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Abstract. Using a functional g, de�ned by (2), we introduce tree kinds of
orthogonality in normed spaces and, using them, we prove three theorems on isomor-
phisms of a normed space and an inner product space. Certain new characterizations
of inner product spaces are obtained using functional g.

There are many known conditions on a normed space X which ensure that
X is isometrically isomorphic to an inner product space [1]. However, much less is
konwn if we ask when X is isomorphic to an inner product space. By using the no-
tion of orthogonality in normed spaces, Partington proved the following important
result, which will be used below.

Lemma 1. [8, Theorem 4]. Let X be a real normed space and let ? be an
orthogonality relation in X which satis�es:

1) if x ? x, then x = 0,

2) if x ? y, then y ? x,

3) if x ? y, then ax ? by for all a; b 2 R,

4) if x ? y and x ? z, then x ? (y + z),

5) if x; y 2 X, then there is an a 2 R such that x ? (ax+ y),

6) if xn ? yn for all n 2 N , and if xn ! x, yn ! y (n!1), then x ? y,

7) there is a constant C > 0 such that kxk � kax + yk whenever x ? y and
jaj � C.

Then X is isomorphic to an inner product space.

For a relation ?, satisfying 1){6), Partington de�ned a functional x ! fx 2
X� by fx(y) = a where y = ax + z, x 2 S(X), x ? z and f�x = �fx (X� denotes
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the topological dual of X and S(X) is the unit sphere of X). In the same paper he
proved the following: Assuming 1) through 6), the condition 7) is equivalent to

70) There is a constant C > 0 such that kfxk � C for all x 2 S(X).

We are going to replace 7) with a more natural condition.

Lemma 2. If the relation ? satis�es 3), then 7) is equivalent to:

700) There is a constant C > 0 such that x ? y ) kxk � Ckx+ yk.

Proof. Assume 700). Then, by 3), x ? y implies a
C
x ? 1

C
y (jaj � C). Now

700) implies
�� a
C

�� kxk � C


 a
C
x+ 1

C
y


 and, using jaj � C, we get kxk � kax + yk.

Conversely, assume 7) and let x ? y. Then there is a C > 0 such that kxk �
kCx+ yk. Using 3) we get x ? Cy and 7) gives kxk � kCx+ Cyk = Ckx+ yk.

It is clear, that in a general normed space, an orthogonality relation cannot
be di�ned with all the properties 1), 2), 3), 4), 5), 6) and 7). Therefore we de�ne
certain orthogonality relations which, under some additional conditions, satisfy the
conditions of Lemma 1.

Let (X; kxk) be a real normed space. On X2 the following functionals always
exist:

��(x; y): = lim
t!�0

(kx+ tyk � kxk)=t tag1

g(x; y): = 1=2 � kxk(��(x; y) + �+(x; y)); x; y 2 X:(2)

The functional g is a natural generalization of inner product (:; :) on X2. It
has the following properties:

g(x; x) = kxk2; (3)

g(�x; �y) = ��g(x; y) (�; � 2 R); (4)

g(x; x+ y) = kxk2 + g(x; y); (5)

jg(x; y)j � kxkkyk (see [3]). (6)

If X is smooth, then g is linear in the second argument, and in this case
[y; x]: = g(x; y) de�nes a semi-inner product in the sense of Lumer. However, g can
be linear in the second argument even if X is not smooth. For example on l1 � l1

the functional g is de�ned by

g(x; y) = kxk
X
k

(sgnxk)yk (x = (xk); y = (jk) 2 l1)

and is clearly linear in y.

If g is linear in the second argument, then we say that X has property (G).

The orthogonality of a vector x to a vector y in X can be de�ned in several
ways (see [5]). The most commonly used de�nition of orthogonality is the Birkho�
orthogonality:

x ?B y , (8� 2 R)kxk � kx+ �yk:
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By use of the functional g the orthogonality ? can be de�ned in several ways:

x ?g y , g(x; y) = 0;

x?
g
y , g(x; y) = g(y; x) = 0;

x ?g y , g(x; y)g(y; x) = 0;

x
g

? y , g(x; y) + g(y; x) = 0;

xg ? y , g(x+ t0y; x) = kxk2;

where mint kx + tyk = kx + t0yk (Such a t0 always exists since '(t) = kx+ tyk is
convex). All of these notions of orthogonality are generalizations of the classical
one, de�ned by a scalar product.

