
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 59 (73), 1996, 49{76

ESTIMATES FOR DERIVATIVES AND INTEGRALS
OF EIGENFUNCTIONS AND ASSOCIATED FUNCTIONS
OF NONSELFADJOINT STURM{LIOUVILLE OPERATOR

WITH DISCONTINUOUS COEFFICIENTS (I)

Neboj�sa L. La�zeti�c

Communicated by Miroljub Jevti�c

Abstract. We consider derivatives of the eigenfunctions and associated func-
tions of the formal Sturm{Liouville operator

L(u)(x) = �
�
p(x)u0(x)

�
0

+ q(x)u(x)

de�ned on a �nite or in�nite interval G � R . We suppose that the complex-valued
potential q = q(x) belongs to the class Lloc

1
(G) and that piecewise continuously

di�erentiable coeÆcient p = p(x) has a �nite number of the discontinuity points in
G .

Order-sharp upper estimates are obtained for the suprema of the moduli of
the �rst derivative of the eigenfunctions and associated functions of the operator L
in terms of their norms in metric L2 on compact subsetes of G (on the entire
interval G ).

Introduction

1. De�nitions. Consider the formal Sturm{Liouville operator

(1) L(u)(x) = � �
p(x)u0(x)

�0
+ q(x)u(x) ;

which is de�ned on an arbitrary interval G = (a; b) of the real axis R . Let x0 2 G
be a point of discontinuity of the coeÆcient p . If we suppose that

p(x) =

�
p1(x) ; x 2 (a; x0) ;

p2(x) ; x 2 (x0; b) ;

then the following conditions are imposed on the coeÆcients :

AMS Subject Classi�cation (1991): Primary 34B25

Key Words and Phrases: formal di�erential operator, eigenfunction, associated function



50 La�zeti�c

1) p1(x) 2 C(1)(a; x0] , and p2(x) 2 C(1)[x0; b) .
2) p1(x) � �1 > 0 everywhere on (a; x0] , and p2(x) � �2 > 0 everywhere

on [x0; b) .

3) q(x) 2 Lloc
1 (G) is a complex-valued function.

De�nition 1. A complex-valued function
Æ
u�(x) 6� 0 is called an eigenfunction

of the operator (1) corresponding to the (complex ) eigenvalue � (� = Re�+i Im� )
if it satis�es the following conditions :

(a)
Æ
u�(x) is absolutely continuous on any �nite closed subinterval of G .

(b)
Æ
u0�(x) is absolutely continuous on any �nite closed subinterval of the

half-open intervals (a; x0] and [x0; b) .

(c)
Æ
u�(x) satis�es the di�erential equation

(2) � �
p1(x)

Æ
u0�(x)

�0
+ q(x)

Æ
u�(x) = �

Æ
u�(x)

almost everywhere on (a; x0) , and the di�erential equation

(3) � �
p2(x)

Æ
u0�(x)

�0
+ q(x)

Æ
u�(x) = �

Æ
u�(x)

almost everywhere on (x0; b) .

(d)
Æ
u�(x) satis�es the junction condition

p1(x0)
Æ
u0�(x0 � 0) = p2(x0)

Æ
u0�(x0 + 0) :

De�nition 2. A complex-valued function
i
u�(x) 6� 0 (i = 1; 2; . . . ) is called an

associated function (of the i{th order ) of the operator (1) corresponding to the

eigenfunction
Æ
u�(x) and the eigenvalue � if it satis�es the following conditions :

(a?) Conditions (a); (b) and (d) of De�nition 1 hold for
i
u�(x) .

(b?)
i
u�(x) satis�es the di�erential equation

(4) � �
p1(x)

i
u0�(x)

�0
+ q(x)

i
u�(x) = �

i
u�(x) � i�1

u� (x)

almost everywhere on (a; x0) , and the di�erential equation

(5) � �
p2(x)

i
u0�(x)

�0
+ q(x)

i
u�(x) = �

i
u�(x) � i�1

u� (x)

almost everywhere on (x0; b) .

1.1. Let K be any compact set of positive measure lying strictly within G .
We will use the notation

KR
def
= fx 2 G j �(x;K ) � R g ;

where R 2 (0; �(K; @G)) , and K is the intersection of all closed intervals con-
taining K . ( By �(A;B) we denote the distance of a set A � R from a set
B � R .)

If � = r ei' , then
p
�

def
=

p
r ei'=2 , where ' 2 (��=2; 3�=2] .
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2. Main theorem. We present the following results.

Theorem 1. (a) If q(x) 2 Lloc
1 (G) , then for any compact subset K of the

interval G there exist a number R 2 (0; �(K; @G)) and constants r(KR; Im
p
� );

Ci1(KR; p; q; Im
p
� ) ( i = 0; 1; 2; . . . ) such that

(6) sup
x2K

j iu0�(x) j � Ci1(KR; p; q; Im
p
� ) k i

u� kL2(KR)

for 0 � j Re
p
� j � r(KR; Im

p
� ) , and

(7) sup
x2K

j iu0�(x) j � Ci1(KR; p; q; Im
p
� ) j

p
� j k i

u� kL2(KR)

for j Rep� j > r(KR; Im
p
� ) .

(b) Let q(x) 2 L1(G) and (when the interval G is in�nite )
i
u�(x) 2 L2(G) .

If the functions p1(x) and p2(x) are bounded together wiht their �rst derivatives,

then there exist constants r(G; Im
p
� ) and Ci1(G; p; q; Im

p
� ) ( i = 0; 1; 2; . . . )

such that

(8) sup
x2G

j iu0�(x) j � Ci1(G; p; q; Im
p
� ) k i

u� kL2(G)

for 0 � j Rep� j � r(G; Im
p
� ) , and

(9) sup
x2G

j iu0�(x) j � Ci1(G; p; q; Im
p
� ) j

p
� j k i

u� kL2(G)

for j Rep� j > r(G; Im
p
� ) .

Let us note that by
i
u0�(x0) we mean

i
u0�(x0 � 0) or/and

i
u0�(x0 + 0) .

Remark 1. If G is a �nite interval, then condition imposed in the propositon
(b) on the functions p01(x) and p02(x) can be replaced by the following condition:
p01(x) 2 L1(a; x0); p

0
2(x) 2 L1(x0; b) .

Remark 2. It will be shown in the proof of Theorem 1 that actually "better"
estimates than the ones formulated above are valid. Namely, it is possible to replace

k i
u� kL2(KR) in the estimates (6){(7) by max

x2KR0
j iu�(x) j , for some R0 2 (0; R) .

Moreover, if G is a �nite interval, then there exists a closed interval ~K � G

such that we can replace k i
u� kL2(G) and Ci1(G; �) in the estimates (8){(9) by

max
x2 ~KR0

j iu�(x) j and Ci1( ~KR0
; �) respectively.
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Remark 3. Let �(L) be some set of eigenvalues of the operator (1) . If there
exists a constant A not depending on the numbers � 2 �(L) and such that

(10) j Im
p
� j � A ; � 2 �(L) ;

then the constants C01(�) and r(�) do not depend on the numbers � , which
means that it is possible to de�ne them uniformly with respect to the parameter
� 2 �(L) .

If the numbers � 2 �(L) satisfy (10) and zero is not a limit point of the set

f jRe
p
� j j� 2 �(L) g, then the constants Ci1(�) ( i 2 N ) do not depend on these

numbers, too.

Remark 4. The constants Ci1(�) ( i = 1; 2; . . . ) actually do not depend on
the order i of the associated function, which means that they can be the same for
all associated functions corresponding to the speci�c eigenfunction.

Remark 5. Theorem 1 is an extension of known results for the formal Schr�o-
dinger operator

(11) L(u)(x) = � u00(x) + q(x)u(x) :

Namely, in this case the estimates (6){(9) were announced in [8] and proved in
[5] . The corresponding estimates for derivatives of eigenfunctions of an arbitrary
nonnegative selfadjoint extension of the operator (13) were �rst derived in [3]{[4] .

