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Abstract. We �nd exact asymptotic behavior of positive and negative eigen-
values of the operator

R


k(x � y)a(y) � dy where k is a real radial nonhomogenous

function (satisfying some aditional condition) and a is a continuous function chang-
ing sign on 
 � Rm.

1. Introduction. In this paper we study the asymptotic eigenvalue behavior
of integral operators de�ned by kernels of the form

(�) k(x� y)a(y); x; y 2 
:

Here 
 � Rm is a bounded open set, a is a continuous function on 
 and k
is a suÆciently regular function. There are many results concerning asymptotic
behavior of eigenvalues of the integral operator with the kernel of the form (�).
For a � 1, m = 1 Widom [16] obtained exact asymptotic behavior of eigenvalues
of the operator with kernel of the form (�) if the function K(�) =

R
R e

it�k(t)dt is
bounded, nonnegative and has suÆciently regular behavior when � ! +1 (k is
not necessary homogeneous). There is a similar result in [12].

In [15] Widom found the exact asymptotic behavior of eigenvalues of the op-
erator with the kernel (�) if a is a nonnegative bounded function when k satis�es
some aditional conditions. In the case k(x) = jxj��, a continuous strong positive
function, Kac [7] obtained the exact asymptotic eigenvalue behavior by a proba-
bilistic method using Karamata Tauberian Theorem. Cobos and K�uhn in [3] found
an upper bound on the eigenvalues of an operator with the kernel of the form

K(x; y) = L(x; y)
(1 + j ln kx� ykj)

kx� ykN(1��) ; x; y 2 
 � RN
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where L 2 L1(
). Birman, Solomjak and Kostometov in [1], [2], [8] found he exact
asymptotic eigenvalues behavior of the operators with kernel of the form (�) (and
more general form) but with assumption that k is a homogeneous function. Some
estimation of singular values of the integral operator with the kernel (�) are given
in [10]. In this paper we �nd exact asymptotic eigenvalue behavior of the operator
generated by the kernel (�), where a is continuous (and sign changing) and k is
not a homogeneous function. The method is new and is based on a construction of
a normal operator (whose spectrum is easily detrmined ) and its connection with
the starting convolution operator. As an application of this method we give the
asymptotic formula for positive and negative eigenvalues of the following boundary
problem

�
2X

i;j=1

@

@xi

�
aij

@u

@xj

�
= �au

uj@D = 0

where a 2 C(�
) (and a is a sign changing function) and aij = aji 2 C1(�
).

1. Preliminaries. SupposeH is a complex Hilbert space and T is a compact
operator on H. The singular values of T (sn(T )) are the eigenvalues of (T �T )1=2

(or (TT �)1=2). The eigenvalues of (T �T )1=2 arranged in a decreasing order and
repeated according to their multiplicity, form a sequence s1; s2; s3; . . . tending to
zero. Denote the set of compact operators onH by C1. The operator T is a Hilbert

Schmidt one (T 2 C2) if
�P1

n=1 s
2
n(T )

�1=2
= jT j2 <1. If T is an integral operator

on L2(
) de�ned by Tf(x) =
R

M(x; y)f(y)dy, x 2 
 � Rm and T 2 C2 then

[6] jT j22 =
R



R


jM(x; y)j2dxdy. Denote by

R


K(x; y) � dy the integral operator on

L2(
) with the kernel K. Let Nt(T ) be the singular value distribution function

Nt(T ) =
X

sn(T )�t
1 (t > 0)

A positive function L is a slowly varying function on [b;1) if it is measurable and
for each � > 0 the equality

lim
x!+1

L(�x)

L(x)
= 1

holds. It is well known [13] that for every  > 0 we have

lim
x!+1

xL(x) = +1; lim
x!+1

x�L(x) = 0:

In what follows we need some lemmas.

Lemma 1. Suppose L is a continuous slowly varying function such that
'(x) = x�rL(x) and  (x) = xrL(x) (r > 0) are monotone for x � x0, and

(0) lim
x!+1

L(x(L(x))�1=r)
L(x)

= 1:
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Then

'�1(y) �
�L(y�1=r)

y

�1=r
y ! 0+;

 �1(y) �
� y

L(y1=r)

�1=r
y ! +1;

where '�1,  �1 are the inverses of ',  .

Proof. Directly follows from (0) by substitution. We observe the the function
L(x) =

Qs
i=1 (lnmi

(x))di (lnmi
(x) = ln ln . . . ln| {z }

mi

x) satis�es the conditions of Lemma
1.

