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ON THE ASYMPTOTIC BEHAVIOUR OF TWO SEQUENCES

RELATED BY A CONVOLUTION EQUATION

Edward Omey

Abstract We analyse analyse the relation between the asymptotic behaviour of two
sequences fa(n)g and fb(n)g related by the system of equations nb(n) = a� b(n), where � denotes
convolution. This type of relation appears in studying discrete in�nitely divisible laws and more
recently in risk theory. In Hawkes and Jenkins (1978) the authors considered this relation and

obtained the asymptotic behaviour of b(n) in the cases where a(n) ! �, or
1

n

nX

k=0

a(k) ! �, where

� > 0. We consider the case � = 0 and consider O-analogues.

1. Introduction Sequences fa(n)g and fb(n)g related by the system of
equations

(1.1) nb(n) = a � b(n); n = 0; 1; 2; . . .

where a� b(n) =
Pn

k=0 a(k)b(n�k) denotes the convolution of the sequences, often
occur in the area of mathematics. And when they do one is interested in relating the
asymptotic behaviour of the two sequences. For a survey of some of the situations
in which (1.1) occurs, see Hawkes and Jenkins (1978), Wright (1967a,b), Embrechts
and Hawkes (1982), B.G. Hansens (1988). More recently equation (1.1) appears in
risk models and given b(n), the sequence a(n) de�ned by (1.1) is called the De Pril
transform of fb(n)g, see De Pril (1989), Dhaene and Sundt (1994).

Throughout the paper we assume that a(0) = 0 and a(j) � 0 and b(0) = 1.
Without loss of generality (cf. Wright (1967a)) we may and do assume that b(n) > 0
for all suÆciently large values of n. In their paper Embrechts and Hawkes (1982)
used subexponential sequences to study (1.1) and assumed that

P
i b(i) < 1.

Hawkes and Jenkins (1978) considered the case where a(n)! � where 0 < � � 1,
see theorem B below. In the present paper we consider the case � = 0 and hereby
complete the results of Hawkes and Jenkins. In analysing (1.1) generating functions
will be very useful.
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Recall that for a sequence fu(n)g the generating function U(x) is de�ned by
U(x) =

P
i u(i)x

i. If A(x); B(x) and D(x) denote the generating functions of the
sequences fa(n)g; fb(n)g and fnb(n)g it follows from (1.1) that

(1.2) D(x) = xB0(x) = A(x)B(x).

It is well known that the asymptotic behaviour of a sequence is determined by
the asymptotic behaviour (as x tends to 1) of its generating function. The simple
relation (1.2) will be fully exploited to relate the asymptotic behaviour of fa(n)g
to that of fb(n)g.

2. Results. Being interested in asymptotic behaviour we consider sever-
al types of `regular' asymptotic behaviour. Recall that a measurable and posi-
tieve function f(x) is regularly varying at in�nity and with index � if for each
t > 0; lim f(tx)=f(x) = t� . Notation: f 2 RV� . If � = 0; f(x) is called slow-
ly varying (SV). The class ORV of O-regularly varying functions (see e.g. Aljan-
�ci�c et. al. (1977)) consists of those measurable and positive functions for which
lim sup f(tx)=f(x) <1, for all t > 0.

A sequence fa(n)g is in RV or in ORV if the function f(x) := a([x]) is, see
Bojani�c and Seneta (1973). A subclass of SV is the class � of de Haan (1970): f(x)
is in the class �(L(x)) with auxiliary function L(x) if for each t > 0; lim(f(tx) �
f(x))=L(x) = log(t).

It is well known that in this case L(x) 2 SV. Finally, a nondecreasing function
f(x) is in the class O�(L) if for each t > 0; lim sup jf(tx) � f(x)j=L(x) < 1. In
this case automatically L is in the class ORV. This class of functions is related to
the class AB(L) of Geluk and de Haan (1987). For sequences fa(n)g, similar classes
can be de�ned by considering the function f(x) = a([x]). The previous classes of
functions are very useful when one wants to relate the asymptotic behaviour of a
function to that of its Laplace transform. Recall that the Laplace transform F (s) =
L(f)(s) of a function f(x) is de�ned by. L(f)(s) = F (s) = s

R
1

0 e�sxf(x)dx. For
a sequence fa(n)g we de�ne the generating function A(x) is before and for x � 0,
we de�ne the function fa(x) := a(0) + a(1) + � � � + a([x]). An easy calculation
shows that L(fa)(s) = A(e�s). The next results will be used frequently; the proofs
can be found e.g. in Geluk and de Haan (1987), Bingham et. al (1987). As usual
f(x) � g(x) means that f(x)=g(x) ! 1, and all �, O(1), o(1) and other limit
statements deal with asymptotic behaviour as x!1.

