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Abstract. Using spectral techniques we prove a theorem giving a necessary
and suÆcient condition for a generalized direct product (GDP) of strongly connected
digraphs (with some additional restrictions) to be a primitive digraph.

The necessary background and terminology can be found in [2]. We will limit
ourselves to de�ning only lesser known terms and those which may cause confusion.

By a digraph we mean an ordered pair G = (V;E); where V (G) = V is a
�nite nonempty set and E(G) = E is a family of ordered pairs of V (multiplicity of
which can exceed 1). A (undirected) graph is a symmetric digraph. A digraph G

is called complete if each ordered pair of vertices u; v of G (if loops are not allowed,
then u 6= v) belongs to E(G) with the same multiplicity. A digraph is regular of
degree r if each indegree and each outdegree is equal to r: The cycle (directed) is
a (strongly) connected regular digraph of degree 1. A strongly connected digraph
G is called bipartite if it has no odd cycles, or equivalently if the vertex set V of
G can be partitioned into two subsets V1 and V2 such that every arc of G joins a
vertex of Vi to a vertex of Vj , i 6= j: A bipartite digraph G (with partite sets V1
and V2) having additional property that each ordered pair (u; v), (u 2 Vi; v 2 Vj ;

i 6= j), belongs to E(G); with the same multiplicity, is called bicomplete. By ~Cp

(Cp) we denote the directed (undirected) cycle with p vertices, all arcs of which
have the same multiplicity.

The spectrum of a digraph G is the spectrum of its adjacency matrix A(G) =
[aij ]

p
1; where jV (G)j = p and aij � 0 is the number of arcs leading from the vertex

corresponding to i-th row to the vertex corresponding to j-th column of A: The
index r of a strongly connected digraph G is its the greatest real eigenvalue. By a
theorem of Frobenius it follows that j�ij � r holds, for all eigenvalues �i of G:
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Let G be a digraph with at most � parallel arcs between any two vertices or
loops of a vertex in G (if there are no parallel arcs, then � = 1), then complement
�G of G is the digraph which has the same set of vertices as G and for any ordered
pair (u; v) of vertices u and v of �G (if loops are not allowed, then u 6= v) from u to
v lead � � a arcs, where a is the number of arcs leading from u to v in G:

De�nition 1. Let B � f1; 0;�1gn n f(0; 0; :::; 0)g: The generalized direct
product with basis B of digraphs G1; G2; :::; Gn is the digraph G = GDP (B;G1;

G2; :::; Gn) whose vertex set is the Cartesian product of the vertex sets of digraphs
G1; G2; :::; Gn: For two vertices say u = (u1; u2; :::; un) and v = (v1; v2; :::; vn) of
G construct all the possible arc selections of the following type. For each n-tuple
(�1; �2; :::; �n) 2 B; such that uk = vk holds whenever �k = 0; select an arc going
from ui to vi in Gi whenever �i = 1 and an arc going from ui to vi in �Gi whenever
�i = �1: The number of arcs going from u to v in G is equal to the number of such
selections.

If B consists of n-tuples of symbols 1 and 0 only, then the resulting operation
is called the noncomplete extended p-sum (NEPS). The p-sum is obtained if B
consists of all the possible n-tuples with exactly p 1's. If p = n; the p-sum is
called the product. The 1-sum is also called the sum. The NEPS, basis of which
contains all possible n-tuples (of course without n-tuple (0,0,...,0)) is called the
strong product.

In order to investigate primitivity of the GDP we need the following results
from [7] and [8].

Theorem 1. Let G be a regular digraph with p vertices, degree r; and

maximum number of parallel arcs between any two vertices or loops of a vertex

equal to � and let �1 = r; �2; :::; �p be the spectrum of G: The complement �G of G

has the spectrum given by: ��1 = �p� �� r; ��2 = ����2; :::; ��p = ����p; if loops

are not allowed, and ��1 = �p� r; ��2 = ��2; :::; ��p = ��p; if loops are allowed in G

( �G).