In [2] it was proved that X is smooth if and only if, x ?g y , x ?B y for
every x; y 2 Xnf0g.

Let us introduce some de�nitions and establish the notations. The sequence
(en) in X is g-orthonormal if

g(ei; ej) =

�
1; i = j

0; i 6= j
:

A g-orthonormal sequence (en) is a total sequence in X if

(8k 2 N) ek ?g x) x = 0:

xy: =
g(y; x)

kyk2
y (the projection of the vector x on the vector y (see [4])).

We de�ne, using a g-orthonormal sequence (en), the following

(7) x ?e y ,
X
n

g(en; x)g(en; y)

n2
= 0:

We quote, for reference, the following result:

Lemma 3. [9, Theorem 3.6] If [�; �] is a semi-inner product on X2 and if X
is smooth, then limn!1[xk ; yk] = [x; y] whenever kxk � xk ! 0 and kyk � xk ! 0
(n!1).

Next we state the main results of this paper.

Theorem 1. Assume X is smooth and assume the functional g has the
property

(8) g(x; y)g(y; x) = g(x; z)g(z; x) = 0) g(x; y + z)g(y + z; x) = 0:

Then X is isomorphic to an inner product space.
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Proof. Since X is smooth, using properties (3){(6) of g, the properties (8)
and Lemma 3, it is easy to check that ?g satis�es the conditions 1), 2), 3), 4) and
6) of Lemma 1. Let us check that the conditions 5) and 7) are also satis�ed.

5) Choose x; y 2 X , x 6= 0. Then, with a = g(x; y)=kxk2 we have that
g(x; ax+ y) g(ax+ y; x) = 0 which gives x ?g ax+ y. Therefore 5) holds.

7) Assume x ?g y i.e. g(x; y)g(y; x) = 0. If g(x; y) = 0 then g(x; x + y) =
kxk2 � kxk kx + yk and hence kxk � kx + yk. If g(y; x) = 0 then kyk � kx + yk
and by inequality kxk � kyk � kx+ yk we have kxk � 2kx+ yk. From the Lemma
2 we conclude that 7) holds.

It only remains to apply Lemma 1, and it follows that X is isomorphic to an
inner product space.

Theorem 2. Let X be a smooth normed space and assume g satis�es the
following condition

(9) g(x; y) + g(y; x) = g(x; z) + g(z; x) = 0) g(y + z; x) = g(y; x) + g(z; x):

Then X is isomorphic to an inner product space.

Proof. Using properties (3){(6) of g, Lemma 3 and Theorem 1 [7], it is easy

to check that
g

? satis�es conditions 1), 2), 3), 5) and 6) of Lemma 1. Let us verify
conditions 4) and 7).

4) Assume x
g

? y and x
g

? z i.e. g(x; y) + g(y; x) = 0 and g(x; z) + g(z; x) = 0.
Since X is smooth, g is linear in the second variable and this gives

g(x; y + z) + g(y; x) + g(z; x) = 0:

Now, using (9), we conclude

g(x; y + z) + g(y + z; x) = 0;

that is x
g

? y + z.

7) Assume x
g

? y i.e. g(x; y) + g(y; x) = 0. This implies

kxk2 + g(x; y) + kyk2 + g(y; x) = kxk2 + kyk2:

Using (5) we get g(x; k + y) + g(y; x + y) = kxk2 + kyk2. This and condition (6)
gives kxk2 + kyk2 � (kxk+ kyk)kx+ yk. Set kxk = % cos �, kyk = % sin �, the last
inequality becomes % � (cos �+ sin �)kx+ yk and therefore kxk � 2kx+ yk. Using

Lemma 2 we conclude that
g

? satis�es 7).