Lemma 2. Suppose the operator H 2 C1 is such that for every " > 0 there
exists a decomposition H = H 0

" +H 00
" (H 0

"; H
00
" 2 C1) with following properties:

1Æ There exists limt!0+(t=L(t
�1=r))1=rNt(H

0
") = c(H 0

")

2Æ limn!1 nr

L(n)sn(H
00
" ) < ".

Then there exists lim"!0+ C(H
0
") = c(H) and limt!0+(t=L(t

�1=r))1=rNt(H) =
c(H). (L is a slowly varying function satisfying the conditions from Lemma 1).

Suppose T 2 C1 is a selfadjoint operator on H, f�+n (T )g, f�
�
n (T )g are the

sequences of its positive and negative eigenvalues. Denote by N�
t (T ) (t > 0) the

corresponding eigenvalue distribution functions N�
t (T ) =

P
���n (T )�t 1.

Lemma 3. Let H 0, H 00 2 C1 and H = H 0 +H 00. If

lim
t!0+

(t=L(t�1=r))1=rN�
t (H 0) = C�(H 0)

��n (H
00) = o(L(n)=nr)

then limt!0+(t=L(t
�1=r))1=rN�

t (H) = C�(H 0).

Proof. Lemma 2 and Lemma 3 can be proved by a slight modi�cation of the
proof of Ky-Fan theorem [6].

Lemma 4. If H and K are positive compact operators such that

(1) sn(H �K) = o(L(n)=nr)

then for � 2 (0; 1)

(2) sn(H
� �K�) = o((L(n)=nr)�):

Proof. In [11] the following inequality

(3)

nX
k=1

s�k(H
� �K�) � C(�; �) � n1��

� nX
k=1

s�k (H �K)
��

(�; � 2 (0; 1))
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is proved.

From (1) it follows that for any " > 0 there exist n" 2 N such that

sn(H �K) < "L(n)=nr for any n > n":

Then from (3) we obtain

ns�n(H
� �K�) � C(�; �)n1��

� n"X
k=1

s�k (H �K) + "�
nX

k=n"+1

�L(k)
kr

����
:

As a consequence of the last inequality we have

(4)
� nr

L(n)

��
sn(H

� �K�) �

(C(�; �))1=�
h
n"s

�
1 (H �K)

n�r�1

(L(n))�
+ "�

n�r�1

(L(n))�

nX
k=n"+1

�L(k)
kr

��i�=�

Let � be a �xed number such that 0 < � < minf1; 1=rg. From (4) we get

lim
n!1

� nr

L(n)

��
sn(H

� �K�) � (C(�; �))1=�
h
"� lim

n!1
n�r�1

(L(n))�

nX
k=2

�L(k)
kr

��i�=�
:

Since
nX

k=2

�L(k)
kr

��
�

nZ
1

�L(x)
xr

��
dx � D

(L(n))�

n1��r

(here D depends only on � and r) we obtain

lim
n!1

(nr=L(n))�sn(H
� �K�) � (C(�; �))1=�("�D)�=�

Because " > 0 is arbitrary, we get

lim
n!1

(nr=L(n))�sn(H
� �K�) = 0:

The relation (2) is proved.

2. Main result. Suppose k and k1 are even realvalued functions from
C1(Rnf0g) suÆciently rapidly decreasing to in�nity (for example k and k1 have
compact support) satisfying the following conditions

1Æ k(x) = k1 � k1(x)(=
R
R
k1(t)k1(x� t)dt), k(x)! 0, k1(x)! 0 x! +1.

2Æ The function K(�) =
R
R
eit�k(t)dt is a positive decreasing on (0;1) and

K(�) = ��rL(�)(1 + o(1)) (r > 0):



Asymptotic behavior of eigenvalues... 99

Letm 2 C[�1; 1] (m(x) 2 R, for x 2 [�1; 1]). Consider the operatorA on L2(�1; 1)
de�ned by

Af(x) =

1Z
�1

k(x� y)m(y)f(y)dy:

The operator
R 1
�1 k(x� y) � dy is positive (by property 2Æ) and the operator

f ! mf is selfadjoint. Hence their product (i.e. operator A) has only real eigen-
values. If m � 0 on [�1; 1] then all eigenvalues of A are positive. In that case
denote by f�ng the eigenvalues sequence of A. Here the eigenvalues are repeated
according to their multiplicity.

