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A PROOF OF THE HARDY{LITTLEWOOD THEOREM

ON FRACTIONAL INTEGRATION

AND A GENERALIZATION

Miroslav Pavlovi�c

Communicated by Miroljib Jevti�c

Abstract. We give an elementary proof of the Hardy-Littlewood theorem
and extend it to a class of smooth functions on the unit ball. As a special case we
prove the validity of this theorem in the class of polyharmonic function.

1. Introduction

Let B denote the unit ball in a �xed euclidean space E. The integral means
of order p, 0 < p � 1, of a continuous, complexvalued function f on B are de�ned
by

Mp(f; r) =

8<
:
Z
@B

jf(ry)jpd�(y)

9=
;

l=p

(0 � r < 1);

where d� is the normalized surface measure on B. The fractional integral of order
s > 0 is de�ned by

Isf(x) =
1

�(s)

1Z
0

�
log

1

t

�s�1
f(tx)dt (x 2 B):

The well known theorem of Hardy and Littlewood [5, 6, 7] states that if f is a
harmonic function on B, dimE = 2, then for a > s > 0 the following conditions
are equivalent:

Mp(f; r) = O(l � r)�aI.

Mp(I
sf; r) = O(l � r)s�aII.
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There are many proofs and extensions, in various directions, of this result,
and we refer to [4] for information and references concerning harmonic functions in
the disc. In the case of the ball, Coifman and Rochberg [2] deduced the equivalence
I , II (p = 1) for the integer values of s from their representation theorem. For
extensions in other directions see, for example, [9, 14] and references given there.

The most of the existing proofs are either very long or depend very much on
the speci�c properties of harmonic functions such as the existence of reproducing
kernels or power series expansions. In this paper we give an elementary and short
proof, which enables us to extend the Hardy{Littlewood theorem to wider classes
of functions as well as to prove the validity of implication II ) I without the
restriction a > s. Before stating our result we write the equivalence I , II as one
implication.

For a function f 2 C1(B) let

D1f = f +

nX
i=1

xi
@f

@xi
(n = dimE)

and Dmf = D1Dm�1f (m an integer � 2). For an arbitrary s > 0 we choose an
integer m > s and de�ne Ds by

Dsf = Im�sDmf:

If fk is a homogeneous polynomial of degree k, then Isfk = (k + 1)�sfk and
Dsfk = (k + 1)sfk, which shows that IsDsf = DsIsf = f for all f 2 C1(B). We
put

Isf = D�sf (s > 0); I0f = f (f 2 C1(B)):

Then fIs:�1 < s < 1g acts on C1(B) as a group of linear operators and is
isomorphic to the additive group of real numbers. Therefore the Hardy{Littlewood
theorem can be stated in the following form.

Theorem 1. Let �1 < s < 1 and a > s. For a function f harmonic in

B, the condition I implies the condition II.

It should be noted that Theorem 1, for s < 0, states somewhat more than the
Hardy{Littlewood theorem because we do not assume that a > 0. Of course, the
condition I for a < 0 has sense only when p < 1 since otherwise Mp(f; r) increases
with r. The case a = 0, s < 0 is also due to Hardy and Littlewood.

Our extension of Theorem 1 contains the case of polyharmonic functions, and
then for all p > 0 and �1 < a < 1 there are nontrivial functions satisfying the
condition I .

The case p =1 is simple and will not be considered in the sequel. The main
ingredient in proving Theorem 1 for 0 < p <1 is a lemma of Hardy and Littlewood
[5] and Fe�erman and Stein [3] on subharmonic behaviour of jf jp. We shall use a
generalization proved in [10] of this lemma (Lemma 2).
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2. Results

Let HC1 denote the subclass of C1(B) consisting of those f for which there
is a constant K such that

(1) jrf(x)j � K%�1 supfjf(z)j: jz � xj < %g

whenever 0 < % < 1� jxj and x 2 B.

The class HC1 is the subclass of HC1 consisting of those functions whose
partial derivatives of all orders belong to HC1.

Let Hm, where m is a positive integer, be the class of the functions f for
which �mf = 0. Here � stands for the ordinary Laplacian. Each f 2 Hm satis�es
(1) with K = Cnm, where C is an absolute constant. This can be deduced from
the inequality

j�f(z)j � (m� 1)2%�2 sup
B%(z)

jf j (f 2 Hm)

(see [8] and [11]) and the inequality

jrf(x)j � n%�1 sup
B%(x)

jf j+ % sup
B%(x)

j�f j (f 2 C2);

which follows from the representation of f via Poisson's integral and Green's func-
tion. Here B%(x) denotes the euclidean ball centered at x and of radius %.

