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A REMARK ON THE PARTIAL SUMS IN HARDY SPACES

Miroslav Pavlovi�c

Abstract. We prove that a function f , analytic in the unit disc, belongs to the Hardy
space H1 if and only if

nX

j=0

1

j + 1
ksjfk = O(log n) (n!1);

where sjf are the partial sums of the Taylor series of f . As a corollary we have that, for f 2 H1,

nX

j=0

1

j + 1
kf � sjfk = o(log n);

The analogous facts for L1 do not hold.

For a function f analytic in the unit disc D let

Pnf =
1

An

nX
j=0

1

j + 1
sjf (n = 0; 1; 2; . . . );

where

An =

nX
j=0

1

j + 1

and sjf are the partial sums of the Taylor series of f ,

sjf(z) =

jX
k=0

f̂(k)zk:

As usual, we denote by H1 the space of those functions f , analytic in D, such that

kfk = sup
r<1

I(f; r) <1;
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where

I(f; r) =

2�Z

0

jf(reit)jdt=2�:

For the properties of H1 see [1] and [2].

It is well known that ksnfk � const.Ankfk and that An is \best possible".
(Note that An behaves like logn as n ! 1.) A direct consequence is that, for
n � 2,

1

An

nX
j=0

1

j + 1
ksjfk � Ckfk (f 2 H1; n � 0): (1)

where C is an absolute constant. In this note we prove, by using an inequality of
Hardy and Littlewood, that (1) can be improved to get that

1

An

nX
j=0

1

j + 1
ksjfk � Ckfk (f 2 H1; n � 0): (2)

Moreover, we prove the following characterization of the space H1.

Theorem 1. For a function f analytic in D the following assertions are

equivalent.

(i) f belongs to H1;

(ii) supn
1
An

Pn
j=0

1
j+1ksjfk <1;

(iii) supn kPnfk <1.

Remark. It follows from the proof that the quantities occuring in (ii) and
(iii) are \proportional" to the original norm in H1; in particular there holds (2).

Before proving the theorem we give some immediate consequences and also
consider the analogous facts in the Lebesgue space L1 = L1(@D).

Theorem 2. If f 2 H1, then

lim
n

1

An

nX
j=0

1

j + 1
kf � sjfk = 0 (3)

and, consequently,

lim
n

1

An

nX
j=0

1

j + 1
ksjfk = kfk: (4)

Proof. It is easy to verify that (3) holds when f is a polynomial. Then, the
result is deduced in a standard way from (2) and the fact that the polynomials are
dense in H1 (cf. [1]). �

Corollary 1. If f 2 H1, then

lim inf
n!1

kf � snfk = 0: (5)
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In fact, one can prove somewhat more: for each " > 1 there is a sequence
fkng

1

n=0 of integers such that limn kf � sknfk = 0 and n" � kn � (n + 1)" for
suÆciently large n. We omit the easy proof.

The case of L1. The space H1 can be realized, via the Poisson integral, as

the subspace of L1 = L1(@D) cosisting of those f 2 L1 for which f̂(j) = 0 for j < 0,

where f̂ is the Fourier transformation of f . However, not one of the relations (2),
(3), (4), (5) is valid in L1, and this follows from the fact that there is a function
f 2 L1 such that limn kf � snfk =1; such an example is given by

f(w) =
X
j

(log j)�1=2cosjt (w = eit):

Since the sequence f(log j)�1=2g is convex, the function belongs to L1 ([2], Theorem
4.1). Furthermore, using the standard technique, one shows that kf � snfk �
const. (log n)1=2. We omit the details.

It should be noted that inequality (1) is the best possible in L1 in the sense
that logn cannot be replaced by any  (n) (independent of f) such that  (n) =
o(logn) (n!1). To see this we take f to be the Poisson kernel,

f(w) =
l � r2

jw � rj2
(jwj = 1; 0 < r < 1);

then let r tend to l and use the norm estimate for the Dirichlet kernel.

Let h1 denote the class of harmonic functions satisfying the condition kfk =
supr<1 I(f; r) <1. The Poisson integral provides an isometric isomorphism of L1

into h1 (cf. [1]). Using Fejer's theorem one shows, by summation by parts, that
if f 2 h1, then supn kPnfk < 1, where Pn is extended to harmonic function in
the obvious way. Conversely, it follows from the proof of Theorem l that if f is
harmonic in D and supn kPnfk <1, then f 2 h1.

Proof of Theorem 1. That (ii) implies (iii) is obvious. To prove that (i)
implies (ii) let f 2 H1 and for �xed n � 2 and w 2 D de�ne the function g 2 H1

by
g(z) = (1� rz)�1f(rwz) (jzj � 1);

where r = 1�1=n. We have g(z) =
P
1

j=0 sjf(w)r
jzj . Applying Hardy's inequality

(cf. [1]) we get

1X
j=0

1

j + 1
jsjf(w)jr

j =

1X
j=0

1

j + 1
jĝ(j)j � �kgk:

Since rj = (1� 1=n)j � c for 0 � j � n, where c > 0 is an absolute constant, we
have

nX
j=0

1

j + 1
jsjf(w)j � (�=c)kgk = (1=2c)

2�Z

0

j1� reitj�1jf(rweit)jdt:
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Integrating this inequality over the circle jwj = 1 we �nd

nX
j=0

1

j + 1
ksjfk � (1=2c)kfk

2�Z

0

j1� reitj�1dt;

where we have used Fubini's theorem. Finally, using the familiar estimate

2�Z

0

j1� reitj�1dt � C log
1

1� r
= C logn;

we see that (2) holds and therefore we have proved that (i) implies (ii).

Let f be analytic in D. From the uniform convergence of snf on compact sets
it follows that Pnf ! f (n ! 1) uniformly on compact subsets of D. Assuming
that kPnfk � 1 for each n we have I(Pnf; r) � 1 for all n and r < 1. This implies,
via the uniform convergence of Pnf on the circle jzj = r, that I(f; r) � 1 for every
r < 1, which means that kfk < 1. Thus we have proved that (iii) implies (i), and
this completes the proof. �
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