Theorem 1. If m 2 C[�1; 1], m(x) � 0 for x 2 [�1; 1] and

sn

� 2Z
0

k(x+ y) � dy
�
= o

�L(n)
nr

�
(5)

sn

� 2Z
0

k1(x + y) � dy
�
= o

�r
L(n)

nr

�
(6)

then

(7) �n(A) �
L(n)

nr

� 1
�

1Z
�1

(m(x))1=rdx
�r
:

Prior to the proof of Theorem 1, we prove the following lemma.

Lemma 5. If m 2 C[�1; 1], m(x) � 0 for x 2 [�1; 1] and (5) is valid, then

sn

�Z 1

�1
k(x� y)m(y) � dy

�
�
L(n)

nr

� 1
�

1Z
�1

(m(x))1=rdx
�r
:

Proof. From [4, Theorem 1] it follows

sn

�Z
�

k(x� y) � dy
�
� L(n)

� n�
j�j

��r

where � is an interval and j�j is its lenght. Divide interval [�1; 1] into N intervals

�i =
h
� 1 +

2

N
(i� 1);�1 +

2i

N

i
; i = 1; 2; . . .N
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and denote by xi the midpoint of �i. Suppose " > 0 is given and N is large enough
such that jm(y)�m(xi)j < " for y 2 �i. Then

(8)
��� NX
j=1

(m(y)�m(xj))��j
(y)
��� < "

for each y 2 [�1; 1] (��j
is the characteristic function of the interval �j).

The operator A might be represented in the form A = BN +DN +EN where

BNf(x) =

1Z
�1

k(x� y)
h NX
j=1

(m(y)�m(xj))��j
(y)
i
f(y)dy

DNf(x) =

NX
j=1

(m(xj)��j
(x)

Z
�j

k(x� y)f(y)dy

ENf(x) =

NX
i6=j
i;j=1

(m(xj)��j
(x)

Z
�j

k(x� y)f(y)dy

Since

m(xj)��i
(x)

Z
�j

k(x� y) � dy :L2(�j)! L2(�i)

then by (5) for i 6= j it follows

sn

�
m(xj)��i

(x)

Z
�j

k(x� y) � dy
�
= o

�L(n)
nr

�

and hence

(9) sn(EN ) = o(L(n)=nr):

From (8) we have

(10) sn(BN ) < C � "L(n)=nr

where the constant C does not depend on n and ". Let AN
j :L

2(�j) ! L2(�j)
(j = 1; 2; 3; . . . ; N) be a linear operator de�ned by

AN
j f(x) = m(xj)

Z
�j

k(x� y)f(y)dy:
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Then DN is a direct sum of the operators AN
j ; hence

(11) Nt(DN ) =

NX
j=1

Nt(A
N
j )

Since

sn(A
N
j ) � m(xj)L(n)

� n�

j�j j

��r
(n!1)

then

(12) Nt(A
N
j ) � (m(xj))

1=r j�j j

�

�L(t�1=r
t

�1=r
(t! 0+):

From (11) and (12) it follows

(13) lim
t!0+

� t

L(t�1=r)

�1=r
Nt(DN ) =

1

�

NX
j=1

(m(xj))
1=rj�j j:

From (9), (10), (13) and Lemma 2 we obtain
(14)

lim
t!0+

� t

L(t�1=r)

�1=r
Nt(A) =

Z 1

�1

1

�
(m(x))1=rdx

�
= lim

N!1
1

�

NX
j=1

(m(xj))
1=rj�j j

�
:

Puting t = sn(A) in (14) we get

n
� sn(A)

L(1=(sn(A))1=r)

�1=r
!

1

�

1Z
�1

(m(x))1=rdx:

Let �n = (sn(A))
�1=r , then we have

�rnL(�n) � nr
� 1
�

1Z
�1

(m(x))1=rdx
��r

:

Applying Lemma 1 we get

�n �
n

(L(n))1=r
�
� 1
�

1Z
�1

(m(x))1=rdx
��1

i.e. sn(A) �
L(n)

nr

� 1
�

1Z
�1

(m(x))1=rdx
�r
:

Lemma 5 is proved.
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Observe that the system f'ng1n=1, where 'n(x) = sinn�(1 + x)=2, is an
orthonormal basis of L2(�1; 1). Let

H(x; y) =

1X
n=�1

[k(x� y + 4n)� k(x+ y + 4n+ 2)] (15)

H1(x; y) =

1X
n=�1

[k1(x� y + 4n)� k1(x+ y + 4n+ 2)] (16)

Cosider the operators B and B1 acting on L2(�1; 1), de�ned by

Bf(x) =

1Z
�1

H(x; y)f(y)dy; B1f(x) =

1Z
�1

H1(x; y)f(y)dy:

By a direct computation we get

B'n = K(n�=2)'; B1'n =
p
K(n�=2)'n n = 1; 2; 3 . . .

and therefore B = B2
1 .

