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Abstract. SuÆcient conditions are found for oscillation of the solutions of
linear impulsive di�erential equations of �rst order with an advanced argument and
oscillating coeÆcients.

Introduction. Impulsive di�erential equations with deviating argument are
adequate mathematical models of numerous processes studied in physics, biology,
electronics, etc. In spite of the great possibilities for their applications, the theory
of these equations is developing rather slowly due to diÆculties of technical and
theoretical character which arise in their study.

In the last twenty years signi�cantly increased the number of publications
where the oscillation behaviour of solutions to functional-di�erential equations is
studied. The bigger part of the works in that topic published before 1977 is given
in [5]. In the monographs [3] and [4] published in 1991 and 1987, respectively, the
oscillation and asymptotic properties of the solutions of various classes of functional-
di�erential equations are studied.

The �rst paper devoted to the study of the oscillation properties of impulsive
di�erential equations with retarded argument is [2].

In the present paper suÆcient conditions are found for oscillation of the so-
lutions of a linear impulsive di�erential equation with advanced argument

x0(t) + a(t)x(t) = p(t)x(t + �); t 6= tk;

�x(tk) + akx(tk) = pkx(tk + �);
(1)
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where the coeÆcients p(t) and pk may change their sign for t � 0; k = 1; 2; . . . .

Preliminary notes. Firstly, we shall consider the linear impulsive di�eren-
tial equation of �rst order with advanced argument

x0(t) = p(t)x(t+ �); t 6= tk;

�x(tk) = pkx(tk + �)
(2)

and the corresponding inequalities

x0(t) � p(t)x(t+ �); t 6= tk;

�x(tk) � pkx(tk + �)
(3)

and
x0(t) � p(t)x(t+ �); t 6= tk;

�x(tk) � pkx(tk + �)
(4)

where �x(tk) = x(t+k )� x(t�k ), x(t
�
k ) = x(tk).

We introduce the following conditions:

H1. The constant � is positive and the sequence ftkg
1
k=1 is such that

0 = t0 < t1 < t2 < . . . ; lim
k!+1

tk = +1:

H2. The function p: R+ ! R is piecewise continuous in R+ = [0;+1) with
points of discontinuity ftkg; where it is continuous from the left.

Let J = [�; �) � R+.

De�nition 1. The function x = '(t) is called solution of the equation (2) in
the interval J if:

1. '(t) is de�ned in J1 = [�; � + �).

2. '(t) is absolutely continuous on each of the intervals J1 \ (tk�1; tk]; k 2 N.

3. '0(t) = p(t)'(t + �) almost everywhere in J \ (tk�1; tk], k 2 N.

4. '(t�k ) = '(tk); '(t
+
k )� '(tk) = pk'(tk + �) for tk 2 J .

Analogously solutions of the equation (1), and inequalities (3) and (4) are
de�ned.

De�nition 2. The solution x(t) of the equation (2) (or, of the inequalities
(3), (4)) is said to be regular, if it is de�ned in some interval [Tx;+1) � R+ and
supfjx(t)j: t � Tg > 0 for each T � Tx:

De�nition 3. The regular solution x(t) of the inequality (3) is said to be �nally
positive, if there exists T > 0 such that x(t) > 0 for t � T .

De�nition 4. The regular solution x(t) of the inequality (4) is said to be �nally
negative, if there exists T > 0 such that x(t) < 0 for t � T .
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De�nition 5. The regular solution x(t) of the equation (2) is said to be oscil-
latory, if it changes its sign in the interval [T;+1), where T is arbitrary number.

Main results. Theorem 1. Let the conditions H1 and H2 be ful�lled, and let

there exist a sequence of non-intersected intervals Jn = (�n; �n] with �n � �n = 2� ,
such that:

1. For each n 2 N, t 2 Jn and tk 2 Jn,

p(t) � 0; pk � 0: (5)

2. There exists �1 2 N such that for n � �1

�n+�Z
�n

p(s)ds+
X

�n<tk��n+�

pk � 1: (6)

Then: 1. The inequality (3) has no �nally positive regular solution.

2. The inequality (4) has no �nally negative regular solution.

3. Each regular solution of the equation (2) is oscillatory.

Proof. First of all, we shall prove that the inequality (3) has no �nally
positive regular solution. Let us suppose the opposite, i.e., there exist a solution
x(t) of (3) and a number T > 0 such that x(t) is de�ned for t � T and x(t) > 0 for
t � T .

