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Abstract. We analyze the character of the solutions of a class of di�erence
equations in the �eld of Mikusi�nski operators F . These di�erence equations are in
fact the discrete analogues for the di�erential equations in the �eld F corresponding
to some partial di�erential equations.

1. Introduction. The linear partial di�erential equation with constant
coeÆcients on the set f(x; t)j x 2 R; t > 0g :

(1)
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with some initial and/or boundary conditions is the mathematical model for dif-
ferent physical systems. In (1), Ai; i = 0; 1; . . . ; p, Bi; i = 0; 1; . . . ; q, and
Ci; i = 0; 1; . . . ; r, are numerical constants, p, q and r are natural numbers, while
the function f(x; t) on the right hand side is given.

If one has the initial conditions

@�+�u(x; t)

@x�@t�

����
t=0

= 0

for � = 0, � = 0; 1; . . . ; r � 1, � = 1, � = 0; 1; . . . ; q � 1, � = 2, � = 0; 1; . . . ; p �
1, then the Mikusi�nski operator calculus can be applied, in order to obtain the
solution. (For reader's convenience, we give some notions from that theory in
Section 2; for complete exposition, see [2].) In the �eld of Mikusi�nski operators F ,
the following nonhomogeneous di�erential equation corresponds to (1):
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where s is the di�erential operator, f(x) = ff(x; t)g and u(x) = fu(x; t)g are,
respectively, the given and the unknown operator function (for the notations and
notions, see Section 2). The most important case is when the operator function
f(x) is represented by a continuous function.

In Section 3, using the usual di�erence schemes, we come to a second order
di�erence equation in the �eld F , and, in particular, we analyze its characteristic
equation. We �nd suÆcient conditions on the numbers r, p and q which imply that
the solutions are represented by continuous functions.

In Section 4, we use classical methods from [1] for �nding the explicit solution
of the di�erence equation in F . Of course, these classical methods had to be adapted
for the Mikusi�nski operator calculus. Similar problems were considered in [3], [4]
and [6], though for less general di�erence equations.

Finally, in Section 5, analogously to [7] and [8], we estimate the approximation
error, i.e., the di�erence between the exact solution of the di�erential equation (2)
and the approximate one, given as the solution of the corresponding di�erence
equation. We show that the error of approximation in the �eld F is of the same
order as in the usual numeric case.

2. Notations and notions from the Mikusi�nski calculus. The set
C+ of continuous functions de�ned on [0;1), with the usual addition and the
multiplication given by the convolution

f(t) � g(t) =
Z t

0

f(�)g(t� �)d�; t > 0;

is a ring. By the Tichmarsh theorem, C+ has no divisors of zero, hence its quotient
�eld can be de�ned (see [2]). Elements of that �eld, the Mikusi�nski operator �eld
F , are called operators. They are quotients of the form f=g, where f 2 C+ and
0 6� g 2 C+; the last division is observed in the sense of convolution. Clearly, a
function a = a(t) from C+ can be observed also as an operator. This operator is
unique and will be denoted simply by a. We shall write then a = fa(t)g and say
that the operator a is represented by the continuous function a(t).

Among the most important operators are the identical operator I = f=f ,
where f is any function from C+, not identically equal to zero; the integral operator
` = f1g together with its positive powers `� and the inverse operator of `, the
di�erential operator s. The following holds

`s = I; `� = ft��1=�(�)g; � > 0;

fx(n)(t)g = snx� sn�1x(0)� � � � � x(n�1)(0)I:

Let us denote by Fc the subset of F consisting of the operators represented by
elements of C+, and by FI the subset of F consisting of the elements I , for some
numerical constant .
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The only convergence in F that we shall use is the type I convergence, which
is de�ned as follows: A sequence of operators (pn)n2N converges to p 2 F if there
exists an operator q 6= 0 such that the operators qpn, n 2 N, as well as qp are in Fc,
and the last sequence converges uniformly on every compact set to the continuous
function qp.

The convergence of an in�nite sum in the �eld of Mikusi�nski operators is
de�ned accordingly. An example that will be used several times in this paper is
the in�nite series

P
1

i=1 �
i, where � 2 Fc. It is important to note that this series

converges and its sum is an operator from Fc.