Let K and K1 be linear operators on L
2(�1; 1) de�ned by

Kf(x) =

1Z
�1

k(x� y)f(y)dy; K1f(x) =

1Z
�1

k1(x� y)f(y)dy

(K and K1 are positive operators because k̂ > 0 and k̂1 > 0, [16]).

Lemma 6. If the functions k and k1 satisfy the conditions of Theorem 1, then

(17) sn(K �K2
1 ) = o(L(n)=nr)

Proof. From (5), (6), (15), (16) and the de�nition of the operators B and B1

it follows B = K +R1 and B1 = K1+R2 where R1 and R2 are compact operators
such that

(18) sn(Ri) = o(L(n)=nr) i = 1; 2:

As we have K �K2
1 = �R1 + R2B1 + B1R2 � R2

2 (because B = B2
1), then using

(18), equalities

sn(B1) = O
�p

L(n)=nr
�
; sn(B) = O

�p
L(n)=nr

�
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and the properties of singular values from [6], we get

sn(K �K2
1) = o(L(n)=nr);

proving (17).

Now, we prove Theorem 1. LetM :L2(�1; 1)! L2(�1; 1) be a linear operator
de�ned by Mf(x) = m(x)f(x) (Since m � 0 we have M � 0). Obviously, we have
A = KM . Then

�n(A) = �n(KM) = �n(M
1=2KM1=2) = sn(M

1=2KM1=2)

(because M1=2KM1=2 � 0). By Lemma 6 and Ky Fan Theorem [6] we conclude

sn(M
1=2KM1=2) � sn(M

1=2K2
1M

1=2) = �n((K1M
1=2)�K1M

1=2) = s2n(K1M
1=2):

So

(19) �n(A) � s2n(K1M
1=2):

Let L1(�) =
p
L(�), m1(�) =

p
m(�) and r1 = r=2. It can be easily veri�ed that if

the function L(x)x�r1 satis�es the same conditions.

From Lemma 5 we obtain

sn(K1M
1=2) �

L1(n)

nr1

� 1
�

1Z
�1

(m1(x))
1=r1dx

�r1
=

r
L(n)

nr

� 1
�

1Z
�1

(m(x))1=rdx
�r=2

:

Combining this with (19) we get

(20) �n(A) �
L(n)

nr

� 1
�

1Z
�1

(m(x))1=rdx
�r
:

The theorem is proved.

Remark 1. By substituing a variable in the eigenvalue relation A' = �',
from (20), we get (m � 0 on [a; b], m 2 C[a; b]):

�n

� bZ
a

k(x� y)m(y) � dy
�
�
L(n)

nr

� 1
�

bZ
a

(m(x))1=rdx
�r

Remark 2. A similar asymptotic formula is valid in the case when the inte-
gration domain is some Jordan measurable set 
. From Lemma 2, Lemma 5 and
the asymptotic relation (19) we get

(21) �n

�Z



k(x� y)m(y) � dy
�
�
L(n)

nr

� 1
�

Z



(m(x))1=rdx
�r
:
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(see [4, Theorem 4]), where m 2 c(
), m � 0 on 
 and k satis�es conditions of the
Theorem 1.

Let k and k1 satisfy conditions 1Æ and 2Æ from the begining of this section.

Theorem 2. Let m 2 c[�1; 1] be a real valued function changing sign on
[�1; 1] and let the functions k and k1 satisfy conditions (5) and (6) of Theorem
1. Denote by �+1 � �+2 � . . . > 0 the positive and by ���1 � ���2 � . . . < 0 the
negative eigenvalues of A (repeated according to their multiplicity). Then we have

�+n (A) �
L(n)

nr

� 1
�

Z

+

(m(x))1=rdx
�r
; ��n (A) �

L(n)

nr

� 1
�

Z

�

(�m(x))1=rdx
�r
;

where 
+ = fx 2 [�1; 1]:m(x) > 0g, 
� = fx 2 [�1; 1]:m(x) � 0g.