If G = (a; b) is a �nite interval, then for the operator

L(u)(x) = p(x)u00(x) + r(x)u0(x) + q(x)u(x) ;

with coeÆcients p(x) 2 W 2
1 (a; x0) \ W 2

1 (x0; b); r(x) 2 W 1
1 (a; x0) \ W 1

1 (x0; b)
and q(x) 2 L1(a; b) , the global estimate (9) was announced in [10] . There some
perturbed junction condition (on the �rst derivatives) at the discontinuity point
x0 2 G was imposed.

Remark 6. The following example shows that the estimates (6){(9) are best
possible with respect to the order of the parameter � . Let the operator

L(u)(x) = � u00(x)

be de�ned on the interval G = (0; 1) , and let the eigenfunctions and associated
functions of L satisfy the boundary conditions u�(0) = 0 ; u0�(0) = u0�(1) .
Then �(L) = f�n = (2n�)2 j n = 0; 1; 2; . . .g is the set of all eigenvalues, the

eigenfunctions have the form
Æ
u0(x) = x ;

Æ
un(x) = sin 2n�x (n 2 N ) ; the associated

functions corresponding to the eigenfunction
Æ
u0 do not exist, and the others have

the form
1
un(x) = � x

cos 2n�x

4n�
; n 2 N

(see [1] ). It is not diÆcult to verify that in this case the order of parameter � in
the corresponding estimates (6){(9) can not be improved.

Remark 7. For the sake of simplicity we have supposed that the coeÆcient
p(x) has only one point of discontinuity. But all stated results remain valid when
this function has an arbitrary �nite number of such points. In that case de�nitions
1 and 2 should be formulated in the corresponding way.



Estimates for derivatives and integrals ... 53

3. Estimates of eigenfunctions and associated functions. In the proof
of Theorem 1 we will essentially use the following estimates for eigenfunctions and
associated functions of the operator (1) , which were announced in [7] and proved
in [9] .

Lemma 1. (a) If q(x) 2 Lloc
1 (G) , then for any compact set K � G

there exist a number R 2 (0; �(K; @G)) and constants Ci(KR; p; q; Im
p
� ) ( i =

0; 1; 2; . . . ) such that

(12) max
x2K

j iu�(x) j � Ci(KR; p; q; Im
p
� ) k i

u� kL2(KR) :

(b) Suppose that q(x) 2 L1(G) , and that
i
u�(x) 2 L2(G) if G is an in�nite

interval. If p1(x) and p2(x) are bounded along with their �rst derivatives, then

there exist constants Ci(G; p; q; Im
p
� ) ( i = 0; 1; 2; . . . ) such that

(13) sup
x2G

j iu�(x) j � Ci(G; p; q; Im
p
� ) k i

u� kL2(G) :

Lemma 2. (a) If q(x) 2 Lloc
1 (G) , then for any compact set K � G there

exist a number R 2 (0; �(K; @G)) and constants Ai(KR; p; q; Im
p
� ); Ai(KR; p; q)

(i = 1; 2; . . . ) such that

(14)

max
x2K

j i�1u� (x) j � Ai(KR; p; q; Im
p
� ) j

p
� j � max

x2KR
j iu�(x) j for � 6= 0 ;

max
x2K

j i�1u� (x) j � Ai(KR; p; q) � max
x2KR

j iu�(x) j for � = 0 :

(b) Suppose that q(x) 2 L1(G) , and that
i
u�(x) 2 L2(G) if G is an in�nite

interval. If p1(x) and p2(x) are bounded along with their �rst derivatives, then

there exist constants Ai(G; p; q; Im
p
� ); Ai(G; p; q) ( i = 1; 2; . . . ) such that

(15)

sup
x2G

j i�1u� (x) j � Ai(G; p; q; Im
p
� ) j

p
� j � sup

x2G
j iu�(x) j for � 6= 0 ;

sup
x2G

j i�1u� (x) j � Ai(G; p; q) � sup
x2G

j iu�(x) j for � = 0 :

3.1. If G is a �nite interval, then condition imposed on the functions p01(x)
and p02(x) in the propositions (b) of the previous lemmas can be replaced by the
following one: p01 2 L1(a; x0); p

0
2(x) 2 L1(x0; b) .

Also, the global estimate (13) may be sharpened in the following sense: If
G is a �nite interval, then for any closed interval K � G there exist constants
Ci(K; p; q; Im

p
� ) such that

sup
x2G

j iu�(x) j � Ci(K; p; q; Im
p
� ) �max

x2K
j iu�(x) j :
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3.2. Having in mind the speci�c applications of estimates (12){(15) , we note
that the constants appearing in these estimates have the following properties of
independence of the parameters � and i :

1) If condition (10) is satis�ed, then it is possible to make the constants
C0(�) independent of the numbers � 2 �(L) .

2) If the numbers � 2 �(L) satisfy (10) and zero is not a limit point of the

set fj Re
p
� j j� 2 �(L)g , then the constants Ci(�) and Ai(�) ( i 2 N ) do not

depend on those numbers.

3) The constants Ci(�); Ai(�) (i 2 N) are independent of the parameter i .

As will be shown in the proof of Theorems 1 , the statements from Remark 3
are actually consequences of 1){2) .

Remark 8. The constants from estimates (12) and (14) have an important
property concerning the dependence on the "variable" KR . Namely, a careful
analysis of proofs of the corresponding theorems in papers [9] may show the fol-
lowing fact: Under assumptions from the proposition (b) of Lemma 1 (or Lemma
2) it is possible to de�ne the mentioned constants in such way, that they contain
only the length of the closed interval K .

4.Methods and applications. The estimates (6){(9) are obtained by a
method based only on the mean-value formulas for the �rst derivatives of solutions
of the di�erential equations (2){(5) and on the mean-value formulas for these so-
lutions. This method is a subsequent development of the method worked out in
[6] .

4.1. The estimates formulated in Theorem 1 are results of independent in-
terest. They also play a basic role in study of the following problems concerning
expansions in eigenfunctions and associated functions of the operators (1) and (11) :

1) Uniform convergence on G of the �rst derivative of partial sum of spec-
tral expansion (for any absolutely continuous function) generated by an arbitrary
complete and minimal system of eigenfunctions and associated functions of the
mentioned operators.

2) Uniform equiconvergence on compact subsets of G of the �rst derivative
of partial sums of spectral expansions (for any absolutely continuous function)
corresponding to two nonselfadjoint Sturm{Liouville (or Schr�odinger) operators.

4.2. The present paper is the �rst one in a series of three papers devoted
to derivatives and integrals of the eigenfunctions and associated functions of the
operator (1) . It contains three sections. In x 1 the necessary mean-value formulas
for the �rst derivative of the eigenfunctions and associated functions are derived.
In x 2 the proof of estimates (6){(7) is given, and in x 3 the estimates (8){(9) are
proved.

In the second paper we will establish order{sharp upper estimates for integrals
(over arbitrary closed intervals [y1; y2] � G ) of the eigenfunctions and associated
functions in terms of their L2-norms when G is a �nite interval.
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Finally, in the third subsequent paper we intend to discuss the problem of
estimates for the higher derivatives and some "double" integrals of eigenfunctions
and associated functions of the operator (1) . There the corresponding theorems
will be formulated and proved.

x1. Mean-value formulas for the �rst derivative

1. Auxiliary functions. In this section we will establish so{called mean-

value formulas for the �rst derivative of eigenfunctions and associated functions of
the operator (1) .

1.1. Throughout this paper we will constantly use functions h = �1(x; t)
and h = �2(x; t) de�ned by

(16)

xZ
x��1(x;t)

d�p
p(�)

= t ;

x+�2(x;t)Z
x

d�p
p(�)

= t ;

where x 2 (a; b) ; t 2 [0; tx] , and tx is a suÆciently small positive number. These
functions are continuous with respect to the variable x on every closed interval
K � G , and for any x 6= x0 they have the �rst derivative. Moreover, for a �xed
x 2 G they are continuous and (strictly) increasing with respect to the variable t
on the corresponding closed interval [0; tx] . Hence, there exist the inverse functions
t = �1(x; h) and t = �2(x; h) , which will be used in the following form:

(17) �1(x; x� �) =

xZ
�

d�p
p(�)

; �2(x; � � x) =

�Z
x

d�p
p(�)

:

The functions (16) and (17) were �rst introduced by V.A. Il'in in [2] (case x = x0 ).