Theorem A. Assume f(x) is nondecreasing and F (s) is �nite for all s > 0.

Let g(x) 2 RV� ; � � 0 and let L(x) 2 SV. Then

(i) f(x) � g(x) i� F (1=x) � �(1 + �)g(x),

(ii) f(x) = O(1)g(x) i� F (1=x) = O(1)g(x),

(iii) f(x) = o(1)g(x) i� F (1=x) = o(1)g(x),

(iv) f(x) 2 ORV i� F (1=x) 2 ORV and both statements imply that

F (1=x)=f(x) is bounded away from 0 and 1.

(v) f(x) 2 �(L) i� F (1=x) 2 �(L).

(vi) f(x) 2 O�(L) i� F (1=x) 2 O�(L).
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As an example of this method, we prove part of the results of Hawkes and
Jenkins. The full result is quoted in Theorem B below. Suppose that � > 0. Then
it follows from Theorem A(i) that

(2.1) fa(n) � �n i� A(e�1=x) � �x.

By replacing exp(�1=x) by 1� 1=y, it follows that (2.1) holds i�

(2.2) A(1� 1=y) � �y.

Now let C(x) := B(1 � 1=x). Note that x2C 0(x) = B0(1 � 1=x). From (1.2)
we have xC 0(x)=C(x) = A(1 � 1=x)=(x � 1). It easily follows that (2.2) holds i�
xC 0(x)=C(x) ! �. Since � > 0 and C(x) is monotone, this is equivalent to

(2.3) C(x) 2 RV�.

Again using Theorem A (i), we obtain that (2.3) holds i�

(2.4) fb(n) 2 RV�.

The result ((2.1) i� (2.4)) we proved is part (ii) of the result of Hawkes and Jenkins.
The full statement of their result is the following Theorem B.

Theorem B. (i) If a(n) 2 RV�; � < 0, then b(n) 2 RV��1 and nb(n) �
B(1)a(n).

(ii) If � > 0, then fa(n) � �n if and only if fb(n) 2 RV�.

(iii) If � > 0, then a(n)! � implies that b(n) 2 RV��1.

In Theorems C and D below we complete the result of Hawkes and Jenkins
by considering the case � = 0 and by considering O-analogues of the results.

Theorem C. (i) The following two statements are equivalent:

(2.5) fa(n) = o(1)n

and

(2.6) fb(n) 2 SV.

Moreover, if a(n)! 0, then nb(n) = o(1)fb(n).

(ii) The following two statements are equivalent:

(2.7) fa(n) = O(1)n

and

(2.8) fb(n) 2 ORV.

Moreover, if a(n) = O(1), then nb(n) = O(1)fb(n).

Theorem D. (i) The following two statements are equivalent:

(2.9) fa(n)=n � SV and (2.5) holds

and

(2.10) fb(n) 2 �(L) for some L(x) 2 SV.

Moreover, if a(n)! 0 and if a(n) 2 SV, then nb(n) = (1 + o(1))a(n)fb(n).

(ii) The following two statements are equivalent:

(2.11) fa(n) = O(1)L(n)n where L(x) 2 SV and L(x) = o(1).
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and

(2.12) fb(n) 2 O�(K) where K(x)SV and K(n) = o(1)fb(n).

Moreover, if a(n) = O(1)nL(n) where L(x)SV and L(x) = o(1), then nb(n) =
O(1)L(n)fb(n).

In order to prove the results, we introduce some notation. As before let
A(x); B(x) and D(x) denote the generating functions of the sequences fa(n)g,
fb(n)g and fnb(n)g. From (1.1) it follows that

(2.13) D(x) = xB0(x) = A(x)B(x).

Now let C(x) = B(1� 1=x). It follows that x2C(x) = B0(1� 1=x) and from (2.13)
that

(2.14)
xC 0(x)

C(x)
=
A(1� 1=x)

(x� 1)

and

(2.15) x2C 0(x) � D(1� 1=x)

Now de�ne g(x) := fb(x); f(x) := fnb(n)(x) and h(x) = f(x)=x. Obviously

G(s) = B(e�s) and F (s) = D(e�s). Moreover straightforward calculations show
that f(x) and g(x) are related as follows:

(2.16) f(x) = xg(x)�

xZ
0

g(s)ds

(2.17) g(x) = h(x) +

xZ
0

h(s)

s
ds

In the sequel we use the notation [A(i)], [A(ii)] etc. when we refer to Theorem
A(i) etc.