Before the proof of Theorem 2, we prove the following Lemma.

Lemma 7. If 
1 and 
2 are measurable sets (
i � [�1; 1]; i = 1; 2) such that

1 \ 
2 = ;, then the singular values of the operator C:L2(
1) ! L2(
2) de�ned
by

Cf(x) =

Z

1

k1(x� y)f(y)dy

have the following property

(22) lim
n!1

p
nr=L(n)sn(C) = 0

Proof. It is enough to prove (22) in the case when 
1 and 
2 are intervals.
Then (22) follows from 
1 \ 
2 = ; and (6). Denote by P and Q orthoprojectors
on L2(�1; 1) de�ned by

Pf(x) = �+
(x)f(x); Qf(x) = ��
(x)f(x); P +Q = I

and

m+(x) =

�
m(x); x 2 
+

0; x 2 
�
m�(x) =

�
0; x 2 
+

�m(x); x 2 
�:

The functions m+ and m� are continuous on [�1; 1] and m = m+ �m�. Denote
by M+, M� the operators acting on L2(�1; 1) de�ned by M�f(x) = m�(x)f(x).
The operators M� are positive and M = M+ � M�. Clearly M+ = PM and
M� = �QM .

Lemma 8.

a) sn(QK
1=2M+K

1=2P ) = o(L(n)=nr) c) sn(QK
1=2M�K1=2P ) = o(L(n)=nr)

b) sn(QK
1=2M�K1=2Q) = o(L(n)=nr) d) sn(PK

1=2M�K1=2P ) = o(L(n)=nr).
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Proof. We prove here a). Other equalities can be proved similarly. From
QK1=2M+K

1=2P = QK1=2PMK1=2P we get

s2n(QK
1=2M+K

1=2P ) � sn(QK
1=2P ) � sn(MK1=2P ):

Since

sn(K
1=2) �

s
L(n)

(n�=2)r

[4, Theorem 1] it is enough to prove that

(23) sn(QK
1=2P ) = o

�p
L(n)=nr

�
:

From Lemma 6 and Lemma 4 (for � = 1=2) it follows

(24) sn(K
1=2 �K1) = o

�p
L(n)=nr

�
:

Now, consider the operator

QK1Pf(x) = �
�(x)

1Z
�1

k1(x � y)�
+(y)f(y)dy (:L2(
+)! L2(
�)):

Since 
+ \ 
� = ;, by Lemma 7 we have

(25) sn(QK1P ) = o
�p

L(n)=nr
�
:

Then (23) follows from (24), (25) and the properties of the singular values [6].

By Lemma 8, a) and c) we get

(26)
j�n(QK

1=2M+K
1=2P + (QK1=2M�K1=2P )�)j = o(L(n)=nr)

j�n(QK
1=2M�K1=2P + (QK1=2M�K1=2P )�)j = o(L(n)=nr):

Let

S = QK1=2M+K
1=2P + (QK1=2M+K

1=2P )� +QK1=2M+K
1=2Q

� PK1=2M�K1=2P � (QK1=2M�K1=2P )� �QK1=2M�K1=2P:

The operator S is selfadjoint. From (26) and Lemma 8 b) and d) it follows

(27) j�n(S)j = o(L(n)=nr)

If f�+n (S)g and f��
�
n (S)g are sequences of positive and negative eigenvalues

of S (�+1 � �+2 � . . . > 0; ��1 � ��2 � . . . > 0) then from (27) it follows

(28) j��n (S)j = o(L(n)=nr):
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Proof of Theorem 2. The operator A = KM and the selfadjoint operator
A1 = K1=2MK1=2 have the same positive and negative eigenvalues. Since P +Q =
I , then

A1 = K1=2M+K
1=2 �K1=2M�K1=2

= (P +Q)K1=2M+K
1=2(P +Q)� (P +Q)K1=2M�K1=2M�K1=2(P +Q):

After simpli�cation we get

(29) A1 = PK1=2M+K
1=2P �QK1=2M�K1=2Q+ S:

From (28) and (29) and Lemma 3 we get

lim
t!0+

N�
t (A1)

� t

L(t�1=r)

�1=r
= lim

t!0+

� t

L(t�1=r)

�1=r
N�
t (PK1=2M+K

1=2P �QK1=2M�K1=2Q):

SinceN�
t (A) = N�

t (A1) and the operators PK
1=2M+K

1=2P and QK1=2M�K1=2Q
are positive and orthogonal, we get

lim
t!0+

� t

L(t�1=r)