The operators can be compared if they are from Fc. So for two operators
a = fa(t)g and b = fb(t)g from Fc we de�ne a � b if a(t) � b(t) for each t � 0 (see
[2, p. 237]). Analogously, for two operator functions we de�ne

a(x) �T b(x); x 2 [c; d];

if a(x) and b(x) are represented by continuous real valued functions of two variables,
a(x) = fa(x; t)g, b(x) = fb(x; t)g and a(x; t) � b(x; t) for x 2 [c; d]; t 2 [0; T ].

The absolute value of an operator a from Fc, a = fa(t)g, is the operator
jaj = fja(t)jg. Also, we put ja(x)j = fja(x; t)jg.

If the operators a and b are from Fc, then

ja+ bj � jaj+ jbj;

jabj =
��� Z t

0

a(�)b(t � �)d�
��� � jajjbj;

jaj �T �(T )`; �(T ) = max
t2[0;T ]

ja(t)j:

3. Di�erence equations in F. As we announced in the introduction, we
consider the nonhomogeneous di�erential equation (2) in the �eld of Mikusi�nski
operators F .

The di�erential equation (2) can be written in the form

(3) Pu00(x) +Qu0(x) +Ru(x) = f(x);

where P =
pP

i=0
siAi, Q =

qP
i=0

siBi, R =
rP

i=0
siCi.

As is usual in numerical analysis for h > 0, instead of u0(x) we take

u(x+ h)� u(x� h)

2h

and also instead of u00(x) we put

u(x+ h)� 2u(x) + u(x� h)

h2
:
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So we obtain the di�erence equation in the �eld F corresponding to (3):

(4) P
u(x+ h)� 2u(x) + u(x� h)

h2
+Q

u(x+ h)� u(x� h)

2h
+Ru(x) = f(x):

Let us take an arbitrary real x0. If we put xn = xn�1 + h, h > 0, n =
0;�1;�2; . . . , and de�ne the operator fn by fn = f(xn), then the equation (4) can
be written as the di�erence equation

(5) aun�1 + bun + cun+1 = fn;

where a, b and c are operators from the �eld F . Putting r1 = max(p; q) and
r2 = max(p; r), we have

a =
I

h2

�
P � Qh

2

�
=

I

h2

�
A0 � B0h

2

�
I + sr1 (a2I + �a) = a1I + sr1(a2I + �a);

(6)

b = � I

h2
�
2P �Rh2

�
=

I

h2
��2A0 + h2C0

�
I + sr2 (b2I + �b) = b1I + sr2(b2I + �b);

(7)

c =
I

h2

�
P +

Qh

2

�
=

I

h2

�
A0 +

B0h

2

�
I + sr1 (c2I + �c) = c1I + sr1(c2I + �c):

(8)

In the previous three relations a1, b1, c1, a2, b2, c2 are numerical constants and �a,
�b, �c are operators from Fc. In this paper we analyze the solution of di�erence
equation (5) depending on p, q, r, more precisely on r1, r2.

The characteristic equation of the di�erence equation (5) has the form

(9) a+ b! + c!2 = 0:

Let us analyze the solution of the equation (9).

It is known that the �eld of Mikusi�nski operators has very good algebra-
ic properties, which also means that the usual addition and multiplication with
operators can be treated in the same way as with real numbers.

Using relations (6), (7) and (8), the characteristic equation (9) can be written
as

a1I + sr1(a2I + �a) + (b1I + sr2(b2I + �b))! + (c1I + sr1(c2I + �c))!
2 = 0:

First, let us consider the expression b2 � 4ac:

b2 � 4ac = (b1I + sr2(b2I + �b))
2 � 4(a1I + sr1(a2I + �a))(c1I + sr1(c2I + �c))

= b21I + 2b1s
r2(b2I + �b) + s2r2(b2I + �b)