Since �n ! +1 as n ! +1, then there exists �0 2 N such that �n > T for
n � �0. Then it follows from (3) and (5) that x0(t) � 0, �x(tk) � 0 for t; tk 2 Jn,
i.e., x(t) is nondecreasing function for t 2 Jn, n � �0.

Let � = max(�0; �1) and n � �.

Integrating (3) from �n + 0 to �n + � + 0, we obtain

x(�n + � + 0) � x(�n + 0) +

�n+�Z
�n

p(s)x(s+ �)ds+
X

�n<tk��n+�

pkx(tk + �):

Since x(s+ �) � x(�n + � + 0) for s 2 (�n; �n + � ], then

x(�n + � + 0)
n �n+�Z

�n

p(s)ds+
X

�n<tk��n+�

pk � 1
o
+ x(�n + 0) � 0: (7)

It follows from (7) that for each n � � the inequality

�n+�Z
�n

p(s)ds+
X

�n<tk��n+�

pk < 1
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holds true, which contradicts (6).

In order to prove that (4) has no �nally negative regular solution, it is enough
to note that if x(t) is a solution of (4), then �x(t) is a solution of (3).

It follows from assertions 1 and 2 of Theorem 1 that the equation (2) has
neither �nally positive nor �nally negative regular solution. Therefore, each regular
solution of (2) is oscillatory. �

For the equation with constant coeÆcients and constant advance

x0(t) = px(t+ �); t 6= tk;

�x(tk) = p0x(tk + �);
(8)

we obtain the following

Corollary 1. Let p � 0, p0 � 0, � > 0 and p� + p0i(Tn; Tn + � ] � 1
for in�nitely many numbers Tn with limn!+1 Tn = +1, where i(a; b] denotes the

number of the points tk lying in the interval (a; b]. Then each regular solution of

the equation (8)] is oscillatory.

Let us suppose, in addition, that the equation (8) is � -periodic, i.e., there

exists n 2 N such that tk+n = tk + � , k 2 Z, or, equivalently i(t; t+ � ] � n. Then

each regular solution of the equation (8) is oscillatory if p� + p0n � 1.

In the proof of Theorem 2 below, we shall use the following

Lemma 1. Let the sequence fxng be de�ned by the equalities

x0 = 1; xn = f(xn�1); n 2 N; (9)

where f(x) = ebx(1+ qx) and b � 0; q � 0; be+ q > 1. Then the sequence fxng
is increasing and unbounded.

Proof. In order to prove that fxng is increasing sequence it is enough to
show that

f(x) > x; x � 0: (10)

Case 1. Let q � 1. Then (10) holds true since f(x) � 1 + qx > x, x � 0.

Case 2. Let 0 � q < 1. The inequality (10) is valid for 0 � x � (1 � q)�1

since f(0) = 1 > 0 and ebx > 1 � x=(1 + qx) for 0 < x � (1� q)�1. Since ex � ex,
x 2 R, it follows that for x > (1� q)�1 we obtain the estimate

f(x)

x
�

bex(1 + qx)

x
� be

�
1 +

q

1� q

�
=

be

1� q
> 1;

which implies (10).

If we suppose that the sequence fxng is bounded from above, then fxng is
convergent and limn!+1 xn = x� > 0. Then it follows from (9) that x� = f(x�),
which contradicts (10). �
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Theorem 2. Let the conditions H1 and H2 be ful�lled, and let there exist a

sequence of non-intersected intervals Jn = (�n; �n] with �n � �n � 2� such that:

1. For each n 2 N, t 2 Jn and tk 2 Jn

p(t) � 0; pk � 0: (11)

2. There exist constants b � 0, q � 0 and an integer �1 > 0 such that for

each n � �1 and t 2 (�n; �n � � ], the inequalities

t+�Z
t

p(s)ds � b;
X

t<tk�t+�

pk � q; (12)

be+ q > 1 (13)

hold true.

3. There exist a constant Æ > 0 and an integer �2 > 0 such that for each

n � �2 there exists t�n 2 (�n; �n + � ] such that

Bn(t
�
n)Cn(t

�
n) � Æ; (14)

where Bn(t
�
n) =

t�nR
�n

p(s)ds+
P

�n<tk�t�n

pk; Cn(t
�
n) =

�n+�R
t�n

p(s)ds+
P

t�n<tk��n+�

pk:

4. lim
n!+1

(�n � �n) = +1.

Then: 1. The inequality (3) has no �nally positive regular solution.

2. The inequality (4) has no �nally negative regular solution.

3. Each regular solution of the equation (2) is oscillatory.

Proof. 1. Let us suppose that the inequality (3) has a solution x(t) such that
for suÆciently large T we have x(t) > 0 for t � T .