The result now following from Lemma 1.

Problem 1. If the condition (8) (or the condition (9)) holds, will it follow
that X is isometrically isomorphic to an inner product space?
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Theorem 3. Let X be a normed space satisfying condition (G). Let (en) be
at most countable total sequence in X such that

(10) inf
x2S(X)

X
k

g2(ek; x)

k2
> 0:

Then X is isomorphic to an inner product space.

Proof. Clearly, ?e satis�es 1), 2), 3), 4) and 5). In veiw of Lemma 1, it
suÆces to check conditions 6) and 70).

6) Assume xn ! x, yn ! y (n!1), xn ?
e yn, kxnk � C1kykk � C2. Since

g(ek; :) 2 S(X�) (properties (G) and (6)), from

0 =
X
n

g(ek; xk)g(en; yk)

n2
�
X
n

C1C2

n2
;

we get

0 = lim
k!1

X
n

g(ek; xk)g(ek; yk)

n2
=
X
k

=
g(ek; x)g(ek; y)

n2
:

This means x ?e y.

70) Assume x ?e z, y = ax + z and x 2 S(X). Then g(ek; y) = ag(ek; x) +
g(ek; z) for each k, that is

g(ek; x)g(ek; y)

k2
= a

g2(ek; x)

k2
+

g(ek; x)g(ek; z)

k2
:

Summing over k, we get

X
k

g(ek; x)g(ek; y)

k2
= a

X
k

g2(ek; x)

k2
+
X
k

g(ek; x)g(ek; z)

k2
:

The last term is equal to zero, so

a =
X
k

g(ek; x)g(ek; y)

k2

.X
k

g2(ek; x)

k2

For such an a, we have

jaj �
X
k

1

k2

.
inf

x2S(X)

X
k

g2(ek; x)

k2
:

Using (10) we deduce that there is a C > 0 such that jaj � C for all x; y 2 S(X).
Since fx(y) = a we are done.
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Finally, let us state two additional characterizations of inner product spaces
in terms of the functional g (see [4] and [6]).

Theorem 4. Let X be a normed space. Then the following conditions are
equivalent:

(i) X is an inner product space,

(ii) supf;'2S(X�) ff(x)'(y) � f(y)'(x)g =
p
kxk2kyk2 � g2(x; y),

(iii) X is smooth and g(y � yx; x) = 0 for all x; y 2 S(X).

Proof. (i) , (ii). If X is an inner product space, then

D(x; y): = sup
f;'2S(X�)

ff(x)'(y) � f(y)'(x)g

is the area of a parallelogram with vertices in 0, x, y and x + y, so D(x; y) =
kxk kykj sin(x; y)j, where cos(x; y) = (x; y)=kxk kyk. Thus,

D(x; y) =
p
kxk2kyk2 � (x; y)2:

Also, in an inner product space we have g(x; y) = (x; y). We proved (i)) (ii). Now
assume (ii). Then D(x; y) = D(y; x) implies g(x; y) = g(y; x) (x; y 2 X). Using
Theorem 4 of [6], this gives g(x; y) = (x; y) (x; y 2 X).

(i) , (iii). Clearly (i) implies (iii). Let us prove the converse. Assume X
is smooth and g(y � yx; x) = 0 for all x; y 2 S(X). By de�nition of yx we get:
g(y � yx; x) = 0 , g(y � g(x; y)x; x) = 0 ) g(y � g(x; y)x; g(x; y)x) = 0 ,
g(y � g(x; y)x; y � g(x; y)x � y) = 0 ) ky � g(x; y)xk2 = g(y � g(x; y)x; y) )
ky � g(x; y)xk � 1 (because of jg(y � g(x; y)x; y)j � ky � g(x; y)xk). Therefore
g(y�yx; x) = 0 implies ky�g(x; y)xk � 1. Now we refer to Proposition 18.17 from
[1]: If ky � '0+(x; y)xk � 1 for all x; y 2 S(X), then X is an inner product space.
(Note that in a smooth space we have '0+(x; y) = g(x; y)).
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