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Abstract. Let m(G; k) and n(G; k) be the number of distinct k-element sets
of independent edges and vertices, respectively, of a graph G. Let h; p1; p2; . . . ; ph
be positive integers. For each selection of h; p1; p2; . . . ; ph we construct two graphs
N = Nh(p1; p2; . . . ; ph) andM =Mh(p1; p2; . . . ; ph), such that m(N; k) = m(M;k)
and n(N; k) = n(M;k) for all but one value of k. The graphs N and M correspond
respectively to a normal and a M�obius-type belt.

Introduction

In this paper we are concerned with �nite graphs without loops, multiple
and directed edges. If G is such a graph, then m(G; k) and n(G; k) denote the
number of its distinct k-element independent edge and vertex sets, respectively,
k = 0; 1; 2; . . . . Recall that m(G;O) = n(G;O) = 1, m(G; 1) = number of edges of
G, n(G; 1) = number of vertices of G. Independent edge and vertex sets of graphs
and, in particular, the invariants m(G; k) and n(G; k) were much investigated in
graph theory [1{16].

Nonisomorphic graphs G1 and G2 for which the equalities

m(G1; k) = m(G2; k) (1)

and
n(G1; k) = n(G2; k) (2)

hold for all k � 0 are easily constructed; a pair of such graphs is depicted in Fig. 1.

Nonisomorphic graphs for which the equalities (1) and (2) are obeyed for all
but one value of k are found even easier. The simplest examples of this kind are
the two 2-vertex graphs and the two connected 3-vertex graphs. However, all such
examples known until now consist of graphs with small number of vertices.
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G1 G2

Fig. 1

The invariants m(G; k), k = 1; 2; . . . , are highly intercorrelated and a num-
ber of their \collective" properties is known: for instance, they form a unimodal
sequence [16] and their distribution is asymptotically normal [3]. All the zeros of
the matching polynomial (see below) are real-valued [1, 4, 5]. Numerous pairs of
graphs were found for which if the relation m(G1; k) > m(G2; k) holds for some k,
then m(G1; k) � m(G2; k) holds for all k [6, 13, 14].

Similar, but not fully analogous, properties of the numbers n(G; k) have also
been deduced [7{12].

In view of the above, one may ask if, for graphs G with suÆciently large
number of vertices, m(G; k�) is determined by m(G; k), k � 1 , k 6= k�. We show
here that speculations in such a direction are not very promising. We namely have
the following result.

Theorem 1. There exist graphs G1 and G2 with arbitrarily many vertices,

for which both equalities (1) and (2) hold for all k, k � 0, k 6= k�, but are both

violated for a certain k = k�.

Theorem 1 is an immediate consequence of our main result, namely Theorem
2. In order to be able to formulate it we have to de�ne the belt graphs.

Belt graphs and statement of the main result

Let h be a positive integer. Let p1; p2; . . . ; ph be positive integers. De�ne
r0 = 0, r1 = p1, r2 = p1 + p2; . . . ; rh = p1 + p2 + . . . + ph. For brevity, instead of
rh we shall write r.

Let Pr+1 be the (r + 1)-vertex path whose vertices are labeled consecutively
by u0; u1; . . . ; ur. Let P 0

r+1 be another copy of the (r + 1)-vertex path, whose
vertices are labeled by v0; v1; . . . ; vr.

De�nition 1. The graph L = Lh(p1; p2; . . . ; ph) is obtained from Pr+1 and
P 0
r+1 by joining (by means of a new edge) the vertices uri and vri , i = 0; 1; . . . ; h.

De�nition 2. The graph N = Nh (p1; p2; . . . ; ph) is obtained from Lh(p1; p2,
. . . ; ph) by identifying the vertices u0 and v0 with ur and vr, respectively. We say
that N is a normal belt graph.

De�nition 3. The graph M =Mh(p1; p2; . . . ; ph) is obtained from Lh(p1; p2,
. . . ; ph) by identifying the vertices u0 and v0 with vr and ur, respectively. We say
that M is a M�obius-type belt graph.
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In Fig. 2 is depicted a graph L as well as two pairs of belt graphs. From these
examples the meaning of the parameters h; p1; p2; . . . ; ph is clear: The graph L =
Lh(p1; p2; . . . ; ph) is composed of h linearly arranged circuits of sizes (2pi +2), i =
1; 2; . . . ; h. The cyclomatic number of L is h. The graphs N = Nh(p1; p2; . . . ; ph)
and M = Mh(p1; p2; . . . ; ph) are formed of h cyclically arranged circuits of sizes
(2pi + 2), i = 1; 2; . . . ; h. Their cyclomatic numbers are h + 1. Their number of
vertices is 2r.