1.2. Let x 2 G and t 2 (0; tx] be arbitrary �xed numbers. In order to
establish the mentioned mean-value formulas for the �rst derivative we need the
function

(18) w(x; �)
def
=

( 1p
�
cos

p
� (�1(x; x� �)� t) ; x� �1(x; t) � � � x ;

1p
�
cos

p
� (�2(x; � � x)� t) ; x � � � x+ �2(x; t) ;

where � 2 C n f0g is an arbitrary (complex) number. It is not diÆcult to see that
for � 6= x0 the following holds:

(19)

�
p(�)w0�(x; �)

�0
= � �w(x; �) +

+

8><
>:

p0(�)

2
p
p(�)

sin
p
� (�1(x; x � �)� t) ; x� �1(x; t) < � < x ;

�p0(�)
2
p
p(�)

sin
p
� (�2(x; � � x)� t) ; x < � < x+ �2(x; t) :
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2.Mean-value formulas for the �rst derivative of an eigenfunction.

Let
Æ
u�(�) be an eigenfunction of the operator (1) corresponding to the eigenvalue

� 6= 0 . Fix x 2 G and t 2 [0; tx] , where tx > 0 is a number such that
[x� �1(x; tx); x + �2(x; tx)] � G .

2.1. We �rst suppose that x0 2 (x� �1(x; t); x) and start from the integral

(20)

x+�2(x;t)Z
x��1(x;t)

�
p(�)w0�(x; �)

�0 Æ
u�(�) d� =

x0Z
x��1(x;t)

�
p1(�)w

0
�(x; �)

�0 Æ
u�(�) d� +

+

xZ
x0

�
p2(�)w

0
�(x; �)

�0 Æ
u�(�) d� +

x+�2(x;t)Z
x

�
p2(�)w

0
�(x; �)

�0 Æ
u�(�) d�

Using equalities (19), we obtain

(21)

x+�2(x;t)Z
x��1(x;t)

�
p(�)w0�(x; �)

�0 Æ
u�(�) d� = � �

x0Z
x��1(x;t)

Æ
u�(�)w(x; �) d� +

+

x0Z
x��1(x;t)

p01(�)

2
p
p1(�)

Æ
u�(�) sin

p
� (�1(x; x� �)� t) d��

� �

xZ
x0

Æ
u�(�)w(x; �) d� +

xZ
x0

p02(�)

2
p
p2(�)

Æ
u�(�) sin

p
� (�1(x; x� �)� t) d� �

��

x+�2(x;t)Z
x

Æ
u�(�)w(x; �) d��

x+�2(x;t)Z
x

p02(�)

2
p
p2(�)

Æ
u�(�) sin

p
� (�2(x; ��x)�t) d�:

On the other hand, applying twice the partial integration to the integrals on
the right-hand side of (20) , and using then the junction condition, the continuity of
function (18) , the equations (2){(3) and the di�erentiability properties of function
(18) , we conclude that

(22)

x+�2(x;t)Z
x��1(x;t)

�
p(�)w0�(x; �)

�0 Æ
u�(�) d� =

=
1p
�

�
p1(x� �1(x; t))

Æ
u0�(x� �1(x; t)) � p2(x + �2(x; t))

Æ
u0�(x+ �2(x; t))

� �
�2

p
p2(x)

Æ
u�(x) sin

p
� t+

�p
p1(x0)�

p
p2(x0)

� Æ
u�(x0) sin

p
� (�1(x; x�x0)�t)+

+

x+�2(x;t)Z
x��1(x;t)

q(�)
Æ
u�(�)w(x; �) d� � �

x+�2(x;t)Z
x��1(x;t)

Æ
u�(�)w(x; �) d� :
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Finally, the equalities (21) and (22) yield the following mean-value formula

for the �rst derivative of the function
Æ
u�(�) :

(23)

p1(x� �1(x; t))
Æ
u0�(x � �1(x; t)) � p2(x+ �2(x; t))

Æ
u0�(x+ �2(x; t)) =

= 2
p
p2(x)

Æ
u�(x)

p
� sin

p
� t �

� �p
p1(x0)�

p
p2(x0)

� Æ
u�(x0)

p
� sin

p
� (�1(x; x � x0)� t) +

+
p
� �

xZ
x��1(x;t)

p0j(�)

2
p
pj(�)

Æ
u�(�) sin

p
� (�1(x; x � �)� t) d� �

�
p
� �

x+�2(x;t)Z
x

p02(�)

2
p
p2(�)

Æ
u�(�) sin

p
� (�2(x; � � x)� t) d� �

�
x+�2(x;t)Z

x��1(x;t)

q(�)
Æ
u�(�) cos

p
� (�k(x; jx� � j)� t) d� ;

where �k(x; jx� � j) = �1(x; x� �) if � < x , and �k(x; jx� � j) = �2(x; � � x) if

x < � ; also, j = 1 if � � x0 , and j = 2 if x0 � � . Denote by I(23)(x; pj ; p2; q;
Æ
u�)

the sum of integrals (with corresponding signs + or � ) appearing in (23) .

2.2. Suppose now that x0 2 (x; x+�2(x; t)) . Then analogously to the previous
case one can obtain the following mean-value formula :

(24)

p1(x� �1(x; t))
Æ
u0�(x � �1(x; t)) � p2(x+ �2(x; t))

Æ
u0�(x+ �2(x; t)) =

= 2
p
p1(x)

Æ
u�(x)

p
� sin

p
� t + I(23)(x; p1; pj ; q;

Æ
u�) �

� �p
p2(x0)�

p
p1(x0)

� Æ
u�(x0)

p
� sin

p
� (�2(x; x0 � x)� t) :

2.3. The case when x0 =2 (x � �1(x; t); x + �2(x; t)) is much simpler. Then
the corresponding mean-value formulas have the form

(25)
pj(x� �1(x; t))

Æ
u0�(x � �1(x; t)) � pj(x+ �2(x; t))

Æ
u0�(x+ �2(x; t)) =

= 2
q
pj(x)

Æ
u�(x)

p
� sin

p
� t + I(23)(x; pj ; pj ; q;

Æ
u�) ;

where j = 1 if x+ �2(x; t) < x0 , and j = 2 if x0 < x� �1(x; t) .

3.Mean-value formulas for the �rst derivative of an associated func-

tion. Let
i
u�(�) be an associated function of the operator (1) corresponding to

the eigenfunction
Æ
u�(�) and the eigenvalue � 6= 0 . Let x 2 G and t 2 [0; tx] be

arbitrary �xed numbers.
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3.1. If x0 2 (x � �1(x; t); x + �2(x; t)) n fxg , then the following mean-value

formulas for the �rst derivative of the function
i
u�(�) hold:

(26)

p1(x� �1(x; t))
i
u0�(x � �1(x; t)) � p2(x+ �2(x; t))

i
u0�(x+ �2(x; t)) =

= 2
q
pj1(x)

i
u�(x)

p
� sin

p
� t �

� �q
pj2(x0)�

q
pj1(x0)

� i
u�(x0)

p
� sin

p
� (�j2(x; x � x0)� t) +

+ I(23)(x; pj ; pj ; q;
i
u�) �

x+�2(x;t)Z
x��1(x;t)

i�1
u� (�) cos

p
� (�k(x; jx � � j)� t) d� ;

where j1 = 2; j2 = 1 if x0 < x , and j1 = 1; j2 = 2 if x < x0 ; also, j = 1 if
� � x0 , and j = 2 if x0 � � .

The proof of these formulas is (almost) the same as the one of the formula
(23) . The only di�erence is that instead of (2){(3) we use now the equations (4){
(5) .

3.2. If x0 =2 (x � �1(x; t); x + �2(x; t)) , then the corresponding mean-value

formulas have the form

(27)

pj(x� �1(x; t))
i
u0�(x � �1(x; t)) � pj(x+ �2(x; t))

i
u0�(x+ �2(x; t)) =

= 2
q
pj(x)

i
u�(x)

p
� sin

p
� t + I(23)(x; pj ; pj ; q;

i
u�) �

�
x+�2(x;t)Z

x��1(x;t)

i�1
u� (�) cos

p
� (�k(x; jx � � j)� t) d� ;

where j = 1 if x+ �2(x; t) < x0 , and j = 2 if x0 < x� �1(x; t) .

x2. Local estimates of the �rst derivative

1. Local estimate (7) . In this section the proof of the propositon (a) of
Theorem 1 will be given. We will consider in detail the case i > 1 only, the case
i = 0 being more simple.