2 � 4a1c1I

� 4sr1(a1c2I + a1�c + a2c1I + c1�a)� 4s2r1(a2I + �a)(c2I + �c):
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If r2 > r1 > 0; b2 6= 0, then it can be transformed as

b2 � 4ac = s2r2(b2I + �b)
2
�
I + `2r2

b21 � 4a1c1
(b2I + �b)2

+
2b1l

r2

b2I + �b

� 4s(r1�2r2)
a1c2I + a1�c + a2c1I + c1�a

(b2I + �b)2
� 4s2(r1�r2)

(a2I + �a)(c2I + �c)

(b2I + �b)2

�
:

So we can write for r2 > r1 > 0:

(10) b2 � 4ac =: s2r2(b2I + �b)
2(I +  1):

The operator I=(b2I + �b)
2 is of the form I +  , where  is represented by a

continuous function; therefore, the operator  1, given in (10), is represented by a
continuous function too. From relation (10) we obtain

p
b2 � 4ac = sr2(b2I + �b)

1X
i=0

�
1=2

i

�
( 1)

i

= sr2(b2I + �b) + sr2(b2I + �b)

1X
i=1

�
1=2

i

�
( 1)

i:

Hence

(11)
p
b2 � 4ac =: sr2(b2I + �b)(I +  q;1);

where the operator  q;1 is represented by a continuous function.

If, however, r1 > r2 > 0, then we have

b2 � 4ac = s2r1(�4a2c2)
�
I + `2r1

b21 � 4a1c1
�4a2c2 +

s2(r2�r1)(b2I + �b)
2

�4a2c2 +

2b1s
r2�2r1(b2I + �b)

�4a2c2 �4`
r1(a1c2I + a1�c + a2c1I + c1�a)

�4a2c2 �4a2�c + c2�a + �a�c
�4a2c2

�
:

So we can write

(12) b2 � 4ac = s2r1(�4a2c2)(I +  2);

and in this case (r1 > r2 > 0) we have

p
b2 � 4ac = sr1

p�4a2c2
1X
i=0

�
1=2

i

�
( 2)

i

= sr1
p
(�4a2c2) + sr1

p�4a2c2
1X
i=1

�
1=2

i

�
( 1)

i;
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or

(13)
p
b2 � 4ac =: sr1

p�4a2c2 (I +  q;2):

In relations (12) and (13)  2 and  q;2 are operators from Fc.

If p = r1 = r2 > 0, then we have

b2 � 4ac = s2p(b22I � 4a2c2)(I +  3)

So in this case we can writep
b2 � 4ac =: sp

q
b22I � 4a2c2(I +  q;3);

where  3 and  q;3 are operators from Fc.

Lemma 1. Assume that coeÆcients of the equation (5) are of the form (6),
(7) and (8), and r2 > r1 > 0. Then one of the solutions of the characteristic
equation (9), say !1, belongs to Fc, the other one, say !2, does not, but I=!2 does.

Proof. Solutions of the equation (9) have the form

!1;2 =
�b1I � sr2(b2I + �b)�

p
b2 � 4ac

2(c1I + sr1(c2I + �c))

=
`r1

2c2
� �b1 � sr2(b2I + �b)� sr2(b2I + �b)(I +  q;1)

I +
c1
c2
`r1 +

�c
c2

:

The �rst solution !1 has the form

!1 =
�b1`r1 + sr2�r1(b2I + �b) q;1

2c2

1X
j=0

(�1)j
�
c1
c2
`r1 +

�c
c2

�j

:

From (11) it follows that sr2�r1 q;1 is an operator from Fc, and since the operators
�b,  q;1 and �c are from Fc, we obtain that the operator !1 is from Fc.