The eigenvectors belonging to �i and ��i are the same and the eigenvector

belonging to the eigenvalue �; distinct from r; is orthogonal to the eigenvector

(1; 1; :::; 1) belonging to r:

Let 
 denote the Kronecker product of matrices. The following theorem [8]
is a slight generalization of Theorem 5 from [7]. Its proof coincides with the proof
of Theorem 2.23 in [2].

Theorem 2. If, for i = 1; 2; :::; n; �iji (��iji ); ji = 1; 2; :::; pi; is the spec-

trum of a digraph Gi (complement �Gi of Gi; determined by Theorem 1 in the

case of regularity of Gi) (pi being its number of vertices), then the spectrum of

GDP (B;G1; G2; :::; Gn); in which Gi is a regular digraph whenever there exists

� 2 B such that �i = �1; consists of all possible values �j1;j2;:::;jn ; where

�j1;j2;:::;jn =
X
�2B

�
[�1]
1j1

� �
[�2]
2j2

� � ��
[�n]
njn

;
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�
[1]
iji

= �iji ; �
[0]
iji

= 1; �
[�1]
iji

= ��iji ; (ji = 1; 2; :::; pi; i = 1; 2; :::; n):

The eigenvector xj1;j2;:::;jn = x1j1 
x2j2 
 :::
xnjn belongs to the eigenvalue

�j1;j2;:::;jn ; where xiji is an eigenvector belonging to the eigenvalue �iji of Gi:

We shall consider the GDP, basis B of which has property (D): for each
j 2 f1; 2; :::; ng the set f�j j� 2 Bg is not a subset of f0;�1g: This condition implies
that the GDP, e�ectively depends on each Gi: However, this condition does not
represent an essential restriction in investigation of primitivity of a GDP. Namely,
if f�j j� 2 Bg � f0;�1g for some j; then we can replace Gj by its complement �Gj

provided in each n-tuple � 2 B the j-th coordinate �1 is replaced by 1 [7]. (The
case when all �j are equal to 0 is not interesting and is excluded from consideration.)

Let h(G) = h be the greatest common divisor of the lengths of all the cycles
in a digraph G: The digraph G is called primitive if it is strongly connected and
h = 1 and imprimitive if it is strongly connected and h > 1: In the second case h is
called the index of imprimitivity (h is the index of imprimitivity of the adjacency
matrix of the digraph G as well [1, p. 183]). A nonconnected digraph is primitive
if all its components are primitive.

A maximal eigenvalue of a digraph G is an eigenvalue of G modulus of which
is equal to the index of G: According to theorem of Frobenius and Theorems 0.4 and
0.5 in [2] if a digraphG hasN maximal eigenvalues andK strong components which
are its components too, and each component have the same index of imprimitivity
h; then N = Kh: Then, the digraph G is primitive if and only if N = K:

A regular, connected digraph G has property (M) if there exists a maximal
eigenvalue of G; di�erent from the index, such that by Theorem 1 corresponding
eigenvalue of �G is maximal too. The following lemma [8] describes which regular
digraphs have the property (M).

Lemma 1. Only regular, bicomplete digraphs have the property (M ) and, in
the case when loops are not allowed, regular, bicomplete digraphs and the cycle of

length 3; with the same multiplicity of all arcs (in both cases).

In the case of bicomplete digraphs the argument of the corresponding eigen-

value of �G is equal to zero and in the case of the cycle of length 3 it is twice greater

than the argument of the corresponding eigenvalue of G.

If h1; h2; :::; hn (n > 0) are natural numbers,
x1

h1
+
x2

h2
+� � �+xn

hn
= y equation on

n+1 variables in integers x1; x2; :::; xn; y and x
(0)
1 ; x

(0)
2 ; :::; x

(0)
n ; y(0) satisfy this equa-

tion, then the classes x1 = x
(0)
1 (modh1); x2 = x

(0)
2 (mod h2); :::; xn = x

(0)
n (modhn)

are called a solution of this equation.

