kk�1, the (k � 1)-dimensional skeleton of the (2k)-dimensional simplex into the

euclidean space R2(k�1). Karanbir Sarkaria virtuously demonstrated the power of
the deleted join technique in many geometric and combinatorial problems, [43],
[44], [45].

4. Nonembeddability of complexes and Tverberg type theorems

We collect some of the most interesting applications of the technique described
in previous sections. We restrict our attention to some low dimensional special cases
which nevertheless tell the whole story about the general case. The reader will �nd
general formulations and additional information in the reviews [7], [33], [57] and
in the original sources [10], [43], [52], [60].

Key words and phrases:

� Kuratowski's nonplanar graphs K5 and K3;3: The famous Kuratowski's
graphs are examples of 2-nonembeddable complexes.

� Tverberg theorems and q-nonembeddable simplicial complexes: A
complex K is q-nonembeddable in Rd if for any continuous map f : K ! Rd,
there exist q points x1; . . . ; xq , belonging to q disjoint faces of K so that
f(x1) = . . . = f(xq).
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4.1. Kuratowski's nonplanar graphs

Proposition 4.1 The complete bipartite graph K3;3 := [3] � [3] is not embed-
dable in R2. More precisely, for any continuous map f : K3;3 ! R2 there exist two
disjoint edges e1 and e2 of this graph so that f(e1) \ f(e2) 6= ;.

Proof: The con�guration space XP encoding all disjoint, ordered pairs of

edges in K3;3 is the deleted join (K3;3)
�(2)
Æ of two copies of K3;3. The test space

VP is the space R5 de�ned in the section 2 and ZP := � is the diagonal. The map
f : K3;3 ! R2 combined with the two embeddings e1; e2 : R2 ! R5 de�ned in
section 2 leads to two maps hi := ei Æ f : K3;3 ! Vi ; i = 1; 2, where Vi := ei(R

2) �

R5. The test map F : (K3;3)
�(2)
Æ ! V1 � V2 � R5 is de�ned by F (t x+ (1� t) y) :=

t h1(x) + (1 � t)h2(y). Since the join and the deleted join operation commute,

proposition 2.1,(K3;3)
�(2)
Æ

�= ([3]�(2))
�(2)
Æ

�= ([3]
�(2)
Æ )�(2) �= (S1)�(2) �= S3 . Note that

the group G = Z2 naturally arises in this problem as the group which interchanges

two copies of K3;3 in (K3;3)
�(2)
Æ and two subspaces V1 and V2 of R5 leaving each

point in � �xed. Following the general pattern outlined in section 2 we should turn
our attention now to the space VP n ZP = R5 n �. This space can be deformed
Z2-equivariantly to the space �? n 0 which is just a punctured copy of R3 which
is radially Z2-equivariantly deformed into a unit sphere S(�?) �= S2. Finally,
according to the general scheme described in section 2,there arises a Z2-equivariant
map F 0 : S3 ! S2:

This is in contradiction with either the Borsuk{Ulam theorem or, knowing
that Sn is a EZ2

n -space, with our more general theorem 3.11.

Proposition 4.2 The complete graph K5 (a clique of �ve elements) is not
embeddable in R2.

Proof: This proposition illustrates nicely the use of Sarkaria inequality. Let
us suppose that there exists an embedding f : K5 ! R2. Let �4 be a 4-dimensional
simplex so K5 can be identi�ed with the 1-dimensional skeleton �41 . We shall show
that for every continuous map f : �41 ! R2 there exist two disjoint edges e1 and e2
in �41 so that f(e1)\f(e2) 6= ;. The con�guration space is XP := (�41)

�(2)
Æ . The test

space is as in the �rst example, after the same sequence of reductions, found to be
the sphere S2 with the antipodal action of the group Z2. Unlike the �rst example
it is not clear how to estimate IndG(XP) directly. Fortunately we can view XP =

(�41)
�(2)
Æ =: L as a subcomplex of the complex K := (�4)

�(2)
Æ

�= (fpt.g�(5))
�(2)
Æ

�=

(fpt.g
�(2)
Æ )�(5) �= [2]�(5) �= S4. Following the notation of theorem 3.15 we observe

that the complementary poset QL consists of all pairs of disjoint faces (�1; �2) in