Since �n ! +1 as n ! +1, then there exists �3 > 0 such that �n > T for
n � �3. Therefore, it follows from (3) and (11) that x(t) is nondecreasing function
in Jn, n � �3.

We set c0 = 1, cn = f(cn�1), n 2 N, where f(x) = ebx(1 + qx).

Since the sequence fcng is increasing and unbounded by virtue of Lemma 1,
there exists m 2 N such that

cm > 1=Æ: (15)

By means of condition 4 of Theorem 2 there exists �4 > 0 such that

�n � �n > (m+ 1)� (16)

for n � �4.

Let � = max(�1; �2; �3; �4). Then for each n � � the solution x(t) is a
nondecreasing function in Jn and conditions (12), (14) and (16) are ful�lled.
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It follows from (3) that

x0(t) � p(t)x(t); t 6= tk;

�x(tk) � pkx(tk)

for t; tk 2 (�n; �n�� ], n � �, and by means of the Theorem of impulsive di�erential
inequalities [1, Theorem 2.3] we have

x(t + � + 0) � x(t+ 0) exp
�Z t+�

t

p(s)ds
� Y
t<tk�t+�

(1 + pk):

Therefore, for each n � � and t 2 (�n; �n � � ],

x(t+ � + 0)

x(t+ 0)
� exp

�Z t+�

t

p(s)ds
��

1 +
X

t<tk�t+�

pk

�
� eb(1 + q) = f(1) = c1:

Repeating the above procedure, we arrive at

x(t + � + 0)

x(t+ 0)
� cm (17)

for t 2 (�n; �n �m� ], n � �.

Since �n + � < �n �m� , it follows that (17) holds true for each n � � and
t = t�n 2 (�n; �n + � ], i.e.,

x(t�n + � + 0)

x(t�n + 0)
� cm: (18)

On the other hand, integrating (3) from �n + 0 to t�n + 0, we obtain the
inequality

x(t�n + 0) � x(�n + 0) +

t�nZ
�n

p(s)x(s+ �)ds +
X

�n<tk�t�n

pkx(tk + �);

which implies
x(t�n + 0) � x(�n + � + 0)Bn(t

�
n): (19)

Analogously, from the inequality

x(�n + � + 0) � x(t�n + 0) +

�n+�Z
t�n

p(s)x(s+ �)ds +
X

t�n<tk��n+�

pkx(tk + �)

we obtain
x(�n + � + 0) � x(t�n + � + 0)Cn(t

�
n): (20)
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Thus, it follows from (14), (19) and (20) that

x(t�n + � + 0)

x(t�n + 0)
�

1

Æ
: (21)

Now (18) and (21) imply 1=Æ � cm, which contradicts (15).

The proof of the assertions 2 and 3 is carried out as in Theorem 1. �

Remark 1. Condition (12) is ful�lled if we suppose that

lim inf
t!+1

t+�Z
t

p(s)ds > b; lim inf
t!+1

X
t<tk�t+�

pk > q

for t 2 [1n=1(�n; �n � � ].

Remark 2. In the case when the equation (2) is without impulse e�ect (pk � 0,
k 2 N) the conditions (12) and (13) are reduced to

t+�Z
t

p(s)ds � b > e�1; t 2 (�n; �n � � ]; n � �1

and this condition implies that condition (14) is ful�lled with Æ = b2=4.

In the case when pk 6= 0 we cannot derive (14) as consequence of (12) and
(13). In fact, if p(t) � 0, tk = k� , then conditions (12) and (13) are reduced to
pk � q > 1 and Bn(t)Cn(t) � 0 in this case, and obviously, the condition (14) is
not satis�ed.

Remark 3. If we have p > 0 in the equation (8) with constant coeÆcients,
then (14) is ful�lled since Bn(t

�
n)Cn(t

�
n) � p2�2=4.

Corollary 2. If p > 0, p0 � 0, � > 0 and p�e+p0 lim inft!+1 i(t; t+� ] > 1,
then each regular solution of the equation (8) is oscillatory.

If, in addition, the equation (8) is �-periodic and i(t; t + � ] � n 2 N, then

each regular solution of the equation (8) is oscillatory if p�e+ p0n > 1.

Let us consider now the equation (1) together with the corresponding inequal-
ities

x0(t) + a(t)x(t) � p(t)x(t + �); t 6= tk;

�x(tk) + akx(tk) � pkx(tk + �)
(22)

and
x0(t) + a(t)x(t) � p(t)x(t + �); t 6= tk;

�x(tk) + akx(tk) � pkx(tk + �):
(23)

We introduce the following conditions:

H3. The function a: R+ ! R is piecewise continuous in R+ with points of
discontinuity ftkg, where it is continuous from the left.
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H4. 1� ak > 0, k 2 N.