1.1. Let K � G be an arbitrary compact set, with x0 2 K . There are
points c; d 2 K such that c � x � d for every x 2 K . Let Æ 2 (0; 1) be a �xed
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number. We introduce the notations

� = min fp�1; p�2 g ; R0 = Æ �(K; @G) ;

(KR0
; p) = max

�
max

x2[c�R0;x0]

p
p1(x) ; max

[x0;d+R0]

p
p2(x)

�
;

0(KR0
; p) = max

�
max

x2[c�R0;x0]
j p01(x) j ; max

x2[x0;d+R0]
j p02(x) j

�
;

�(KR0
; p) = min

� cZ
c�R0

d�p
p1(�)

;

d+R0Z
d

d�p
p2(�)

�
;

�x a number �0 2 (0; �(KR0
; p)) , and for every x 2 K de�ne numbers �1(x; �0)

and �2(x; �0) by equalities (18) . Then (x � �1(x; �0); x + �2(x; �0)) � KR0
, and

the following estimate holds:

(28) max f �1(x; �0) ; �2(x; �0) g � (KR0
; p) �0 :

We will use the function
(29)

!(x; y;�)
def
=

8><
>:

cos� �1(x; x � y); x� �1(x; �0) � y � x;

cos� �2(x; y � x); x � y � x+ �2(x; �0);

0; y 2 (a; x� �1(x; �0)) [ (x+ �2(x; �0); b);

where x 2 K , and � > 0 is an arbitrary number. Consider the integral

(30)
i
!(x;�)

def
=

bZ
a

!(x; y;�)
i
u�(y) dy =

=

xZ
x��1(x;�0)

i
u�(y) cos� �1(x; x� y) dy +

x+�2(x;�0)Z
x

i
u�(y) cos� �2(x; y � x) dy ;

where
i
u�(�) is an arbitrary associated function corresponding to the eigenfunction

Æ
u�(�) and to the eigenvalue � 6= 0 .

1.2. At �rst we suppose that x 2 K�
def
= fx 2 K j x � x0 g is a �xed

point and x0 < x+ �2(x; �0) . Putting t = �1(x; x� y) in the �rst integral on the
right{hand side of (30) , and t = �2(x; y � x) in the second one, we obtain the
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equality

(31)
i
!(x;�) =

�2(x;x0�x)Z
0

hp
p1(x� �1(x; t))

i
u�(x � �1(x; t)) +

+
p
p1(x+ �2(x; t))

i
u�(x+ �2(x; t))

i
cos� t dt +

+

�0Z
�2(x;x0�x)

hp
p1(x� �1(x; t))

i
u�(x� �1(x; t)) +

+
p
p2(x + �2(x; t))

i
u�(x+ �2(x; t))

i
cos� t dt :

In order to "evaluate" the �rst (the second) integral (31) , we will use the
mean-value formula (16) (the mean-value formula (18) ) from the �rst paper [9] .
Hence we conclude that the following equality holds:

(32)
i
!(x;�) = 2

p
p1(x)

i
u�(x)

�0Z
0

cos� t cos
p
� t dt +

+
�p

p2(x0)�
p
p1(x0)

� i
u�(x0) �

�0Z
�2(x;x0�x)

cos� t cos
p
� (�2(x; x0 � x) � t) dt �

�
�0Z
0

cos� t �
� xZ

x��1(x;t)

p01(�)

2
p
p1(�)

i
u�(�) cos

p
� (�1(x; x� �)� t) d�

�
dt +

+

�0Z
0

cos� t �
� x+�2(x;t)Z

x

p0j(�)

2
p
pj(�)

i
u�(�) cos

p
� (�2(x; � � x)� t) d�

�
dt �

� 1p
�
�
�0Z
0

cos� t �
� x+�2(x;t)Z

x��1(x;t)

q(�)
i
u�(�) sin

p
� (�k(x; jx � � j)� t) d�

�
dt �

� 1p
�
�
�0Z
0

cos� t �
� x+�2(x;t)Z

x��1(x;t)

i�1
u� (�) sin

p
� (�k(x; jx� � j)� t) d�

�
dt :

It follows from (30) and the di�erentiability properties of functions (16) (with
respect to the variable x ) that for x 6= x0 we have

(33)
d

dx

i
!(x;�) =

�p
p1(x)

� x+�2(x;�0)Z
x

i
u�(y) sin� �2(x; y � x) dy �

xZ
x��1(x;�0)

i
u�(y) sin� �1(x; x� y) dy

�
+

+
cos� �0p
p1(x)

�p
p2(x+ �2(x; �0))

i
u�(x+�2(x; �0))�

p
p1(x � �1(x; �0))

i
u�(x��1(x; �0))

�
:
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On the other hand, by applying the well-known rules for di�erentiation under
the integral sign to equality (32) , it is possible to obtain still another expression

for d
dx

Æ
!(x;�) . In that way we get from (32){(33) that for x 6= x0 the following

equality holds:

(34)
i
u0�(x)

�0Z
0

cos� t cos
p
� t dt =

=
�

2 p1(x)

� x+�2(x;�0)Z
x

i
u�(y) sin��2(x; y � x) dy

�
xZ

x��1(x;�0)

i
u�(y) sin��1(x; x � y) dy

�

+
cos� �0
2 p1(x)

�p
p2(x+ �2(x; �0))

i
u�(x+ �2(x; �0)) �

�
p
p1(x� �1(x; �0))

i
u�(x� �1(x; �0))

� �
�
p
�

i
u�(x0)

p
p2(x0)�

p
p1(x0)

2 p1(x)
�

�0Z
�2(x;x0�x)

cos� t sin
p
� (�2(x; x0 � x)� t) dt �

� i
u�(x0)

p
p2(x0)�

p
p1(x0)

2 p1(x)
cos� �2(x; x0 � x) �

�
p
�

4 p1(x)

�0Z
0

cos� t �
� xZ

x��1(x;t)

p01(�)p
p1(�)

i
u�(�) sin

p
� (�1(x; x � �)� t) d� +

+

x+�2(x;t)Z
x

p0j(�)p
pj(�)

i
u�(�) sin

p
� (�2(x; � � x)� t) d�

�
dt +

+
1

4 p1(x)

�0Z
0

cos� t � � p01(x� �1(x; t))
i
u�(x � �1(x; t)) �

� p0j(x+ �2(x; t))
i
u�(x+ �2(x; t))

�
dt +

+
1

2 p1(x)

�0Z
0

cos� t �
� xZ

x��1(x;t)

q(�)
i
u�(�) cos

p
� (�1(x; x � �)� t) d� �

�
x+�2(x;t)Z

x

q(�)
i
u�(�) cos

p
� (�2(x; � � x)� t) d�

�
dt +
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+
1

2 p1(x)

�0Z
0

cos� t �
� xZ

x��1(x;t)

i�1
u� (�) cos

p
� (�1(x; x � �)� t) d� �

�
x+�2(x;t)Z

x

i�1
u� (�) cos

p
� (�2(x; � � x)� t) d�

�
dt :

1.3. The equality (34) will serve as a starting point in our proof of the local
estimate (7) . We will also need a lower{bound estimate for the integral

(35)

�0Z
0

cos� t cos
p
� t dt =

�0
2

�
sin �0 (�+

p
� )

�0 (�+
p
� )

+
sin �0 (��

p
� )

�0 (��
p
� )

�
:

It follows from lim
z!0

sin z
z = 1 that there exists a number Æ1 > 0 such that

for every z 2 C we have

(36) j z j < Æ1 =)
���� sin zz

���� >
2

3
:

From now on we will suppose that �0 satis�es the additional condition

(37) �0 < min

�
1;

Æ1

1 +
�
Im

p
�
�2
�
:

Introduce number �0
def
= (2=�0) �

q
1 + sh2(�0 Im

p
� ) . Then for every � > �0 we

have ���� sin �0 (�+
p
� )

�0 (�+
p
� )

���� �
q
1 + sh2(�0 Im

p
� )

�0 �
<

1

2
:

On the other{hand, if � satis�es j��Rep� j � 1 , then j��p� j � 1+
�
Im

p
�
�2
.