The second solution !2 of the characteristic equation has the form

!2 =
�b1`r1 � 2sr2�r1(b2I + �b)� sr2�r1(b2I + �b) q;1

2c2

1X
j=0

(�1)j
�
c1
c2
`r1 +

�c
c2

�j

:

Since r2 � r1 > 0, the last operator does not belong to Fc. However, the operator
I=!2 is from Fc, because it can be written as

I

!2
=

2(c1I + sr1(c2I + �c))

�b1I � 2sr2(b2I + �b)� sr2(b2I + �b) q;1

=
`r2

�b2 �
c1I + sr1(c2I + �c)

I +
b1`

r2

2b2
+
�b
b2

+
�I
2
+

�b
2b2

�
 q;1

=
c1`

r2 + sr1�r2(c2I + �c)

b2

1X
j=0

(�1)j+1
�
b1`

r2

2b2
+
�b
b2

+

�
I

2
+

�b
2b2

�
 q;1

�j

:
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Lemma 2. If coeÆcients of the equation (5) are of the form (6), (7) and
(8), and if r1 > r2 > 0, then the characteristic equation (9) has the following two
solutions:

!1 = Æ1I + Æc;1; !2 = Æ2I + Æc;2

where Æ1; Æ2 are numerical constants, while Æc;1 and Æc;2 are operators from Fc.

Proof. When r1 > r2, the solutions of the characteristic equation are

!1;2 =
�b1I � sr2(b2I + �b)�

p
b2 � 4ac

2(c1I + sr1(c2I + �c))

=
`r1

2c2
� �b1I � sr2(b2I + �b)� sr1(

p�4a2c2)(I +  q;2)

I +
c1
c2
`r1 +

�c
c2

=
�b1`r1 � sr2�r1(b2I + �b)�

p�4a2c2(I +  q;2)

2c2

1X
j=0

(�1)j
�
c1
c2
`r1 +

�c
c2

�j

:

Since then r2 � r1 < 0 and sr2�r1 = `r1�r2 , we can introduce numerical
constants Æ1, Æ2 and operators Æc;1, Æc;2 from Fc, by

(14) !j = ÆjI + Æc;j ;

for j = 1; 2. In (14) the numerical constants Æj are equal to �
p
�a2=c2.

Similarly we can prove

Lemma 3. If coeÆcients of the equation (5) are of the form (6), (7) and (8),
and if r1 = r2 > 0, then the solutions !j , j = 1; 2, of the characteristic equation
(9) are

(15) !j = Æj+2I + Æc;j+2:

In (15), Æ3;4 =
��b2 �p

b2 � 4a2c2
�
=(2c2) are numerical constants, while Æc;3

and Æc;4 are operators from Fc.

4. The operator particular solution of the di�erence equation. The
particular solution of the di�erence equation (5) has the form

(16) un =
1X

k=�1

Gn�kfk;

with

(17) Gn�k =

�
�1!

n�k
1 + �1!

n�k
2 ; n� k � 0;

�2!
n�k
1 + �2!

n�k
2 ; n� k � 0;
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where �1, �1, �2, �2 are operators from F .
Lemma 4. Let us suppose that the conditions of Lemma 1 are ful�lled (r2 >

r1 > 0). Then, the operators Gn given by (17) can be given in the form

(18) Gn = �2

�
!n2 ; for n � 0;

!n1 ; for n � 0;

where �2 is an operator from Fc. Hence operators Gn are represented by continuous
functions for every n 2 Z.

Proof. By Lemma 1 the operators !1 and I=!2 are from Fc, hence the oper-
ator Gn can be written in the form

(19) Gn =

�
�1!

n
2 ; n � 0;

�2!
n
1 ; n � 0:

For n = 0 we have �2 = �1. The coeÆcient �2 can be obtained from the equation

(20) aG�1 + bG0 + cG1 = I;

where a, b, c are coeÆcients of the equation (5) having the forms (6), (7) and (8),
respectively. From (19) it follows that

(21) G�1 = �2=!2; G0 = �2; G1 = �2!1:

Using the last two relations ((20) and (21)), we obtain

�2 ((a1I+s
r1(a2I+�a))=!2+(b1I+s

r2(b2I+�b))+(c1I+s
r1(c2I+�c))!1) = I;

where a1; a2; b1; b2; c1; c2; r1; r2 are numerical constants and �a, �b, �c, are the
operators from Fc. So we have

�2 =
I

(a1I + sr1(a2I + �a))=!2 + (b1I + sr2(b2I + �b)) + (c1I + sr1(c2I + �c))!1

=
`r2

b2
� I

I + 
:

Since r2 > r1 > 0, the operator  is from Fc; it has the form

 =

�
a1
b2
`r2 + sr1�r2

�
a2
b2

+
�a
b2

��
I

!2
+
b1
b2
`r2+

�b
b2
+

�
c1
b2
`r2 + sr1�r2

�
c2
b2

+
�c
b2

�
!1

�
:

So we have

�2 =
`r2

b2

1X
k=0

(�1)kk =: `r2�:
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Since r2 > 0, and I=!2 and !1 are represented by continuous functions, it follows
that �2 is an operator from Fc. Therefore the operators Gn, for each n, are from
Fc, and the relation (18) holds.