Since the partial derivatives of f 2 Hm are in Hm, we see that Hm � HC1.
An elementary proof of a more general result will appear in [11].

Let Lp(a) (0 < p � 1;�1 < a < 1) denote the class of all continuous
function f on B satisfying the condition I. If B is the unit ball in the complex
space, then Lp(a), for p > 0 and a < 0, does not contain nontrivial holomorphic
functions. The same holds in the harmonic case for p � 1. However, if p < 1, then
the Poisson kernel belongs to Lp(a) for some a < 0. (See [12] and [13] for a detailed
discussion of this phenomenon.) Passing to polyharmonic functions we have that
for all p > 0 and a < 0 there are nontrivial functions in Lp(a). This follows from
the fact that if f is harmonic and m an integer > 0, then (1 � jxj2)mf(x) is in
Hm+1, which is a special case of the Almansi representation theorem [1].

Theorem 2. Let 0 < p � 1, �1 < s <1 and a > s. If f 2 HC1\Lp(a),
then Isf 2 Lp(a� s).

It should be observed, however, that we do not state the validity of implication
II ) I in the class HC1. But since the group fIsg preserves the class Hm, the
case s < 0 of Theorem 2 yields the following.

Corollary 1. Let 0 < p � 1, a > 0 and s > 0. If f is polyharmonic and

Isf 2 Lp(a� s), then f 2 Lp(a).

We will deduce Theorem 2 from the following three propositions.
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Proposition 1. Let g be a nonnegative continuous function on B such that

g(ry) increases with r; 0 < r < 1, for all y 2 @B. If g 2 Lp(a) and a > s > 0, then
Isg 2 Lp(a� s).

The proof is in Section 3.

For a continuous function f on B let

f�(x) = supfjf(tx)j: 0 < t < 1g (x 2 B):

The well known Complex Maximal Theorem of Hardy and Littlewood and
Proposition 1 yield the holomorphic version of Theorem 2 for s > 0. Of course this
deep theorem of Hardy and Littlewood cannot be applied in the general case, and
we replace it by a simpler fact.

Proposition 2. Let a > 0 and f 2 HC1 \ Lp(a). Then f� 2 Lp(a).

In order to prove Theorem 2 for s < 0 we use the following proposition which
improves Theorem 2 in the case where s is a negative integer, and without appealing
to the hypothesis a > s.

Let � = (�1; . . . ; �n) be a multi-index, i.e., an n-tuple of nonnegative integers.
We denote by @�f the corresponding partial derivative of order j�j = �1+. . .+�n.

Proposition 3. If f 2 HC1 \ Lp(a), �1 < a < 1, then @�f 2 Lp(a +
j�j).

The proofs of Propositions 2 and 3 are in Section 4.

Proof of Theorem 2. Let f 2 HC1 \ Lp(a). If a > s > 0, then f� 2 Lp(a),
by Proposition 2, and hence Is(f�) 2 Lp(a� s), by Proposition 1, and this solves
the case s > 0.

Let s < 0, a > s. Choose an integer k > �s. Then, by Proposition 3, @�f 2
Lp(a+ k) for j�j � k. Since a+ k > 0 and @�f 2 HC1, we can apply Proposition 2
to conclude that (@�f)� 2 Lp(a+k) for j�j � k. Hence, by Proposition 1, applied to
g = (@�f)�, we �nd that Ik+s(j@�f j) 2 Lp(a�s). (Observe that 0 < k+s < a+k.)
And since

(2) jDkf j � C
X
j�j�k

j@�f j (C = const > 0)

we have that Ik+s(jDkf j) 2 Lp(a � s). This completes the proof because jIsf j =
jIk+sDkf j � Ik+s(jDkf j). �

Remark 1. By (2),

f� = (IkDkf)� � Ik(Dkf)� � C
X
j�j�k

(@�f)� =:Sk(f):

On the other hand, by Proposition 1 and 2, if f 2 HC1 \ Lp(a), a > 0, then
Sk(f) 2 Lp(a).
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Remark 2. Propositions 1 and 2 yield a converse to Proposition 3 for a > 0.
Let f 2 HC1 and k a positive integer. Let @�f 2 Lp(a + k), a > 0, for all
� with j�j = k. Using �rst Proposition 2 and then Proposition 1, we see that
Ik(j@�f j) 2 Lp(a). Then f 2 Lp(a), by Taylor's formula.