Therefore, for such numbers � it holds

j �0 (��
p
� ) j <

Æ1

1 +
�
Im

p
�
�2 �1 + �

Im
p
�
�2 �

= Æ1 ;

wherefrom we conclude, by (36) , that j �0 (��
p
� ) j�1 j sin �0 (��

p
� j > 2=3 .

Now, we can state the mentioned estimate for the integral (35) in the form of

the following assertion: There exists a number �0 = �0(�0; Im
p
� ) such that for

every number � > �0 , satisfying condition j��Re
p
� j � 1 , we have the estimate

(38)

����
�0Z
0

cos� t cos
p
� t dt

���� >
�0
6

:
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1.4. Let we de�ne number r(KR0
; Im

p
� ) > 1 by

r(KR0
; Im

p
� ) =

q�
Im

p
�
�2

+
�
�0(�0; Im

p
� )
�2
;

suppose that j Rep� j > r(KR0
; Im

p
� ) , and put �

def
= j Rep� j . For the number

� equality (34) and estimate (38) hold. Then estimates (28) and equality (34)
imply the following inequality:

j iu0�(x) j � j
p
� j � max

�2KR0
j iu�(�) j �

�
6

�2
(KR0

; p) +

+
6

�2 �0
(KR0

; p) +
6

�2
(KR0

; p)

q
1 + sh2(�0 Im

p
� ) +

6

�2 �0
(KR0

; p) +

+
3 �0
�3

(KR0
; p) 0(KR0

; p)

q
1 + sh2(�0 Im

p
� ) +

3

�2
0(KR0

; p) +

+
6

�2
k q kL1(KR0 )

q
1 + sh2(�0 Im

p
� )

�
+

+
6 �0
�2

(KR0
; p)

q
1 + sh2(�0 Im

p
� ) � max

�2KR0
j i�1u� (�) j ; or

(39) j iu0�(x) j � j
p
� j ~Ci1(KR0

; p; q; Im
p
� ) � max

�2KR0
j iu�(�) j +

+
6 �0
�2

(KR0
; p)

q
1 + sh2(�0 Im

p
� ) � max

�2KR0
j i�1u� (�) j :

At this place we have to use the "anti{apriori" estimate (14) : According to
the proposition (a) of Lemma 2 , there exist a number R1 2 (0; �(KR0

; @G)) and

a constant Ai(KR; p; q; Im
p
� ) such that

(40) max
�2KR0

j i�1u� (�) j � Ai(KR; p; q; Im
p
� ) j

p
� j � max

�2KR
j iu�(�) j ;

where KR
def
= KR0+R1

. But we need a more convenient form of this inequality.
Namely, if the compact K (from Lemma 2 ) is a closed interval, then instead of

max
�2KR

j iu�(�) j on the right{hand side of (14) it is possible to write max
�2K

j iu�(�) j ,
with a constant ~Ai(�) depending on K (see Remark 2 in the introductory part
of the �rst paper [9] ). Hence, instead of (40) we have the stronger estimate

(41) max
�2KR0

j i�1u� (�) j � ~Ai(KR0
; p; q; Im

p
� ) j

p
� j � max

�2KR0
j iu�(�) j :

Using this estimate, we obtain from (39) the following inequality:

(42) j iu0�(�) j � j
p
� j
�

~Ci1(KR0
; p; q; Im

p
� ) +

+
6 �0
�2

(KR0
; p) ~Ai(KR0

; p; q; Im
p
� )

q
1 + sh2(�0 Im

p
� )

�
� max
�2KR0

j iu�(�) j :
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According to the proposition (a) of Lemma 1 , there exist a number R1 in

the interval (0; �(KR0
; @G)) and a constant Ci(KR; p; q; Im

p
� ) such that

(43) max
�2KR0

j iu�(�) j � Ci(KR; p; q; Im
p
� ) k i

u� kL2(KR) ;

where KR
def
= KR0+R1

.

It follows from (42) and (43) that for the points x 2 K� , satisfying condition

x < x0 < x+ �2(x; �0) , the estimate

(44) j iu0�(x) j � C 0i1(KR0
; p; q; Im

p
� )Ci(KR; p; q; Im

p
� ) j

p
� j k i

u� kL2(KR)

holds, where C 0i1(KR0
; p; q; Im

p
� ) denotes the constant from estimate (42) .

1.5. Suppose now that x 2 K� is a �xed point and x + �2(x; �0) < x0 . In
that case, instead of (31) we obtain the following equality:

i
!(x;�) =

�0Z
0

�p
p1(x� �1(x; t))

i
u�(x � �1(x; t)) +

+
p
p1(x+ �2(x; t))

i
u�(x+ �2(x; t))

�
cos� t dt :

Using here the corresponding mean-value formula (16) from the �rst paper [9] ,
instead of (32) we get the equality

(45)
i
!(x;�) = R(32)(x;�;

i
u�;

i�1
u� ) ;

where R(32)(�) denotes the right{hand side of equality (32) , in which pj(�) is
replaced by p1(�) and the term containing x0 is omitted.

It follows then from equality (45), by the same "di�erentiability procedure"
as in the previous case, that

(46)
i
u0�(x)

�0Z
0

cos� t cos
p
� t dt = R(34)(x;�;

i
u�;

i�1
u� ) ;

where R(34)(�) denotes the right{hand side of equality (34) , with pj(�) replaced
by p1(�) and with all three terms containing x0 omitted.

If we suppose that j Rep� j > r(KR0
; Im

p
� ) and put �

def
= j Rep� j ,

then, comparing (34) with (46) , we see that for j iu0�(x) j the estimate (42) , and
therefore the estimate (44) , also holds.

1.6. Finally, it remains to consider the case when x = x0 . From our as-

sumptions on the function
i
u�(�) it follows that

i
u0�(x0 � 0) = lim

x!x0�0
i
u0�(x) .
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Hence, using the well-known theorems on continuity of the parameter Riemann or
Lebesgue integrals, we obtain from (34) that

(47)
i
u0�(x0 � 0)

�0Z
0

cos� t cos
p
� t dt = R(34)(x0;�;

i
u�;

i�1
u� ) ;

where R(34)(�) denotes the right{hand side of equality (34) , with x replaced by

x0 . Comparing (47) with (34) , we see that for j Æu0�(x0 � 0) j the estimate (42) ,
and therefore the estimate (44) , also holds.

1.7. By considerations in 1.2{1.6 we may conclude that the estimate

(48)
sup
x2K�

j iu0�(x) j �

� C 0i1(KR0
; p; q; Im

p
� )Ci(KR; p; q; Im

p
� ) j

p
� j k i

u� kL2(KR)

holds if � satis�es j Rep� j > r(KR0
; Im

p
� ) .

1.8. The procedure of estimation the function
i
u0�(�) on the compact set

K+ def
= fx 2 K jx0 � x g is completely analogous to the derivation of estimate

(48) . Thus, we �rst consider the points x 2 K+nfx0g such that x��1(x; �0) < x0 .
For these points we obtain, using the corresponding mean-value formulas (16) and
(18) from [9] , that equality corresponding to the equality (32) have the form

(49)
i
!(x;�) = 2

p
p2(x)

i
u�(x)

�0Z
0

cos� t cos
p
� t dt +

+
�p

p1(x0)�
p
p2(x0)

� i
u�(x0) �

�0Z
�1(x;x�x0)

cos� t cos
p
� (�1(x; x� x0)� t) dt �

�
�0Z
0

cos� t �
� xZ
x��1(x;t)

p0j(�)

2
p
pj(�)

i
u�(�) cos

p
� (�1(x; x � �)� t) d� +

+

x+�2(x;t)Z
x

p02(�)

2
p
p2(�)

i
u�(�) cos

p
� (�2(x; � � x) � t) d�

�
dt �

� 1p
�

�0Z
0

cos� t �
� x+�2(x;t)Z
x��1(x;t)

q(�)
i
u�(�) sin

p
� (�k(x; jx � � j)� t) d�

�
dt �

� 1p
�
�
�0Z
0

cos� t �
� x+�2(x;t)Z

x��1(x;t)

i�1
u� (�) sin

p
� (�k(x; jx� � j)� t) d�

�
dt :
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Starting from this equality, one may verify that the estmate (42) holds (with the

same constant C 0i1(KR0
; p; q; Im

p
� ) ).

