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A REMARK ON THE PARTIAL SUMS IN HARDY SPACES

Miroslav Pavlovié

Abstract. We prove that a function f, analytic in the unit disc, belongs to the Hardy
space H! if and only if

n

1
> m\ls]'f\l = O(logn) (n — o),
j=0

where s; f are the partial sums of the Taylor series of f. As a corollary we have that, for f € H!,

n

1
> gl il = ofiogm),
j=0

The analogous facts for L' do not hold.

For a function f analytic in the unit disc D let

n

1 1
Pnf:_z—sjf (TLZO,]_,Q,...),
J

where

and s; f are the partial sums of the Taylor series of f,
j ~
sif(2) =) f(k)2".

k=0

As usual, we denote by H! the space of those functions f, analytic in D, such that

1£]l = sup I(f,r) < o0,
r<l
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where .
I(f,7) =/|f(7“eit)|dt/27r.
0

For the properties of H' see [1] and [2].

It is well known that ||s, f]| < const. A, ||f|| and that A,, is “best possible”.
(Note that A,, behaves like logn as n — c0.) A direct consequence is that, for
n>2,

1 &< 1
2 ilslsClfl (feH' n20). (1)
nj:()

where C is an absolute constant. In this note we prove, by using an inequality of
Hardy and Littlewood, that (1) can be improved to get that

1 & 1
A—Zﬁllsg'flléc’llfll (fe H', n>0). (2)
nj:O

Moreover, we prove the following characterization of the space H'.

THEOREM 1. For a function f analytic in D the following assertions are
equivalent.

(i) f belongs to H';
(i) sup,, 4= X0 iy llsi fll < oo
(if) sup,, 1P fll < oo,
Remark. It follows from the proof that the quantities occuring in (ii) and
(iii) are “proportional” to the original norm in H?'; in particular there holds (2).

Before proving the theorem we give some immediate consequences and also
consider the analogous facts in the Lebesgue space L' = L'(0D).

THEOREM 2. If f € H', then

n

. 1 1
hﬁnA_nX::j?”f_sjf” =0 (3)
and, consequently,
tin =3 1 = 1) (4)
im — —|ls; fll = .
n Ay e

Proof. It is easy to verify that (3) holds when f is a polynomial. Then, the
result is deduced in a standard way from (2) and the fact that the polynomials are
dense in H' (cf. [1]). O

COROLLARY 1. If f € H', then
liminf [|f — s, f|| = 0. (5)
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In fact, one can prove somewhat more: for each £ > 1 there is a sequence
{kn}nLo of integers such that lim, ||f — si, f|| = 0 and n® < k, < (n + 1) for
sufficiently large n. We omit the easy proof.

The case of L'. The space H' can be realized, via the Poisson integral, as
the subspace of L' = L1(8D) cosisting of those f € L! for which f(j) = 0for j < 0,
where f is the Fourier transformation of f. However, not one of the relations (2),
(3), (4), (5) is valid in L', and this follows from the fact that there is a function
f € L' such that lim,, ||f — s, f|| = oo; such an example is given by

fw) = (logj) 'V cosjt  (w=e").
J
Since the sequence {(logj)~'/?} is convex, the function belongs to L' ([2], Theorem

4.1). Furthermore, using the standard technique, one shows that ||f — s, f| >
const. (logn)'/2. We omit the details.

It should be noted that inequality (1) is the best possible in L! in the sense
that logn cannot be replaced by any ¢(n) (independent of f) such that ¢(n) =
o(logn) (n — o0). To see this we take f to be the Poisson kernel,

—

f(w):m (lw[=1, 0<r<1),

then let r tend to [ and use the norm estimate for the Dirichlet kernel.

Let h! denote the class of harmonic functions satisfying the condition || f]| =
sup, .1 I(f,r) < co. The Poisson integral provides an isometric isomorphism of L*
into h' (cf. [1]). Using Fejer’s theorem one shows, by summation by parts, that
if f € h', then sup,, ||P.f]] < oo, where P, is extended to harmonic function in
the obvious way. Conversely, it follows from the proof of Theorem [ that if f is
harmonic in D and sup,, || P, f|| < oo, then f € h'.

Proof of Theorem 1. That (ii) implies (iii) is obvious. To prove that (i)
implies (ii) let f € H' and for fixed n > 2 and w € D define the function g € H'
by

g9(z) = (L=r2)" flrwz) (2| <),

where 7 = 1—1/n. We have g(2) = 352 s;f(w)r/27. Applying Hardy’s inequality
(cf. [1]) we get

[oe) o0
Z clsif (w Z | < 7llgll
j= 0 0

Since 17 = (1 —1/n)? > ¢ for 0 < j < n, where ¢ > 0 is an absolute constant, we
have

n

ZJ +1| sif(w)] < (x/c)llgll = (1/20)/|1—re“l_llf(rwe“)ldt-
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Integrating this inequality over the circle |w| =1 we find

27

n 1 )

> —lls;fll < (1/20)||f||/|1—T’G”I’ldt,
0

j:03+1

where we have used Fubini’s theorem. Finally, using the familiar estimate

2m
) 1
/|1 —reft|7tdt < Clogm = Clogn,

0

we see that (2) holds and therefore we have proved that (i) implies (ii).

Let f be analytic in D. From the uniform convergence of s,, f on compact sets
it follows that P,f — f (n — oc) uniformly on compact subsets of D. Assuming
that || P, f|| < 1 for each n we have I(P, f,r) <1 for all n and 7 < 1. This implies,
via the uniform convergence of P, f on the circle |z| = r, that I(f,r) < 1 for every
r < 1, which means that ||f|| < 1. Thus we have proved that (iii) implies (i), and
this completes the proof. [
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