�1=r
N+
t (A) = lim

t!0+

� t

L(t�1=r)

�1=r
Nt(PK

1=2M+K
1=2P )

lim
t!0+

� t

L(t�1=r)

�1=r
N�
t (A) = lim

t!0

� t

L(t�1=r)

�1=r
Nt(QK

1=2M�K1=2Q):

Applying Lemma 1, we see that positive (negative) eigenvalues of A have the
same asymptotic behavior as the eigenvalues of the operator

PK1=2M+K
1=2P (QK1=2M�K1=2Q):

Eigenvalues of the operator PK1=2M+K
1=2P are equal to eigenvalues of the

operator K1=2M+K
1=2:L2(
+)! L2(
+). The operator K1=2M+K

1=2 is positive
and its eigenvalues are equal to the eigenvalues of the operator KM+:L

2(
+) !
L2(
+). So, �+n (A) � �n(KM+) and from Theorem 1 (Remark 2) we obtain

�n(KM+) �
L(n)

nr

� 1
�

Z

+

(m+ (x))1=rdx
�r
:

Therefore

�+n (A) �
L(n)

nr

� 1
�

Z

+

(m(x))1=rdx
�r
:
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Similarly

��n (A) �
L(n)

nr

� 1
�

Z

�

(�m(x))1=rdx
�r
:

Theorem 2 is proved.

Multidimensional case. Let k0 and k
1
0 be functions from C1(0;1) rapidly

enough decreasing on in�nity and tending to zero (or having compact support). Let
k(t) = k0(ktk), h(t) = k10(ktk) and k = h � h (t 2 Rm). It is well known [14] that

Z
Rm

eixyk(y)dy =
(2�)m=2

kxk(m�2)=2

1Z
0

k0(%) � %
m=2Jm=2�1(%kxk)d%;

where J� is the Bessel function. Suppose that the function

K0(�) =
(2�)m=2

�(m�2)=2

1Z
0

k0(%)%
m=2Jm=2�1(%�)d%

is positive decreasing and

K0(�) = ��r
L(�)

�
(1 + o(1)); � !1;

where L is a slowly varying function from Lemma 1. ThenZ
Rm

eit�h(t)dt =
p
K0(�) (because k = h � h).

Let I = [�1; 1] and a 2 C(Im). Now, consider the operator A:L2(Im) !
L2(Im) de�ned by

Af(x) =

Z
Im

k(x� y)a(y)f(y)dy

Theorem 3. If
(30)

(a) sn

� Z
[0;2]m

k0
�p

(x1 � y1)2 + � � �+ (xm � ym)2
�
� dy

�
= o

�L(n1=m)
nr=m

�

(b) sn

� Z
[0;2]m

k10
�p

(x1 � y1)2 + � � �+ (xm � ym)2
�
� dy

�
= o

�r
L(n1=m)

nr=m

�
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holds for all the combinations of + and � except for the one with all signs �, then

sn

�Z
Im

k(x� y) � dy
�
�
� 2

�d0

�rL(n1=m)
nr=m

:

Furthermore, if a(x) � 0 (x 2 Im), then

�n

� Z
Im

k(x� y)a(y) � dy
�
�

1

(�d0)r

� Z
Im

(a(x))m=rdx
�r=mL(n1=m)

nr=m

where d0 =
2p
�

�
�
�
1 + m

2

��1=m
.

Before the proof of Theorem 3, we prove the following Lemma.

Lemma 9. Consider all possible numbers
Pm

k=1 n
2
k, where nk 2 N [ f0g,

k = 1; 2; . . .m. If we arrange these numbers in a nondecreasing order �01 � �02 �
�03 � . . . then

�0n �
n2=m

C
2=m
m

; where Cm =
�m=2

2m�(1 +m=2)

Proof of Lemma 9. Let N be some �xed positive integer. Denote by r1 and
r2 the smallest and the largest values n such that �0n = N2. It is known [9] that

r1 =
�m=2Nm

2m�1m�(m=2)
+ o(Nm); r2 =

�m=2Nm

2m�1m�(m=2)
+ o(Nm):

Since r1 � n � r2, we get

n =
�m=2Nm

2m�1m�(m=2)
+ o(Nm);

and therefore N � C
�1=m
m n1=m. The statement of Lemma 9 then follows from

�0n = N2.