When x 2 K+ is a point such that x0 < x � �1(x; �0) , then using the
corresponding mean-value formula (16) from the �rst paper [9] , instead of (45) we
obtain the following equality:

i
!(x;�) = R(49)(x;�;

i
u�;

i�1
u� ) ;

where R(49)(�) denotes the right{hand side of equality (49) , with pj(�) replaced
by p1(�) and the term containing x0 omitted. By this equality we can get an
equality corresponding to (46) , and then prove the estimate (42) .

The estimates (42) and (44) hold true for j iu0�(x0+0) j , too. This fact results
from

i
u0�(x0 + 0) = lim

x!x0+0

i
u0�(x) and from an equality which is analogous to the

equality (47) .

Finally, by the previous consideration we may conclude that the estimate

(50)
sup
x2K+

j iu0�(x) j �

� C 0i1(KR0
; p; q; Im

p
� )Ci(KR; p; q; Im

p
� ) j

p
� j k i

u� kL2(KR)

holds if � is an eigenvalue such that j Rep� j > r(KR0
; Im

p
� ) .

1.9. The estimates (48) and (50) show that the local estimate (7) is valid
if we de�ne

(51) Ci1(KR; p; q; Im
p
� )

def
= C 0i1(KR0

; p; q; Im
p
� )Ci(KR; p; q; Im

p
� ) ;

and put r(KR; Im
p
� )

def
= r(KR0

; Im
p
� ) .

2. Local estimate (6) . In the second part of the present section we will
prove the estimate (6) . Note that already introduced symbols for constants and
sets keep their meaning.

2.1. Let � 6= 0 be an eigenvalue such that 0 � j Rep� j � r(KR; Im
p
� ) .

This time we will start from the function

!(x; y)
def
=

�
1=� ; y 2 (x� �1(x; �); x + �2(x; �)) ;

0 ; y 2 G n (x� �1(x; �); x + �2(x; �)) ;

where x 2 K , and � 2 (0; �(KR0
; p)) is a �xed number. Introduce the integral

i
!(x)

def
=

bZ
a

!(x; y)
i
u�(y) dy =

1

�

� xZ
x��1(x;�)

i
u�(y) dy +

x+�2(x;�)Z
x

i
u�(y) dy

�
:
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Let �rst x 2 K� be a �xed point satisfying x0 < x + �2(x; �) . (We will
expose in some detail this case only.) Then proceeding as in derivation of equality
(34) , we obtain that for x 6= x0 the following equality is valid:

(52)
i
u0�(x)

2

�

�Z
0

cos
p
� t dt =

=
1

p1(x)

�p
p2(x+ �2(x; �))

i
u�(x+ �2(x; �)) �

�
p
p1(x� �1(x; �))

i
u�(x� �1(x; �))

� �
�

p
p2(x0)�

p
p1(x0)

� p1(x)

i
u�(x0) cos

p
� (�2(x; x0 � x)� �) �

�
p
�

2 � p1(x)

�Z
0

� xZ
x��1(x;t)

p01(�)p
p1(�)

i
u�(�) sin

p
� (�1(x; x� �)� t) d� +

+

x+�2(x;t)Z
x

p0j(�)p
pj(�)

i
u�(�) sin

p
� (�2(x; � � x)� t) d�

�
dt +

+
1

2 � p1(x)

�Z
0

�
p01(x� �1(x; t))

i
u�(x � �1(x; t)) �

� p0j(x+ �2(x; t))
i
u�(x+ �2(x; t))

�
dt +

+
1

� p1(x)

�Z
0

� xZ
x��1(x;t)

q(�)
i
u�(�) cos

p
� (�1(x; x� �)� t) d� �

�
x+�2(x;t)Z

x

q(�)
i
u�(�) cos

p
� (�2(x; � � x)� t) d�

�
dt +

+
1

� p1(x)

�Z
0

� xZ
x��1(x;t)

i�1
u� (�) cos

p
� (�1(x; x� �)� t) d� �

�
x+�2(x;t)Z

x

i�1
u� (�) cos

p
� (�2(x; � � x)� t) d�

�
dt :

2.2. Suppose additionally that the number � satis�es the condition

(53) � <
Æ1� �

r(KR; Im
p
� )
�2

+
�
Im

p
�
�2 �1=2 :
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Then we have the estimate

���� 2�
�Z
0

cos
p
� t dt

���� >
4

3
;

and for every x 2 K� the numbers �1(x; �); �2(x; �) satisfy the estimate (28) :

max f �1(x; �) ; �2(x; �) g � � (KR0
; p) :

By virtue of these estimates, we obtain from (52) that

j iu0�(x) j � max
�2KR0

j iu�(�) j �
�

3

2�2
(KR0

; p) +

+
3

2 � �2
(KR0

; p)

q
1 + sh2(� Im

p
� ) +

+
3 �

4�3
(KR0

; p) 0(KR0
; p)

q
1 + sh2(� Im

p
� ) �

�
q�

r(KR; Im
p
� )
�2

+
�
Im

p
�
�2

+

+
3

4�2
0(KR0

; p) +
3

2�2
k q kL1(KR0 )

q
1 + sh2(� Im

p
� )

�
+

+
3

2�2
(KR0

; p)

q
1 + sh2(� Im

p
� ) � max

�2KR0
j i�1u� (�) j ; or

(54) j iu0�(x) j � ~C 0i1(KR0
; p; q; Im

p
� ) � max

�2KR0
j iu�(�) j +

+
3

2�2
(KR0

; p)

q
1 + sh2(� Im

p
� ) � max

�2KR0
j i�1u� (�) j :

Applying here the estimate (41) to max
�2KR0

j i�1u� (�) j , and then the estimate (43) to

max
�2KR0

j iu�(�) j , we get the estimate

(55) j iu0�(x) j � j
p
� j
�

~C 0i1(KR0
; p; q; Im

p
� ) +

+
3

2�2
(KR0

; p) ~Ai(KR0
; p; q; Im

p
� )

q
1 + sh2(� Im

p
� )

�
� max
�2KR0

j iu�(�) j ;

and then the �nal estimate

(56) j iu0�(x) j � C 0i1(KR0
; p; q; Im

p
� )Ci(KR; p; q; Im

p
� ) � k i

u� kL2(KR) ;
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where C 0i1(KR0
; p; q; Im

p
� ) is the constant from (55) . Note again that these

estimates are valid for the points x 2 K� such that x < x0 < x+ �2(x; �) .

2.3. By the corresponding arguments one may verify that the estimates (55)
and (56) are valid in the other cases of points x 2 K , i.e., when x 2 K� is
such that x + �2(x; �) < x0 , or x = x0 , or x 2 K+ . Therefore, if � 6= 0 is

an eigenvalue satisfying 0 � j Re
p
� j � r(KR; Im

p
� ) , then the estimate (6)

holds :

sup
x2K

j iu0�(x) j � C 0i1(KR; p; q; Im
p
� ) k i

u� kL2(KR) ; where

(57) Ci1(KR; p; q; Im
p
� )

def
= C 0i1(KR0

; p; q; Im
p
� )Ci(KR; p; q; Im

p
� ) :

Note that using max if necessary, we may obtain the same constant in both
estimates (6) and (7) , as it is stated in the proposition (a) of Theorem 1 .