The graphs N can be viewed as representing normal (two-sided) belts. The
graphs M , on the other hand, correspond to M�obius-type (one-sided) belts.

Fig. 2

If r is even, then N is a bipartite graph whereas M is non-bipartite. If r is
odd, then N is non-bipartite and M is bipartite. Recall that r is odd if and only
if among the parameters p1; p2; . . . ; ph odd values occur odd number of times. In
other words: r is odd if and only if among the circuits forming N and M there is
an odd number of circuits whose size is divisible by 4.

Our main result reads now as follows.

Theorem 2. Let h; p1; p2; . . . ; ph be arbitrary positive integers. Let r =
p1 + p2 + � � �+ ph. Let N = Nh(p1; p2; . . . ; ph) and M =Mh(p1; p2; . . . ; ph) be belt

graphs in the sense of De�nitions 2 and 3. Then:

(a) m(N; k) = m(M;k) and n(N; k) = n(M;k) for 0 � k � r � 1,

(b) m(N; r) = m(M; r) + (�1)r2 and n(N; r) = n(M; r) + (�1)r2

(c) m(N; k) = m(M;k) = n(N; k) = n(M;k) = 0 for k > r.

The proof of Theorem 2 requires some preparations.
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Matching and independence polynomials of belt graphs

The generating functions associated with the invariants m(G; k) and n(G; k)
are

�(G) = �(G; x) =
X

k�0

m(G; k)xk and !(G) = !(G; x) =
X

k�0

n(G; k)xk

Because G is supposed to be �nite, both �(G) and !(G) are polynomials; we call
them matching [1, 2, 4, 5, 12] and independence polynomial [1, 10{12], respec-
tively. (The matching polynomial is usually de�ned [1, 2, 4, 5, 15] in a slightly
di�erent, but fully equivalent, way; the de�nition given above is convenient for the
present considerations.) These polynomials obey the following recurrence relations
[1, 4]:

Lemma 1. (a) Let e = (u; v) be an edge of G, connecting the vertices u

and v. Let Nv be the set of vertices of G, consisting of the vertex v and the �rst

neighbors of v. Then

�(G) = �(G� e) + x�(G � u� v); !(G) = !(G� v) + x!(G �Nv)

(b) If u is the only neighbor of v, then

�(G) = �(G� u) + x�(G � u� v); !(G) = !(G� u) + x!(G� u� v)

Lemma 2. Let v0 and v00 be two distinct vertices of the graph G and let

e0 = (u0; v0) and e00 = (u00; v00) be two distinct edges of G.

(a) If e0 and e00 are independent, then

�(G) = �(G� e0 � e00) + x[�(G � e0 � u00 � v00) + �(G� e00 � u0 � v0)]

+ x2�(G � u0 � v0 � u00 � v00)

(b) If e0 and e00 are not independent, then

�(G) = �(G� e0 � e00) + x[�(G � u0 � v0) + �(G� u00 � v00)]

(c) If v0 and v00 are independent, then

!(G) = !(G� v0 � v00) + x[!(G� v0 �Nv00) + !(G� v00 �Nv0)]

+ x2!(G�Nv0 �Nv00)

(d) If v0 and v00 are not independent, then

!(G) = !(G� v0 � v00) + x[!(G�Nv0) + !(G�Nv00)]
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Needless to say that Lemma 2 is obtained by a two-fold application of the
recurrence relations given in Lemma 1a.

By applying Lemma 2a to the edges (ur�1; ur) and (vr�1; vr) of the belt
graphs N = Nh(p1; p2; . . . ; ph) and M = Mh(p1; p2; . . . ; ph) and by recalling that
in N; ur � u0, vr � v0, whereas in M;ur � v0 and vr � u0, we arrive at

�(N) = �(L� ur � vr) + x[�(L� u0 � ur � ur�1 � vr)

+ �(L� v0 � vr � vr�1 � ur)] + x2�(L� u0 � ur � ur�1 � v0 � vr � vr�1) (3)

�(M) = �(L� ur � vr) + x[�(L� u0 � vr � vr�1 � ur)

+ �(L� v0 � ur � ur�1 � vr)] + x2�(L� u0 � ur � ur�1 � v0 � vr � vr�1) (4)

Here L stands for the graph Lh(p1; p2; . . . ; ph). It is assumed that the vertices of
L, N and M are labeled in accordance with De�nitions 1, 2 and 3.