Proof of Theorem 3. Introduce the function H(x; y) (x = (x1; . . . ; xm), y =
(y1; . . . ; ym)) by the following system of recurent relations

k1(t1; . . . ; tm�1) =
X
nm2Z

[k(t1; t2; . . . ; tm�1; xm � ym + 4nm)

� k(t1; t2; . . . ; tm�1; xm + ym + 4nm + 2)]

k2(t1; . . . ; tm�1) =
X

nm�12Z
[k1(t1; . . . ; tm�2; xm�1 � ym�1 + 4nm�1)

� k1(t1; . . . ; tm�2; xm�1; ym�1 + 4nm�1 + 2)]

...

km�1(t1) =
X
n22Z

[km�2(t1; x2 � y2 + 4n2)� km�2(t1; x2 + y2 + 4n2 + 2)]
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H(x; y) =
X
n12Z

[km�1(x1 � y1 + 4n1)� km�1(x1 + y1 + 4n1 + 2)]:

The functions k0 and k10 are chosen so that all these series converge. By a direct
computation we getZ

Im

H(x; y)'n1n2...nm(y)dy = K0

��
2

q
n21 + n22 + . . .n2m

�
'n1n2...nm(x)

where

'n1n2...nm(x) =

mY
i=1

sin
ni�(1 + xi)

2
:

From (30) a) by Ky Fan theorem [6] it follows

(31) sn

� Z
Im

k(x� y) � dy
�
� sn

� Z
Im

H(x; y) � dy
�

Singular values of the operator
R
Im H(x; y)dy are

K0

��
2

q
n21 + n22 + . . . + n2m

�
= sn1...nm

and therefore

n21 + � � �n2m =
� 2
�
K�1
0 (sn1...nm)

�2
(K�1

0 is the inverse function of K0).

Let the sequence fsn1n2...nmg be arranged in a nonincreasing order s1 � s2 �

s3 � . . . . Put �0n =
�
2
�K

�1
0 (sn)

�2
. From Lemma 9 we obtain �0n � c

�2=m
m n2=m i.e.

K�1
0 (sn) �

�

2
C�1=mm n1=m:

Since K0(�) � L(�) � ��r (� ! +1) we get sn �
� 2

�d0

�rL(n1=m)
nr=m

. From (31) it

follows

sn

� Z
Im

k(x� y) � dy
�
�
� 2

�d0

�rL(n1=m)
nr=m

:

The �rst part of Theorem 3 is proved.

Remark 3. By substitution as in the one-dimensional case we get

sn

� Z
[�a;a]m

k(x� y) � dy
�
�
� 2a

�d0

�rL(n1=m)
nr=m

:
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If � is some cube in Rm then

sn

�Z
�

k(x� y) � dy
�
�
j�jr=m

(�d0)r
L(n1=m)

nr=m
;

where j�j denotes the measure of �. Analogously as in Theorem 1 (see [4, Theorem
4]) we get (for a 2 C(�), a(x) � 0 on �):

�n

�Z
�

k(x� y)a(y) � dy
�
�

1

(�d0)r

�Z
�

(a(x))m=rdx
�r=mL(n1=m)

nr=m

and more generaly

�n

�Z



k(x� y)a(y) � dy
�
�

1

(�d0)r

�Z



(a(x))m=rdx
�r=mL(n1=m)

nr=m
;

where 
 is a Jordan measurable set in Rm (a 2 C(�
), a � 0 on 
).

We formulate now a multidimensional variant of Theorem 2. (The proof is
carried out in the same way as in Theorem 2). Assume that a 2 C(Im) and that a
changes sign.

Theorem 4. The following

sn

� Z
[0;2]m

k0
�p

(x1 � y1)2 + � � �+ (xm � ym)2
�
� dy

�
= o

�L(n1=m)
nr=m

�

sn

� Z
[0;2]m

k10
�p

(x1 � y1)2 + � � �+ (xm � ym)2
�
� dy

�
= o

�rL(n1=m)

nr=m

�

holds for all the combinations of + and � except for the one with all signs �, when

�+n (A) �
1

(�d0)r

� Z

+

(a(x))m=rdx
�r=mL(n1=m)

nr=m

��n (A) �
1

(�d0)r

� Z

�

(�a(x))m=rdx
�r=mL(n1=m)

nr=m
:

Here 
+ = fx 2 Im: a(x) > 0g, 
� = fx 2 Im: a(x) � 0g and �+n (A) and
��n (A) have the same meaning as in Theorem 2.