2.4. It remains to consider the case � = 0 . The corresponding mean-value

formulas for the associated function
i
u0(�) are much simpler then in the case

� 6= 0 :q
pj(x� �1(x; t))

i
u0(x� �1(x; t)) +

q
pj(x+ �2(x; t))

i
u0(x+ �2(x; t)) =

(58) =
�q

pj(x� 0)+
q
pj(x+ 0)

� i
u0(x) �

xZ
x��1(x;t)

p0j(�)

2
p
pj(�)

i
u0(�) d� +

+

x+�2(x;t)Z
x

p0j(�)

2
p
pj(�)

i
u0(�) d� �

x+�2(x;t)Z
x��1(x;t)

q(�)
i
u0(�) ( �k(x; jx � � j)� t ) d� �

�
x+�2(x;t)Z

x��1(x;t)

i�1
u0 (�) ( �k(x; jx � � j)� t ) d� ;

where it is supposed that x0 =2 (x��1(x; t); x+�2(x; t)) if x 6= x0 , and pj(�); �k(�)
have the corresponding indices;

p
p1(x� �1(x; t))

i
u0(x� �1(x; t)) +

p
p2(x+ �2(x; t))

i
u0(x+ �2(x; t)) =

= 2
q
pj1(x)

i
u0(x) +

�q
pj2(x0)�

q
pj1(x0)

� i
u0(x0) + I(58)(x; pj ; pj ; q;

i
u0;

i�1
u0 ) ;

where j1 = 2; j2 = 1 if x0 2 (x� �1(x; t); x) , and j1 = 1; j2 = 2 if x0 belongs
to the interval (x; x + �2(x; t)) .

Using these formulas, one can prove that the estimate (6) is valid in the
considered case, too.
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2.5. So far we have been assuming that x0 2 K . If x0 =2 K , then the
estimates (6) and (7) can be proved by application of the corresponding formulas
(16) from the �rst paper [9] and (58) , and by arguments that are analogous to the
previous ones. Except simplicity, the only di�erence is that the number R0 should
be de�ned now by

R0 = Æ min f �(K; @G) ; �(x0;K) g :

2.6. Proof of estimates (6){(7) in the case of the eigenfunction
Æ
u�(�) is based

on the following remark. The necessary mean-value formulas for this function can

be obtained from the mean-value formulas for
i
u�(�) by omitting �rst the integral

which contains
i�1
u� (�) and then using replacement

i
u� 7�! Æ

u� (see formulas
(13){(15) in the �rst paper [9] ). That is why the content of 1.1{2.5 give us also the
proof of estimates (6){(7) in the case i = 0 .

3.On Remarks 2{4 . We end this section by consideration of assertions
from Remarks 2, 3 and 4 concerning the estimates (6) and (7) .

3.1. The estimates (39) and (55) show that the �rst part of Remark 2 holds
true.

3.2. Let the set �(L) satis�es the conditions descibed in 3.2 of Introduction.
Then the constants Ci(KR; p; q; �) do not depend on the numbers � 2 �(L) , i.e.,
they have some upper bound C0(KR; p; q; A) .

Let us replace Im
p
� by A in (37) , in the de�nition of numbers r(KR0

; �)
and in the constants from (39) (see 1.3{1.4) . Replace also Im

p
� by A in (53) ,

and in the constants from (55) (see 2.2) . Then we get, by (51) and (57) , that the
estimates (6){(7) are valid, with the constants (and the number r(KR; A) ) not
depending on the numbers � 2 �(L) .

3.3. By virtue of statement 3) in 3.2 of Introduction it follows from (51) and
(57) that the constants Ci1(�) (i � 1) actually do not depend on parameter i .

x3. Global estimates of the �rst derivative

1. Case of the �nite interval. We begin the proof of the proposition (b)
with consideration of the case when G is a �nite interval.

1.1.We will �rst prove the estimate (9) in the case i � 1 . Using compactness
of the closed interval G = [a; b] and continuity of functions �1 = �1(x; t); �2 =
�2(x; t) (with respect to the variable t ), it is possible to �nd points c; d 2 G and
positive numbers t1c ; t

2
c ; t

1
d; t

2
d such that

c� �1(c; t
1
c) < a < c < c+ �2(c; t

2
c) < x0 < d� �1(d; t

1
d) < d < b < d+ �2(d; t

2
d) :

Then there exist numbers �c 2 (0;min ft1c ; t2c g) and �d 2 (0;min f t1d ; t2d g) for
which the following holds: �1(c; [0; �c]) = [0; c� a] ; �2(d; [0; �d]) = [0; b� d] .
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Introduce the closed interval ~K
def
= [c; d] , put x = c and j = 1 in the

mean-value formula (27) , and assume that t 2 [0; �c) . Also, put x = d and j = 2
in the same mean-value formula, and assume that t 2 [0; �d] . Therefore we obtain
two equalities from which it results the inequality

(59) max

�
sup

x2(a;c]
j iu0�(x) j; sup

x2[d;b)
j iu0�(x) j

�
� 1

�2
( ~K; p) � sup

x2 ~K

j iu0�(x) j +

+

�
j
p
� j
�
2( ~K; p)

�2
+

(b� a) 0(G; p)

�3

�
+

+ k q kL1(G)
�
�
q
1 + sh2

�
max f �c; �d g Im

p
�
� � sup

x2G
j iu�(x) j +

+
b� a

�2

q
1 + sh2(max f�c; �dg Im

p
� ) � sup

x2G
j i�1u� (x) j ;

where ( ~K; p) has the obvious meaning (see 1.1 x 2 ) , and

(60) 0(G; p)
def
= max

�
sup

x2(a;x0]
j p01(x) j; sup

x2[x0;b)
j p02(x) j

�
:

1.2. Let us de�ne the number r(G; Im
p
� )

def
= r( ~KR0

; Im
p
�) , where the

number r( ~KR0
; Im

p
� ) is introduced in 1.4 x 2 (and generated by our closed

interval ~K ).

Suppose �rst that j Rep� j > r(G; Im
p
� ) . Then we may use estimate (7)

and obtain that the following holds:

(61)
sup
x2 ~K

j iu0�(x) j � Ci1( ~KR; p; q; Im
p
� ) j

p
� j k i

u� kL2( ~KR)

� Ci1( ~KR; p; q; Im
p
� ) j

p
� j k i

u� kL2(G) :

Also, by virtue of estimates (15) and (13) it holds

(62) sup
x2G

j i�1u� (x) j � Ai(G; p; q; Im
p
� ) j

p
� j � sup

x2G
j iu�(x) j

� Ai(G; p; q; Im
p
� )Ci(G; p; q; Im

p
� ) j

p
� j k i

u� kL2(G) :
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By inequalities (61){(62) we obtain from (59) that

(63) max

�
sup

x2(a;c]
j iu0�(x) j; sup

x2[d;b)
j iu0�(x) j

�
�

�
�

1

�2
( ~K; p)Ci1( ~KR; p; q; Im

p
� ) +

+

�
2( ~K; p)

�2
+

(b� a) 0(G; p)

�3
+ k q kL1(G)

�
�

�
q
1 + sh2

�
max f�c; �dg Im

p
� ) � Ci(G; p; q; Im

p
� ) +

+
b� a

�2
Ai(�)Ci(�)

q
1 + sh2(max f�c; �dg Im

p
� )

�
j
p
� j k iu� kL2(G) :

Now, we can conclude from (61) and (63) that sup
x2G

j iu0�(x) j exists, and that

the estimate (9) is valid:

sup
x2G

j iu0�(x) j � Ci1(G; p; q; Im
p
� ) j

p
� j k Æu� kL2(G) ;

where Ci1(G; p; q; Im
p
� ) is the maximum of the constants appearing in the

inequalities (61) and (63) .

1.3. Suppose now that 0 � j Rep� j � r(G; Im
p
� ) and � 6= 0 . This

case can be treated analogously to the previous one. Namely, using the mean-value
formulas (27) , we can get the estimate (59) in which instead of j p� j the numberq�

r(G; Im
p
� )
�2

+
�
Im

p
�
�2

stands. The rest of the proof of estimate (8) is the same; instaed of estimate (7) it
is necessary to apply estimate (6) .

1.4. Finally, if � = 0 , then it is possible to verify that the mean-value
formulas

pj(x� �1(x; t))
i
u00(x� �1(x; t)) � pj(x+ �2(x; t))

i
u00(x+ �2(x; t)) =

= �
x+�2(x;t)Z

x��1(x;t)

q(�)
i
u0(�) d� �

x+�2(x;t)Z
x��1(x;t)

i�1
u0 (�) d�

hold if x0 =2 (x � �1(x; t); x+ �2(x; t)) .

By these formulas and the procedure used in 1.2 , one may easily prove the
corresponding estimate (8) .