A subset fi1; i2; :::; isg of f1; 2; :::; ng is consistent with digraphs G1; G2; :::;

Gn with respect to a basis B; if for each k 2 fi1; i2; :::; isg\f�j9� 2 B ^�� = �1g;
the digraph Gk is bicomplete (which is indicated by e(Gk) = 0) or, in the case when

loops are forbidden, bicomplete (again e(Gk) = 0) or isomorphic to ~C3 (indicated
by e(Gk) = 1).
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Theorem 3. Let GDP (B;G1; :::; Gn) satisfy the following conditions: (i)
Basis B (jBj � 2) has property (D); (ii) For i = 1; 2; :::; n; Gi is a strongly connected

digraph with at least two vertices; (iii) For i 2 K = fkj9� 2 B ^ �k = �1g �
f1; 2; :::; ng; Gi is a regular noncomplete digraph; (iv) For j 2 L � f1; 2; :::; ng; Gj

is imprimitive with the index of imprimitivity hj ; otherwise it is primitive. Then

GDP (B;G1; :::; Gn) is a primitive digraph if and only if the following systems of

equations (1) and (2)

(1)
X
i2L

�
1

2
(�2i + �i)

xi

hi
+
xi

3
e(Gi)(�

2
i � �i)

�
= y� ; � 2 B;

X
i2L

�
1

2
(�i � �i)(�i + �i + 1)

xi

hi
+
xi

3
e(Gi)(�i � �i)(�i + �i � 1)

�
= z�;

(2) � 2 B (� 6= �);

have the same number of solutions xi; y� ; z� such that, if for any i 2 K \ L; Gi

is not bicomplete or, in the case when loops are forbidden, neither bicomplete nor

isomorphic to ~C3; then xi = 0 (mod hi):

Proof. Let A(G) = A be the adjacency matrix [7] of G = GDP (B;G1;

G2; :::; Gn): If for i = 1; 2; :::; n; Gi is strongly connected, a positive eigenvector be-
longs to the index ri both in A(Gi) and A

T (Gi). By Theorem 2, it also follows that
the positive eigenvectors belong to the index both in A and AT : Then, according to
Theorem 0.5 from [2] the number of strong components of the GDP (which are its
components too [8]) is equal to the multiplicity of its index. Further, the GDP is a
primitive digraph if each its component is primitive. All components of a GDP of
strongly connected digraphs have the same index (Theorem 0.5 from [2] and Theo-
rem 2). Therefore, a necessary and suÆcient condition for primitivity of a GDP is
that each its component contains the index in the spectrum (with multiplicity 1)
as the unique maximal eigenvalue. Thus, a necessary and suÆcient condition for
primitivity of GDP is that the number of maximal eigenvalues of the GDP is equal
to the multiplicity of its index.

Multiplicity of the index of GDP, under considered conditions, according to
Theorem 5 in [8], is given by the number of solutions of the system of equations
(1), satisfying given conditions. We should determine the number of maximal
eigenvalues of the GDP.

By Theorem 3 the index � of G = GDP (B;G1; :::; Gn) is given by

� =
X
�2B

r
[�1]
1 r

[�2]
2 � � � r[�n]n ; r

[1]
i = ri; r

[0]
i = 1; r

[�1]
i = �ipi � ri � �il(Gi);

where l(Gi) = 1 if loops are forbidden and 0 otherwise, and �i is the maximum
number of parallel arcs between any two vertices or loops of a vertex of Gi:
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By the same theorem, if none of Gj ; for j 2 K; is complete, a maximal
eigenvalue of G is obtainable only from those eigenvalues of the digraphs Gj ( �Gj),
j = 1; 2; :::; n; which have a modulus equal to rj (�jpj � rj � �j � l(Gj)). All these

eigenvalues of Gj can be written in the form rj exp(
`j
hj
2�i), 0 � `j � hj � 1,

(i2 = �1) (theorem of Frobenius). Therefore by Theorem 3 we have

(3) � =
X
�2B

nY
j=1

�1
2
(�2j + �j)rj exp

� `j
hj

2�i
�
+ (1� �2j )

+
1

2
(�2j � �j)

�
�sg(`j)�jpj � �j � l(Gj)� rj exp

� `j
hj

2�i
���

;

where �sg(0) = 1 and �sg(x) = 0 for x > 0.