(�4)
�(2)
Æ with the property that either dim(�1) � 2 or dim(�2) � 2. Of course, for

dimensional reasons, only one of these conditions can be ful�lled. As a consequence,
there is a well de�ned map h : QL ! fa1; a2g; h(�1; �2) = ai , dim(�i) � 2,
of posets where fa1; a2g is a two element poset consisting of two incomparable
elements. From here we deduce that there is a Z2-equivariant map �(h) : �(QL)!
�(fa1; a2g) �= S0 which implies IndG(�(QL)) = 0. Sarkaria inequality yields
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IndG(XP) > 2. Finally, IndG(XP) > IndG(S
2) implies that there does not exist an

equivariant map f : XP ! S2 which is a contradiction.

4.2. Tverberg type theorems and q-nonembeddability

The following three examples illustrate R3-analogues of the �rst two state-
ments. The reader will �nd in reviews [7], [33], [57] general forms of these state-
ments and other related information. All these statements are o�springs or relatives
of the well known Tverberg theorem.

Proposition 4.3 Every collection C of nine points in R3 can be partitioned
into three nonempty disjoint sets C = C1 [C2 [C3, so that conv(C1)\ conv(C2)\
conv(C3) 6= ; .

Proof: The statement above can be reformulated as follows. Let �8 be a
8-dimensional simplex. A choice of the set C � R3 automatically leads to a linear
map L : �8 ! R3 where the vertices of �8 a mapped, via L, onto the set C.
We are supposed to show that there exist three disjoint faces �1; �2 and �3 of
�8 so that L(�1) \ L(�2) \ L(�3) 6= ;. The reader should note that the proof
does not use the fact that L is a linear map and the same conclusion is achieved
if L : �8 ! R3 is any continuous map. A correct con�guration space in this

problem is XP := (�8)
�(3)
Æ . The target space is (R3)�(3) which is, according to the

analysis given in section 2, contained in the test space VP = R11. The diagonal
� plays the role of the space ZP and, following the usual scheme, the problem is
reduced to the question whether there exists an equivariant map from XP to VP n�.

Since XP = (�8)
�(3)
Æ

�= (fpt. g�(9))
�(3)
Æ

�= (fpt. g
�(3)
Æ )�(9) �= EZ3

8 we observe that
IndZ3

(XP) = 8. The target space is easily found to be Z3-homotopy equivalent to
the sphere S7 equipped with a free Z3-action. Hence, IndZ3

(VP n ZP) = 7 and we
reached a contradiction.

The theorem above shows that a partition into three parts always exists if
the size of the set C is 9. The following theorem says that we have a more precise
statement if we add two more points.

Proposition 4.4 Let C be a collection of 11 points in R3. Then there exist
three pairwise disjoint subsets Ci � C; i = 1; 2; 3, each of size 3 so that conv(C1)\
conv(C2) \ conv(C3) 6= ; .

Proof: The reader who went through the proof of proposition 4.2 will hope-
fully have the same pleasure again following this proof. The index theorem 3.15
is here as e�ective and elegant as before. The con�guration space associated to
this problem is based on the 2-dimensional skeleton �102 of a 10-dimensional sim-

plex �10. Precisely, XP = (�102 )
�(3)
Æ . The simplicial complex L := XP is nat-

urally seen as a subcomplex of the complex K := (�10)
�(3)
Æ . The usual analysis

shows that K �= (fpt.g�(11))
�(3)
Æ

�= (fpt.g
�(3)
Æ )�(11) �= [3]�(11) �= EZ3

10 . Consequently,
IndZ3

(K) = 10. The poset QL complementary to the poset PL in PK consists of

all ordered triples (�1; �2; �3) 2 (�10)
�(3)
Æ such that for some i 2 f1; 2; 3g, the size
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of the set �i is at least 4. Since the total size
P3

i=1 j�ij � 11 we observe that at
least one but not more than two of these simplices can have the size greater or
equal 4. Let us de�ne \the type" function T by T (�1; �2; �3) := (�1; �2; �3) where
�i = 0 or 1 depending on whether j�ij � 3 or not. It follows that the set of all
types can be identi�ed with the poset R := P([3])nf;; [3]g where P([3]) is the pow-
er set of the three element set [3]. Alternatively R is described as the face poset

of the boundary of a triangle which implies that �(R) �= S1 �= EZ3

1 . The map
T : QL ! R is obviously monotone and induces a simplicial Z3-equivariant map
�(T ) : �(QL) ! �(R). Hence, IndZ3