1.5. Proof of estimates (8){(9) in the case of an eigenfunction is based also
on the remark given in 2.6 x 2 .
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2. Case of the in�nite interval. Our general assumption in this case is

that
Æ
u�(�) 2 L2(G) (i � 0) .

2.1. Suppose �rst that G = (�1;+1) , and analyse the dependence of the

constants Ci1(KR; p; q; Im
p
� ) on the "variable" KR . We want to show that

in this case, under assumptions from the proposition (b) of Theorem 1 , constants

Ci1(�; p; q; Im
p
� ) can be chosen "almost independently" of the compact KR .

Let R0 2 (0; 1) be an arbitrary �xed number, and let

(G; p)
def
= max

�
sup

x2(�1;x0]

p
p1(x) ; sup

x2[x0;+1)

p
p2(x)

�
; �(G; p)

def
=

R0

(G; p)
;

(64) 0(G; p)
def
= max

�
sup

x2(�1;x0]

j p01(x) j ; sup
x2[x0;+1)

j p02(x) j
�
:

Fix a number �0 2 (0; �(G; p)) and de�ne functions �1(�; �0); �2(�; �0) on the
compact K by equalities (16) .

Proceed further like in 1.1{1.3 x 2 . Then de�ne �0(�0; Im
p
� ) as in 1.3

x 2 , and the number r(G; Im
p
� )

def
=

q�
Im

p
�
�2

+
�
�0(�0; Im

p
� )
�2

. There-

fore, if j Rep� j > r(G; Im
p
� ) , then we get the estimate (39) , with a constant

~Ci1(G; p; q; Im
p
� ) obtained from the constant ~Ci1(KR; p; q; Im

p
� ) by replace-

ment KR 7�! G .

According to Remark 8 , the constant Ci(KR0+R1
; p; q; Im

p
� ) from estimate

(43) can be replaced by a constant Ci(K; p; q; Im
p
� ) depending only on the

length of the closed interval K � K .

Analysing further the content of 1.4{1.9 x 2 , we obtain the following conclu-
sion: There are constants r(G; Im

p
� ) and Ci1(Gs; p; q; Im

p
� ) (i � 0) such

that for every closed interval K � G (of the �xed length equal to some s > 0 )
the estimate

sup
x2K

j iu0�(x) j � Ci1(Gs; p; q; Im
p
� ) j

p
� j k i

u� kL2(KR)

holds if j Rep� j > r(G; Im
p
� ) , where R > 0 is a �xed number.

Analogous analysis of the proof of estimate (6) (see 2.1{2.4 x 2) shows that
there is a constant C 0i1(Gs; p; q; Im

p
� ) such that every closed interval K � G

(of the �xed length equal to some s > 0 ) the estimate

sup
x2K

j iu0�(x) j � C 0i1(Gs; p; q; Im
p
� ) k i

u� kL2(KR)

holds if 0 � j Rep� j � r(G; Im
p
� ) , where R > 0 is a �xed number.

2.2. Prove now the estimates (8){(9) . De�ne constant r(G; Im
p
� ) as in

2.1 . Then, for arbitrary �xed number s > 0 , de�ne constants Ci1(Gs; p; q; Im
p
� )
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and C 0i1(Gs; p; q; Im
p
� ) as it was already explained. If x 2 G is an arbitrary

point and K(x) an arbitrary closed interval of the length s , such that x 2 K(x) ,
then

j iu0�(x) j � Ci1(Gs; p; q; Im
p
� ) j

p
� j k iu� kL2(K(x)R)

� Ci1(Gs; p; q; Im
p
� ) j

p
� j k i

u� kL2(G)

for j Re
p
� j > r(G; Im

p
� ) , and

j iu0�(x) j � C 0i1(Gs; p; q; Im
p
� ) k i

u� kL2(K(x)R)

� C 0i1(Gs; p; q; Im
p
� ) k i

u� kL2(G)

if 0 � jp� j � r(G; Im
p
� ) .

Therefore, it results that sup
x2R

j iu0�(x) j exists and the estimates (8){(9)

hold.

2.3. Consider the case when G = (a;+1) ; a 2 R . De�ne �rst numbers
(G; p) and 0(G; p) as in 2.1 . Let c 2 (a; x0) be an arbitrary �xed number
and �c > 0 such that �1(c; [0; �c)) = [0; c � a) . Then �2(c; �c) � (G; p) �c .
Choose a number d 2 G such that c + (G; p) �c < d ; c � a < (d � c)=4 , and

denote by K the closed interval [c; d] . De�ne the number r(G; Im
p
� ) by

r(G; Im
p
� ) = r(KR0

; Im
p
� ) , with r(KR0

; Im
p
� ) introduced in 1.4 x 2 .

Return after that to the mean-value formulas (27) . Putting there x = c and

j = 1 , and assuming that t 2 [0; �c) , we obtain an inequality for sup
x2(a;c]

j iu0�(x) j

having the same forme as inequality (59) , with ~K and max f�c; �dg replaced by
K and �c respectively. By that inequality and Lemma 1 we obtain the estimate

sup
x2(a;c]

j iu0�(x) j � ~Ci1(G; p; q; Im
p
� ) j

p
� j k i

u� kL2(G)

if j Rep� j > r(G; Im
p
� ) .

On the compact set K the estimate (7) is valid, wherefrom we get

sup
x2K

j iu0�(x) j � Ci1(KR; p; q; Im
p
� ) j

p
� j k i

u� kL2(G)

if j Rep� j > r(G; Im
p
� ) .

Finally, it remains to show the existence of sup
x2(d;+1)

j iu0�(x) j and the validity
of estimate (9) for this suprema. This can be done like in 2.1 ; the only di�erence is
that we now choose R0 2 (0;min f 1; c � a g) and cover each point x 2 (d;+1)
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by a closed interval K(x) , where intervals K(x) have the same �xed length
s 2 (0; d� c) .

As far as the estimate (8) concerned, it can be proved by corresponding
arguments; we omitt the details.

2.4. The veri�cation of the estimates (8){(9) in the case G = (�1; b) (b 2 R)
is completely analogous to the procedure presented in 2.3 .

2.5. If we use the maen{value formulas (25) instaed of (27) , then the consid-

erations from 2.3{2.4 are valid in the case of eigenfunction
Æ
u�(�) , too.

Proof of Theorem 1 is completed.

3.On Remarks 1{4. In order to verify that Remark 1 holds true, we should
change de�nitions (60), (64) of 0(G; p) replacing sup

x2(a;x0]
j p01(x) j ; sup

x2[x0;b)
j p02(x) j

by integrals
x0R
a

j p01(x) j dx and
bR

x0

j p02(x) j dx respectively. Also, it is necessary to

use the �rst statement from 3.1 in Introduction.

3.1. Analysing the content of 3.1 in Introduction, 3.1 x 2 and 1.1{1.3 , we see
that the global estimates (8){(9) may be sharpened in the following way:

sup
x2G

j iu0�(x) j � Ci1( ~KR0
; p; q; Im

p
� ) j

p
� j � max

x2 ~KR0

j iu�(x) j

if j Re
p
� j > r(G; Im

p
� ) , and

sup
x2G

j iu0�(x) j � Ci1( ~KR0
; p; q; Im

p
� ) � max

x2 ~KR0

j iu�(x) j

if 0 � j Rep� j � r(G; Im
p
� ) , where G is a �nite interval, and ~K � G is the

closed interval de�ned in 1.1 .

3.2. The constants Ci1(G; p; q; �) (i � 0) and r(G; �) from the proposition
(b) of Theorem 1 have the property of independence of the numbers � 2 �(L) ,
satisfying conditions described in Remark 3 . This assertion is a consequence of the
de�nition of numbers r(G; �) (see 1.2, 2.1 and 2.3), and of the structure of constants
Ci1(G; p; q; �) in di�erent cases (see 3.2 x 2 , 1.1{1.4 , 2.1 and 2.3). In the proof of
the mentioned property one should also use the content of 3.2 in Introduction.

3.3. Analysing the structure of "global" constants Ci1(�) (i � 1) and having
in mind statement 3) in 3.2 of Introduction, we see that these constants do not
depend on the parameter i .
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