Let J = f1; 2; :::; ng: For any choice of integers `j1 ; `j2 ; :::; `js ; 1 � `jt � hjt�1;
fj1; j2; :::; jsg � L and any � 2 B let J� = fj1; j2; :::; jsg \ fkj�k 6= 0g: Then from
(3) we have:

� =
X
�2B

� Y
j2JnJ�

r
[�j ]
j

�� Y
j2J�

�1
2
(1 + �j)rj exp

� `j
hj

2�i
�

+
1

2
(1� �j)

�
� �j � l(Gj)� rj exp

� `j
hj

2�i
����

;

or

� =
X
�2B

� Y
j2JnJ�

r
[�j ]
j

�� Y
j2J�

�
r2j +

1

2
(1� �j)

�
2rj�j cos

`j

hj
2� + �2j

�
l(Gj)

�1=2

� exp
�1
2
(1 + �j)

`j

hj
2�i+

1

2
i(1� �j)�j)

��
;

(4)

�
�j = arg

�
� �j � l(Gj)� rj exp

� `j
hj

2�i
���

:

According to Lemma 1, a maximal eigenvalue of G is obtainable only from
those choice of integers `j1 ; `j2 ; . . . ; `js , fj1; j2; . . . ; jsg � L, 1 � `jt � hjt � 1,
t = 1; 2; . . . ; s, for which Gjt is bicomplete or, in the case when loops are forbidden,

bicomplete or isomorphic to ~C3 whenever jt 2 K\L holds. Then (4) can be written
in the form:

(5) � =
X
�2B

r
[�1]
1 r

[�2]
2 � � � r[�n]n

� exp
�
i

X
k2fj1;... ;jsg

�1
2
(�2k + �k)

`k

hk
2� +

1

2
(�2k � �k)

`k

3
4�e(Gk)

��
:
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Now, a maximal eigenvalue of GDP is given whenever the arguments of the operator
exp in summands (5) are di�er by exactly 2z��, where z� is an integer. Equaliz-
ing the di�erences of the arguments of arbitrary summand � 2 B and remaining
summands to 2z��, (z� 2 Z) we give the system of equations (2).

This completes the proof of the theorem.

The solution xi = 0(modhi); (i = 1; 2; :::; n), y� = 0; z� = 0 of the systems
of equations (1) and (2) is called the trivial solution.

The special cases of this theorem are described in the next few theorems and
examples.

Theorem 4. Let G1; G2; :::; Gn be strongly connected digraphs each con-

taining at least two vertices. Suppose also that Gi1 ; Gi2 ; :::; Gis (fi1; i2; :::; isg �
f1; 2; :::; ng) are imprimitive with the indices of imprimitivity hi1 ; hi2 ; ::; his ; respec-

tively, while others are primitive. The NEPS with the basis B (jBj � 2) satisfying
condition (D); of digraphs G1; G2; :::; Gn is a primitive digraph if and only if the

following systems of equations (� 2 B)

xi1
hi1

�i1 +
xi2
hi2

�i2 + � � �+
xis
his

�is = y� ; � 2 B;

and

xi1
hi1

(�i1 � �i1) +
xi2
hi2

(�i2 � �i2) + � � �+
xis
his

(�is � �is) = z�; � 2 B; � 6= �;

have the same number of solutions xi; y� ; z�:

If jBj = 1 in Theorem 3, then we in fact come get to the product of digraphs.

As the number of components of the product ([6], [4]) is1
h1h2 � � �hn

lcm(h1; h2; � � � ; hn)
; and

the number of maximal eigenvalues is obviously h1h2 � � �hn; we have a new proof
of the statement [6] in the following example.

Example 1. The product of strongly connected digraphs G1; G2; :::; Gn; each
containing at least two vertices is a primitive digraph if and only if all digraphs
G1; G2; :::; Gn are primitive.