Theorem 1. If conditions of Lemma 1 and Lemma 4 are ful�lled (r2 > r1 >
0) and operators fk in the equation (5) are of the form fk = Fks

m, for m < r2,
where Fk are numerical constants satisfying jFkj < F (for some F > 0), then
the particular solution of equation (5) exists in the �eld F and is represented by a
continuous function.

Proof. If r2 > r1 > 0, then we have

Gn�k = �2

�
!n�k2 for n� k � 0;

!n�k1 for n� k � 0:

In that case the operators Gn�k are from Fc and therefore the solution of di�erence
equation (5) has the form (see (16))

(22) un =

1X
k=�1

Gn�kfk = `r2�m�

 
nX

k=�1

!n�k1 Fk +

1X
k=n+1

!n�k2 Fk

!
:

The last two series converge because the operators !1 and I=!2 are from Fc.

Lemma 5. Suppose that r1 � r2 > 0 (compare to Lemma 2). If Æ1 < 1 and
Æ2 > 1, then the operator Gn can be written as

(23) Gn = �3

�
(Æ2I + Æc;2)

n; for n � 0;

(Æ1I + Æc;1)
n; for n � 0,

where �3 is represented by a continuous function and operators Gn are from Fc.

Proof. Since Æ1 < 1 and Æ2 > 1, it follows that we can take �1 = �2 = 0, and
we obtain from (24)

(24) Gn =

�
�1(Æ2I + Æc;2)

n; n � 0;

�2(Æ1I + Æc;1)
n; n � 0:

For n = 0 it follows that �2 = �1 =: �3. The coeÆcient �3 can be obtained from
the equation

aG�1 + bG0 + cG1 = I;

where a, b, c are coeÆcients of the equation (5) having the forms (6), (7) and (8),
respectively. From the relation (24) it follows that G0 = �3 and we have

(a1I + sr1(a2 + �a))�3(Æ2I + Æc;2)
�1 + �3 + (c1I + sr1(c2 + �c))�3(Æ1I + Æc;1) = I:

Since r1 � r2 > 0, we have

�3 =
I

(a1I + sr1(a2 + �a))(Æ2I + Æc;2)�1 + I + (c1I + sr1(c2 + �c))(Æ1I + Æc;1)
:
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If we denote by 2 =
a2
Æ2

+ c2Æ1, then we have �3 =
`r1

2
� I

I + �
, where

� =

�
a1`

r1

2
+
�a
2

�
� I

Æ2I + Æc;2

+
a2
2

1X
k=1

(�1)k
�
Æc;2
Æ2

�k

+
`r1

2
+

�
c1`

r1

2
+
�c
2

�
(Æ1I + Æc;1) + c2Æc;1:

From the last expression it follows that the operator � is represented by a continuous
function and therefore the operator �3 has the form

�3 =
`r1

2
�
1X
j=0

(�1)j�j =: `r1�1

and is represented by a continuous function too. This implies the relation (23).
Therefore, the operators Gn given by the relation (23) are from Fc.

Similarly we can prove

Lemma 6. Suppose that r1 � r2 > 0: Then we have

Gn = �4

(
(Æ1I + Æc;1)

n; for n � 0;

(Æ2I + Æc;2)
n; for n � 0;

for Æ1 > 1; Æ2 < 1;

Gn = �5

(
(Æ1I + Æc;1)

n � (Æ2I + Æc;2)
n; for n � 0;

0; for n � 0;
for Æ1 > 1; Æ2 > 1;

Gn = �6

(
0; for n � 0;

(Æ1I + Æc;1)
n � (Æ2I + Æc;2)

n; for n � 0;
for Æ1 < 1; Æ2 < 1;

where �4; �5 and �6 are represented by continuous functions. In all three cases the
operators Gn are from Fc.