3. Proof of Proposition 1

Lemma 1. Let 0 < p < 1, q = min(p; 1) and 0 < s < 1. If g is as in

Proposition 1, then there is a constant C = C(p; s) such that

(3) Mq
p (I

sg; (1 + r)=2)�Mq
p (I

sg; r) � C(1� r)qsMq
p (g; (1 + r)=2) (0 < r < 1):

Proof. It suÆces to prove that

(4) Isg(%y)� Isg(ry) � C(1� r)sg(%y) (y 2 @B);

% = (1+ r)=2. Then, if p > 1, we use Minkowski's inequality in continuous form to
deduce (3) from (4). If p � 1, we combine (4) with the inequality up�vp � (u�v)p

(u > v > 0) and integrate the resulting inequality over @B.

In order to prove (4) we write Isg(ry), for a �xed y 2 @B, as �(s)(I0(r)+J(r)),
where

I0(r) =

1Z
r

�
log

1

t

�s�1
g(try) dt;

J(r) =

rZ
0

�
log

1

t

�s�1
g(try) dt =

1

r

r2Z
0

�
log

r

t

�s�1
g(ty) dt:

It is easily seen that I0(%) � s�1(1 � %)sg(%y). From the �rst expression for
J(r) it follows that J(r) increases with r, and hence dJ=dr � 0. Then we use the
Leibnitz rule to �nd dJ=dr from the second expresion. We obtain

����dJdr
���� = dJ

dr
� 2

�
log

1

r

�s�1
g(ry):

The proof is completed by Lagrange's theorem.

Proof of Proposition 1. Let g 2 Lp(a), a > s > 0. We may assume that
s < 1 because of the relation Is+kg = IsIkg (s; k > 0) and the fact that Ikg(ry)
increases with r. Let s < 1, q = min(p; 1) and rj = 1� 2�j (j � 0). It follows from
the hypotheses and (3) that

Mq
p (I

sg; rj)�Mq
p (I

sg; rj�1) � C2j(a�s)q (j � 1)
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for some constant C. Hence by summation

Mp(I
sg; rj) = O(2j(a�s));

which implies Isg 2 Lp(a� s) because Mp(I
sg; r) increases with r. �

4. Proofs of Propositions 2 and 3

Lemma 2 [10]. If f 2 HC1 and p > 0, then there is a constant C =
C(K; p; n) such that

(5) jf(x)jp � C%�n
Z

B%(x)

jf jpdV

whenever B%(x) � B.

Lemma 3. If a � 0 and f 2 HC1 \ Lp(a), then (jf j+ jrf j)� 2 Lp(a+ 1).

Proof. Let g = (jf j+ jrf j)p and h = jf jp. Then, by (1) and (5),

(6) g(x) � C%�n�p
Z

B%(x)

h dV

for some C independent of %, x. Let rj = 1� 2�j and

gj(y) = supfg(ry): rj�1 < r < rjg (y 2 @B):

If rj�1 < r < rj and % = rj+1 � rj , then

B%(ry) � Dj : = fz: jz � rj�1yj < rj+1 � rj�1g;

whence, by (6),

gj(y) � C2j(p+n)
Z
Dj

h dV:

Replace y by Uy, where U is an orthogonal transformation, then apply the change
z ! Uz to get

gj(Uy) � C2j(n+p)
Z

Dj(y)

h(Uz) dV (z):

Integrating this inequality with respect to the Haar measure on the orthogonal
group, we get

kgjk1 � C2j(n+p)
Z

Dj (y)

M1(h; jzj) dV (z):
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Here we used the relations

Z
h(Uz) dU =M1(h; jzj);Z

gj(Uy) dU = kgjkL1(@B) =: kgjk1:

It follows that

(7) kgjk1 � C2jp supfM1(h; r): rj�2 < r < rj+1g (j � 2):

If f 2 Lp(a), this implies

M1(g
�; rj)�M1(g

�; rj�1) � kgjk1 � C2jp(1+a)

for some constant C. If in addition 1 + a > 0, then

M1(g
�; rj) = O(2jp(1+a));

which proves the lemma. �

Proof of Proposition 2. Let f 2 HC1\Lp(a), a > 0. Then (D1f)� 2 Lp(a+1)
because of Lemma 3 and the inequality jD1f j � jf j + jrf j. Hence I1(D1f)� 2
Lp(a), by Proposition 1, and hence f

� 2 Lp(a) because f
� = (I1D1f)� � I1(D1f)�.

�

Proof of Proposition 3. Let f 2 HC1 \ Lp(a), �1 < a <1. It suÆces to
prove that @�f 2 Lp(a+1) for j�j = 1, then replace f by @�f and so on. It follows
from the proof of Lemma 3 that inequality (7) is independent of a. If rj�1 � r � rj
(j > 2), and a < 0, then (7) gives

Mp(jrf j; r) � C2j(1� rj�2)
�a � C(1� r)�a�1:

For a � 0 Lemma 3 gives a stronger conclusion. �
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