Theorem 5. Let the digraphs G1; G2; :::; Gn satisfy conditions of Theo-

rem 4. The p-sum of these digraphs is a primitive digraph if and only if one of the

following conditions holds:

1o p is equal to n and all digraphs G1; G2; :::; Gn are primitive;

2o p is less than n and n� s > p� 1;

3o p is less than n; n� s � p� 1 and the systems of equations

xj1
hj1

+
xj2
hj2

+ � � �+
xjp

hjp
= yj1;j2;:::;jp ;

1lcm denotes the lowest common multiple
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and
xp+k

hp+k
�
xp�j

hp�j
= zkj ; k = 1; 2; :::; n� p; j = 0; 1; :::; p� 1;

where fj1; j2; :::; jpg runs over all p-subsets of f1; 2; :::; ng; have the same number

of solutions xi; yj1;j2;:::;jp ; zkj :

Example 2. The sum of strongly connected digraphs G1; G2; :::; Gn; each
containing at least two vertices, is a primitive digraph if and only if h1; h2; :::; hn
are relative prime, i.e.2 gcd(h1; h2; :::; hn) = 1:

Proof. According to Theorem 3 the sum of considered digraphs is a primitive
digraph if and only if the system of equations

xk

hk
�
x1

h1
= zk; k = 2; 3; :::; n;

has only the trivial solution xi; zi: This is the case if and only if h1; h2; :::; hn are
relative prime.

The next example is obvious.

Example 3. The strong product of strongly connected digraphs G1; G2; :::;

Gn; each containing at least two vertices, is always a primitive digraph.

The strong product is a subgraph of the majority of associative products [5]
and therefore those products are, under considered conditions, primitive.

Example 4. The generalized direct product with the basis B containing all
n-tuples with an odd number of 1's of regular, connected digraphs G1; G2; :::; Gn;

each containing at least two vertices, is a primitive digraph except in the case when
all factors are bicomplete, and in this case it is bipartite [9].

Proof. It can be readily seen, in the case of completeness of any of the
factors, that this product is primitive. As the basis of this product consists of all
possible n-tuples of symbols 1; 0;�1 with odd number of 1's, it follows that the
system of equations (2) in this example has a nontrivial solutions (x1 = x2 = � � � =
xn = 1(mod2)) if and only if all factors G1; G2; :::; Gn are bicomplete. Since, this
product, under considered conditions, is strongly connected [8], the statement of
the example follows.

Example 5. The generalized direct product with basis B = f(1; 1); (1;�1);
(�1; 1)g of regular, connected digraphsG1; G2; each containing at least two vertices,
is a primitive digraph.

Proof. The system of equations (2) in this example is

x2

h2
(2e(G2)� 1) = y;

x1

h1
(2e(G1)� 1) = z;

where hi is the index of imprimitivity of Gi: This system has, obviously, only the
trivial solution x1 = 0(modh1); x2 = 0(modh2); and since this product is strongly

2gcd denotes the greatest common divisor
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connected the statement of this assertion follows. In the case of completeness of any
of factors this product is isomorphic to the ordinary product of complete digraphs
and is a primitive digraph.

Example 6. The generalized direct product with the basis B = f(1; 1);
(�1;�1)g of regular, connected, noncomplete digraphs G1 and G2; each containing
at least two vertices, is a primitive digraph. This product has two component if
G1 and G2 are bicomplete and three components, each isomorphic to C3; if loops

are forbidden in the factors and each factor is isomorphic to ~C3: In other cases the
product has one component. If any of the factors is complete then this product has
one component and index of imprimitivity equal to the index of imprimitivity of
the other factor.

Proof. The system of equations (2) in this example is an equation

x1

h1
(2e(G1)� 1) +

x2

h2
(2e(G2)� 1) = z:

This equation, in all cases of G1 and G2; has the number of solutions equal to the
number of components [8], from which the �rst part of the statement follows. The
second part follows from the fact that, in the case of completeness of any factor,
this product is reduced to the ordinary product of digraphs.