Remark 4. The similar asymptotic formulas are valid if Im is substituted by
some Jordan measurable set 
 � Rm.
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3. An example. The function

G�(x) =
2(2�m��)=2

�m=2�
�
�
2

� K(m��)=2(jxj)
jxj(m��)=2

(x 2 Rm; � > 0)

(Kr is McDonald function) satis�es the following conditions [14]

1Æ G� 2 L
1(R) and

Z
Rm

eitxG�(t)dt = (1 + jxj2)��=2;

G�(x) �

8>>>><
>>>>:

�
�
m��
2

�Æ
2��m=2�

�
�
2

�
jxj��m; 0 < � < m

1=2m�1�m=2�
�
m
2

�
ln 1

jxj ; � = n

�
�
��m
2

�Æ
2m�

�
�
2

�
; � > m

for x! 0+

and

G�(x) �
jxj(��m�1)=2

2(m+��1)=2�(m�1)=2�
�
�
2

�e�jxj for jxj ! +1:

Let m = � = 2, k(x) = G2(x)
�
= 1

2�K0(x)
�
h(x) = G1(x). SinceZ

R2

eitxG2(t)dt =
1

1 + jxj2

then K0(�) = 1=(1 + �2) � 1=�2 (� ! +1). The functions G1 and G2 satisfy the
conditions of Theorem 4.

If 
 � R2 is a Jordan measurable set, a 2 c(�
) and a changes sign, then by
Theorem 4 (Remark 4) we get

�+n

�Z



G2(x� y)a(y)dy
�
�

1

4�n

Z

+

a(x)dx

��n
�Z



G2(x� y)a(y)dy
�
�

1

4�n

Z

�

(�a(x))dx

(
+ = fx 2 
: a(x) > 0g, 
� = fx 2 
: a(x) � 0g).

Since K0(x) = � lnx + '1(x) ln x + '2(x) [14], where '1 and '2 are even
entire functions and '1(0) = 0, from theorem of Birman and Solomjak [2] and Ky
Fan follows

(33)

�+n

�Z



� ln jx� yj

2�
a(y)dy

�
�

1

4�n

Z

+

a(x)dx

��n
�Z



� ln jx� yj

2�
a(y)dy

�
�

1

4�n

Z

�

(�a(x))dx:
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Now, as an ilustration, we show how the asymptotic behavior of the positive and
negative eigenvalues for an eliptic boundary problem, can be deduced from (33).

Let D be a bounded simple conected domain in R2 with smooth boundary
and aij = aji 2 C1( �D). Assume that the di�erential expresion

�
2X

i;j=1

@

@xi

�
aij

@u

@xj

�

is uniformly eliptic on D. Let 0 < �+1 � �+2 � . . . and 0 > ���1 � ���2 � . . . be
the positive and negative eigenvalues for the following boundary problem

�
2X

i;j=1

@

@xi

�
aij

@

@xj

�
= �a(x)u; uj@D = 0

Theorem 5. [5] The following asymptotic formula is valid

(��n )
�1 �

1

4�n

Z

�

ja(x)j����a11(x) a12(x)
a21(x) a22(x)

����
dx

where 
+ = fx 2 D: a(x) > 0g and 
� = fx 2 D: a(x) � 0g.

Proof. Applying the procedure for the reduction of elliptic di�erential expre-
sion to the canonical form, it is obviously enough to �nd the asymptotic behavior
of eigenvalues for the following boundary problem

(34) ��u = �a � u; uj@D = 0:

To prove Theorem 5 it is enough to prove that the problem (34) has the
following asymptotic behavior of eigenvalues

(35) (��n )
�1 �

1

4�n

Z

�

ja(x)jdx:

Firstly, consider the case when D is the unit disc.

Then, (34) can be written in integral form

(36) �u(z) = �

Z
D

G(z; �)a(�)u(�)dA(�)

where G(z; �) = 1
2� ln

��� z��1�z�

��� is Green function for the Laplace operator on the unit

disc; dA(�) = dpdq, � = p+ iq. Since the operatorZ
D

� ln j1� z��jdA(�) (�:L2(D; dA))
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is a nuclear one, then

sn

�Z
D

� ln j1� z��j � dA(�)
�
= o(n�1)

and (35) follows from (33), (34) and Ky Fan Theorem.

The general case, when D is an arbitrary domain, is reduced to the just
considered one by a conformal mapping into the unit disc.
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