Bearing in mind that the graphs L�u0�ur�ur�1�vr and L�v0�vr�vr�1�ur
as well as L� u0 � vr � vr�1 � ur and L� v0 � ur � ur�1 � vr are isomorphic, we
obtain from (3) and (4):

�(N)� �(M) = 2x[�(L� u0 � ur � ur�1 � vr)� �(L� u0 � vr � vr�1 � ur)] (5)

The vertices ur�1 and vr�1 in N and M may be independent, but need not.
It is easy to see that ur�1 and vr�1 are adjacent if ph = 1 and are independent if
ph > 1.

Suppose �rst that ph > 1. Applying Lemma 2c to the vertices ur�1 and vr�1
and performing calculations fully analogous to those leading to eq. (5), we obtain

!(N)� !(M) = 2x[!(L� u0 � ur � ur�1 � ur�2 � vr � vr�1)

�!(L� u0 � vr � vr�1 � vr�2 � ur � ur�1)]
(6)

The precisely same formula (6) holds also in the case ph = 1.

At this point it is convenient to introduce the abbreviate notation:

L� u0 � ur � ur�1 � . . .� ur�i � vr � vr�1 � . . .� vr�i+1 � L0
i

(7)

L� u0 � vr � vr�1 � . . .� vr�i � ur � ur�1 � . . .� ur�i+1 � L00i (8)

Then equations (5) and (6) can be rewritten in a more compact form:

�(N) � �(M) = 2x[�(L01)� �(L001 )] (5a)

!(N)� !(M) = 2x[!(L02)� !(L002)] (6a)
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Proof of Theorem 2

Lemma 3. For 1 � i � r � 2, �(L0
i
)� �(L00

i
) = �x[�(L0

i+1)� �(L00
i+1)].

Proof. Notice that in the graph L0
i
the vertex vr�i is of degree one. The

same is true for the vertex ur�i in L
00
i
. Then Lemma 1b is applicable, yielding

�(L0
i
) = �(L� u0 � ur � ur�1 � . . .� ur�i � vr � vr�1 � . . .� vr�i) + x�(L00

i+1)

�(L00
i
) = �(L� u0 � ur � ur�1 � . . .� ur�i � vr � vr�1 � . . .� vr�i) + x�(L00

i+1)

From the above relations Lemma 3 is deduced straightforwardly. �

Lemma 4. �(L01)� �(L001 ) = (�1)rxr�1.

Proof. From Lemma 3,

�(L01)� �(L001) = �x[�(L02)� �(L002)] = . . . = (�x)r�2[�(L0
r�1)� �(L00

r�1)]

From (7) is seen that L0
r�1 consists of two vertices (v0 and v1), connected by an

edge. Therefore, �(L0r�1) = 1 + x. From (8) follows that L00r�1 consists of two
disconnected vertices (v0 and u1). Therefore, �(L

00
r�1) = 1. �

Lemma 5. For 1 � i � r � 2, !(L0
i
)� !(L00

i
) = �x[!(L0

i+1)� !(L00
i+1)]

Proof is fully analogous to the proof of Lemma 3.

Lemma 6. !(L02)� !(L002) = (�1)rxr�1.

Proof. From Lemma 5,

!(L02)� !(L002) = �x[!(L03)� !(L003)] = . . . = (�x)r�3[!(L0
r�1)� !(L00

r�1)]

Lemma 6 follows from taking into account that !(L0
r�1) = 1 + 2x and !(L00

r�1) =

1 + 2x+ x2. �

Combining the formulas (5a) and (6a) with Lemmas 4 and 6 we arrive at:

Lemma 7. �(N)� �(M) = (�1)r2xr and !(N)� !(M) = (�1)r2xr. �

Proof of Theorem 2. The statements (a) and (b) of Theorem 2 are just
another way of expressing the result of Lemma 7. It thus remains only to show
that also the statements (c) in Theorem 2 are valid.

A graph with 2r vertices has at most r independent edges. Therefore,m(N; k)
and m(M;k) must be zero for k > r.

One of the graphs N and M is bipartite. Denote this has graph by G0 and
color its vertices in the usual manner. This graph has equal number (= r) of vertices
of each color. Each group of equally colored vertices forms an independent vertex
set of cardinality r, hence n(G0; r) = 2. Evidently, n(G0; k) = 0 for k > r. For the
other graph, say G00, which is non-bepartite, it cannot be n(G00; r) > 0. Therefore,
it must be n(G00; k) = 0 also for k > r.
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By this also part (c) of Theorem 2 is veri�ed. �
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