Finally, we can give the following

Theorem 2. If the conditions of Lemma 5 (and Lemma 6) are ful�lled in the
equation (5), i.e. r1 � r2 > 0, and operators fk satisfy the condition fk = Fkl

m for
m < r1, where Fk are numerical constants satisfying jfkj < F , then the particular
solution of the equation (5) is represented by a continuous function for r1�m > 0.

Proof. We shall prove only the case when Æ2 > 1 and Æ1 < 1; the other cases
are handled similarly. Then we have

Gn�k = �3

�
(Æ2I + Æc;2)

n�k for n� k � 0;

(Æ1I + Æc;1)
n�k for n� k � 0:

In this case we can write (Æ1I + Æc;1)
n�k = Æn�k1 + �c;n�k;1 for n � k > 0, and

I(Æ2I + Æc;2)
�(k�n) = IÆ

�(k�n)
2 + �c;k�n;2, for k � n > 0, where �c;k�n;2 are some

operators from Fc.
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So the solution of the di�erence equation (5) has the form

un =

1X
k=�1

Gn�kfk = `r1�m�1

�
 

nX
k=�1

FkÆ
k�n
1 +

nX
k=�1

Fk�c;n�k;1 +

1X
k=n+1

FkÆ
n�k
2 +

1X
k=n+1

Fk�c;n�k;2

!
:

The �rst and the third series converge as numerical series and the second and the
forth series converge in the �eld F . Therefore in this case (r1 > m) the solution
un is again represented by a continuous function.

5. The error of approximation. In this section we shall keep x in some
�xed interval [A;B]. Also, we shall consider in this section only the case when
r > p.

Let us suppose that the solution of the equation (2) is from Fc and has a
continuous fourth derivative in the �eld of Mikusi�nski operators. Let us denote by
u(xj) the exact solution (the solution of the equation(3)) and by uj the approximate
solution of the same equation (which by Theorems 1 and 2 also belongs to Fc). In
fact uj is the solution of the di�erence equation (5).

In order to give the error of approximation, we have to estimate the di�erence
between the equations (2) (or (3)) and (5). So we obtain

pX
i=0

Ais
i

�
u00(xj)� uj+1 � 2uj + uj�1

h2

�
+

qX
i=0

Bis
i

�
u0(xj)� uj+1 � uj�1

2h

�

+

rX
i=0

Cis
i (u(xj)� uj) = 0:

From the previous relation we have

ju(xj)� uj j =
�����
� rX
i=0

Cis
i
��1 pX

i=0

Ais
i
�
u00(xj)� uj+1 � 2uj + uj�1

h2

�

+

qX
i=0

Bis
i
�
u0(xj)� uj+1 � uj�1

2h

�!����� :
If r > p, then�����
 

pX
i=0

Ais
i

!, 
rX

i=0

Cis
i

!����� =
�����
 

pX
i=0

Ais
i

!, 
sr

 
Cr +

r�1X
i=0

Ci`
r�i

!!�����
is represented by a continuous function and it can be estimated by�����

 
pX

i=0

Ais
i

!, 
rX

i=0

Cis
i

!����� �T R1(T )`:
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Also, assuming that r > q, from the estimation�����
 

qX
i=0

Bis
i

!, 
rX

i=0

Cis
i

!����� �T R2(T )`;

we have

ju(xj)� uj jT � h2

6

�
R1(T )

M4(T )

2
+R2M3(T )

�
`2;

where
Mi(T ) = max

x2[A;B]; t2[0;T ]
ju(i)(x; t)j; i = 3; 4:

Therefore the solution of the equation (5) given by (22) can be treated as the
approximate solution of the di�erential equation (2).

Let us remark that the error of approximation is of order h2 in the �eld of
Mikusi�nski operators, analogously to the case when we are working with numerical
constants.
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