We set into the equation (1) (or, into the inequalities (22), (23))

x(t) � '(t)z(t) � exp
�
�

tZ
0

a(s)ds
� Y
0<tk<t

(1� ak)z(t): (24)

Making use of the relations

x0(t) = �a(t)'(t)z(t) + '(t)z0(t); t 6= tk;

�x(tk) = �ak'(tk)z(tk) + '(t+k )�z(tk);

we obtain

z0(t) = p(t) exp
�
�

t+�Z
t

a(u)du
� Y
t�tj<t+�

(1� aj)z(t+ �); t 6= tk;

�z(tk) = pk exp
�
�

tk+�Z
tk

a(u)du
� Y
tk<tj<tk+�

(1� aj)z(tk + �):

(25)

Since 1�ak > 0, then '(t) > 0 and the oscillatory properties of the equations
(1) and (25) coincide. Moreover, the directions of the inequalities in (22) and (23)
are preserved after the change of the variable (27). Thus, applying Theorems 1 and
2 to the equation (25) we can obtain the oscillatory results for the equation (1).

The following theorems hold true:

Theorem 3. Let the conditions H1{H4 be ful�lled and let there exist a se-

quence of non-intersected intervals Jn = (�n; �n] with �n � �n = 2� , such that:

1. For each n 2 N, t 2 Jn and tk 2 Jn

p(t) � 0; pk � 0:

2. There exists �1 2 N such that for n � �1

�n+�Z
�n

p(s) exp
�
�

s+�Z
s

a(u)du
� Y
s�tj<s+�

(1� aj)ds

+
X

�n<tk��n+�

pk exp
�
�

tk+�Z
tk

a(u)du
� Y
tk<tj<tk+�

(1� aj) � 1:

Then: 1. The inequality (22) has no �nally positive regular solution.

2. The inequality (23) has no �nally negative regular solution.

3. Each regular solution of the equation (1) is oscillatory.
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Theorem 4. Let the conditions H1{H4 be ful�lled and let there exist a se-

quence of non-intersected intervals Jn = (�n; �n] with �n � �n � 2� , such that:

1. For each n 2 N, t 2 Jn and tk 2 Jn,

p(t) � 0; pk � 0:

2. There exist constants b � 0, q � 0 and an integer �1 > 0 such that for

each n � �1 and t 2 (�n; �n � � ] the following inequalities are valid:

t+�Z
t

p(s) exp
�
�

s+�Z
s

a(u)du
� Y
s�tj<s+�

(1� aj)ds � b;

X
t<tk�t+�

pk exp
�
�

tk+�Z
tk

a(u)du
� Y
tk<tj<tk+�

(1� aj) � q;

be+ q > 1:

3. There exist a constant Æ > 0 and an integer �2 > 0 such that for each

n � �2 there exists t�n 2 (�n; �n + � ] such that ~Bn(t
�
n)

~Cn(t
�
n) � Æ, where

~Bn(t
�
n) =

t�nZ
�n

p(s) exp
�
�

s+�Z
s

a(u)du
� Y
s�tj<s+�

(1� aj)ds

+
X

�n<tk�t�n

pk exp
�
�

tk+�Z
tk

a(u)du
� Y
tk<tj<tk+�

(1� aj);

~Cn(t
�
n) =

�n+�Z
t�n

p(s) exp
�
�

s+�Z
s

a(u)du
� Y
s�tj<s+�

(1� aj)ds

+
X

t�n<tk��n+�

pk exp
�
�

tk+�Z
tk

a(u)du
� Y
tk<tj<tk+�

(1� aj):

4. lim
n!+1

(�n � �n) = +1.

Then: 1. The inequality (22) has no �nally positive regular solution.

2. The inequality (23) has no �nally negative regular solution.

3. Each regular solution of the equation (1) is oscillatory.

For the equation

x0(t) + ax(t) = px(t+ �); t 6= tk;

�x(tk) + a0x(tk) = p0x(tk + �);
(26)
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the following assertion holds true:

Corollary 3. If p > 0, p0 � 0, � > 0, a0 < 1, i(t; t + � ] � n 2 N

and ep�e�a� (1� a0)
n + p0ne

�a� (1� a0)
n�1 > 1, then each regular solution of the

equation (26) is oscillatory.
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