(�(QL)) � 1. An application of Sarkaria
inequality leads us to the conclusion that IndZ3

(XP) � 8. Let's turn our attention
now to the target space. As in the proof of the previous proposition this space
VP n ZP is found to have the same Z3-homotopy type as the sphere S7 �Z3

EZ3

7 .
We conclude that there does not exist a Z3-equivariant map from XP to VP n ZP
which leads to a contradiction proving the theorem.

As in the previous proposition, if we increase the number of points in the set
C we can guarantee existence of a collection of subsets satisfying some additional
constraints. This time points in C are colored with three colors and the triangles
Ci; i = 1; 2; 3, are supposed to have vertices colored with all three colors.

Proposition 4.5 A collection of �ve red, �ve blue and �ve white points in
3-space always contains three vertex pairwise disjoint triangles formed by points of
di�erent color which have a nonempty intersection.

Proof: For each of the colors we choose a �ve element set [5]. The choice of
colored points in R3 is equivalent to a choice of a map O : [5] t [5] t [5] ! R3,
from a disjoint sum of three copies of [5] to R3. A triangle with vertices of di�erent
colors is naturally encoded by a 2-simplex from the simplicial complex [5]�(3). A
choice of three, vertex disjoint, multicolored triangles is equivalent to a choice of a

8-dimensional simplex in ([5]�(3))
�(3)
Æ . Hence, the con�guration space in this case

is XP = ([5]�(3))
�(3)
Æ

�= ([5]
�(3)
Æ )�(3). The target space is as before Z3-homotopy

equivalent to S7.

As before we are supposed to show that IndZ3
(XP) � 8. There are two

possibilities to achieve this goal. We can show that XP is 7-connected and then
invoke the theorem 3.11. For this it would suÆce, in light of the K�uneth formula for

joins, [17 p. 218], to show that the 2-dimensional simplicial complex �3;5 := [5]
�(3)
Æ

is 1-connected. This is indeed the case, [60], [13], [52]. The complex �3;5 is known
under the name \chess board" complex and it has an amusing and interesting
history, [26], [11] [60], [52], [13], [56].

Alternatively we can, as observed in [33], use the index theorem 3.15 as

follows. By taking a quick look at the complex L := XP = ([5]�(3))
�(3)
Æ we see

that it can be embedded as a subcomplex of the complex K = ((�4)�(3))
�(3)
Æ by

embedding the 0-dimensional complex [5] into a simplex �4 spanned by 5 vertices.
It is convenient to view simplices in (�4)�(3) as subsets of the set [3] � [5]. Since
(�4)�(3) �= fpt.g�(15), by the usual procedure we �nd out that K �= [3]�(15) which
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is 13-connected so we conclude that K �Z3
EZ3

14 and IndZ3
(K) = 14. The poset

QL = PK n PL consists of all triples (�1; �2; �3) 2 PK with the property that
9i 9j j�i \ (fjg � [5])j � 2. Let T (�1; �2; �3) := (�1; �2; �3) where �i := fj 2 [3] :
j�i \ (fjg � [5])j � 2g. The triple of sets (�1; �2; �3) belongs to the face poset PD
of the simplicial complex D := (�2)�(3) which inherits the Z3-action so that the
map T : QL ! D is monotone and Z3-equivariant. Let T := Image(T ) � D. Since

for every (�1; �2; �3) 2 T;
T3
i=1 �i = ;, we observe that the longest chain in T is of

length 6 which implies that �(T ) is a 5-dimensional Z3-complex. It follows from
proposition 3.8 that IndZ3

(�(T )) � 5. The Z3-equivariant map �(QL) ! �(T )
shows that IndZ3

(�(QL)) � 5. By Sarkaria inequality IndZ3
(L) � IndZ3

(K) �
IndZ3

(�(QL))� 1 � 14� 5� 1 = 8 and a contradiction follows.
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