Example 7. The generalized direct product with basis B = f(1;�1); (�1; 1)g
of regular, connected, noncomplete digraphs G1 and G2; each containing at least
two vertices, is a primitive digraph except in the case that both digraphs G1 and G2

are bicomplete, in which case it is a bipartite digraph [9]. This product is always
connected except in the case when loops are forbidden in the factors and both of

them are isomorphic to ~C3: In this case the product has three components, each
isomorphic to C3:

Proof. System of equations (2) in this example is

x1

h1
(2e(G1)� 1)�

x2

h2
(2e(G2)� 1) = z:

It is not hard to see that this system has the number of solutions equal to the
number of components except in the case when G1 and G2 are bicomplete. In this
case this product has one component and above equation two solutions ((0,0),(1,1)),
from which the statements follows.

If, in the previous example, one of the factors is complete, then this product
yields to the ordinary product of that factor with the complement of the other one.
Then the questions of connectedness and of the index of imprimitivity have been
treated in [6].

The following theorem is a specialization of Theorem 3 to undirected graphs.
Preliminary we introduce the following function and quote Lemma 2 from [8].

(6) f(x1; x2; :::; xn) =
X
�2B

x
[�1]
1 x

[�2]
2 � � �x[�n]n ; x

[1]
i = xi; x

[0]
i = 1; x

[�1]
i = x2i :
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Lemma 2. Let f be arbitrary polynomial of n variables x1; x2; :::; xn; and

let fxi1 ; xi2 ; :::; xisg (fi1; i2; :::; isg � f1; 2; :::; ng) be an arbitrary nonempty subset

of variables. If there exists a nonempty subset of fxi1 ; xi2 ; :::; xisg with respect to

which the function f is odd (for de�nition see [2]); then the number of nonempty

subsets of fxi1 ; xi2 ; :::; xisg with respect to which the function f is odd, is greater

by one than the number of such subsets with respect to which this function is even.

Theorem 6. Let GDP (B;G1; :::; Gn) satisfy the following conditions: (i)
Basis B has property (D); (ii) For i = 1; 2; :::; n; Gi is an undirected, connected

graph containing at least two vertices, (iii) For i 2 K = fkj9� 2 B ^ �k = �1g �
f1; 2; :::; ng; Gi is a regular noncomplete graph, (iv) For j 2 L � f1; 2; :::; ng; Gj

is a bipartite graph, otherwise it is primitive. Then the GDP (B;G1; :::; Gn) is

a primitive graph if and only if the function (6) is never odd with respect to a

nonempty subset of L; which is consistent with graphs G1; G2; :::; Gn with respect

to the basis B:

Proof. According to Theorem 2 it is easy to see that, in the case of undirected
graphs, the GDP of G1; G2; :::; Gn; under the above conditions, is primitive if and
only if the number of nonempty subsets of L; which are consistent with graphs
G1; G2; :::; Gn with respect to the basis B; with respect to which the function (6)
is even is smaller by 1 than the number of such subsets with respect to which it is
odd. The statement of the theorem follows now by Lemma 2.

Theorem 7. Let G1; G2; :::; Gn be connected, undirected graphs each con-

taining at least two vertices. The p-sum of these graphs is a primitive graph if and

only if one of the following conditions holds:

1o p is equal to n and all the graphs G1; G2; :::; Gn are primitive;

2o p is even and less than n;

3o p is odd, less than n and at least one of the graphs G1; G2; :::; Gn is prim-

itive.

Comparing conditions of our Theorem 6 and Theorem 5 in [9] we can see that
these conditions are complementary. That means that all components of a GDP of
undirected, connected graphs are, under above conditions, or primitive or bipartite
(i.e., have the same index of imprimitivity). Thus, we have proved the following
theorem.

Theorem 8. All components of a GDP of undirected connected graphs,

under conditions of Theorem 6, have the same index of imprimitivity, i.e., all com-

ponents are bipartite or all components are primitive graphs.

This theorem supports the conjecture: All components of the NEPS are al-
most cospectral [3, p. 60].

In [10] it is proved that all components, of the NEPS of strongly connected
digraphs, have the same index of imprimitivity.
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