Proof of Theorem C(i). Using [A(i)], (2.5) is equivalent to A(1�1=x) = o(1)x;
using (2.14) this in turn is equivalent to xC 0(x) = o(1)C(x). This implies that C(x)
is SV and using [A(i)], (2.6) follows. Conversely, if (2.6) holds, by [A(i)], C(x) is SV
and C(x) � g(x). Using (2.16) it follows that f(x) = o(1)xg(x) and an application
of [A(iii)] yieldsD(1�1=x) = o(1)xg(x). Using (2.15) we obtain xC 0(x) = o(1)C(x)
and from (2.14) we obtain A(1� 1=x) = o(1)x. Hence (2.5) follows.

To prove the �nal statement of part (i), choose " > 0 and N so that a(n) < "

for all n � N . Using (1.1) we write nb(n) =
�PN

k=0+
Pn

k=N+1

�
a(k)b(n�k) :=I+II

Since a(n) is bounded by, say, M , we have I�M(g(n)� g(n�N � 1)). Since g(x)
is SV, it follows that I= o(1)g(n). As to II we have II� g(n�N � 1). Using g(x) 2
SV this yields lim sup II=g(n) � ". Now combine the two estimates and let " ! 0
to obtain that nb(n) = o(1)g(n). This proves the result.

Proof of Theorem C(ii). Using (2.14) and [A(ii)] we have (2.7) i�

(2.18) xC 0(x) = O(1)C(x)
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Hence C(x) 2 ORV and by [A(iv)] we obtain (2.8). Conversely, in (2.8) we state
that g(x) 2 ORV and from [A(iv)] it follows C(x) 2 ORV and g(x) = O(1)C(x).
To prove (2.18) note that x2C 0(x) is nondecreasing. For �xed t > 0 we obtain that

(2.19) xC 0(x)

�
1�

1

t

�
�

txZ
x

C 0(s)ds = C(xt) � C(x)

Using C(x) 2 ORV, it follows that (2.18) holds and hence also (2.7). The �nal
statement of part (ii) follows as in part (i).

Proof of Theorem D(i). Using [A(i)] and [A(ii)] (2.9) holds i� A(1�1=x)=x 2
SV and A(1 � 1=x) = o(1)x. Using (2.14) this is equivalent to xC 0(x)=C(x) 2 SV
and xC 0(x) = o(1)C(x). This is equivalent to C 0(x) 2 RV�1. Using (2.15) it follows
that (2.9) holds i� D(1 � 1=x) 2 RV1 which in turn holds i� f(x) 2 RV1. Using
(2.17) this is equivalent to g(x) 2 �(h(x)).

To prove the �nal statement of part (i) we �rst obtain the exact asymptot-
ic form of the function h(x). Since a(n) 2 SV it follows from [A(i)] and (2.14)
that A(1 � 1=x) � xa([x]) and xC 0(x)=C(x) � a([x]). Since also g(x) � C(x) 2
SV it follows that xC 0(x) � a([x])g(x). Using (2.15) we obtain D(1 � 1=x) �
xa([x])g(x) 2 RV1 and consequently f(x) � xa([x])g(x). This shows that
h(x) � a([x])g(x). Now we rewrite nb(n) as follows, cf. (1.1): for r > 0 we

have nb(n) =
�P[nr]

k=0+
Pn

k=[nr]+1

�
a(k)b(n � k) = I + II. Since a(k) is bounded,

by, say M , we have I � M(g(n) � g(n � [nr])). Since g(x) 2 �(h(x)) it follows
that lim sup I=h(n) �M log(1=(1� r)). As to the second term II, since a(n) is SV
we have ja(k)=a(n) � 1j ! 0 uniformly in k; [nr] + 1 � k � n. It follows that II
� a(n)g(n� [nr]�1). Since g is SV we obtain that II � a(n)g(n) � h(n). Combin-
ing the two estimates, it follows that lim sup jnb(n)=h(n) � 1j � M log(1=(1 � r).
Now let r ! 0 to obtain the desired result.

Proof of Theorem D(ii). As before we have (2.11) i� xC 0(x) = O(1)L(x)C(x)
and L(x) 2 SV, L(x) = o(1). This implies C(x) � g(x) SV and D(x) =
O(1)xL(x)C(x). Hence also f(x) = O(1)xL(x)C(x). Using (2.17) we obtain
g(x) 2 O�(K(x)) where K(x) = C(x)L(x) � g(x)L(x) 2 SV and K(x) = o(1)g(x).
This is (2.12).

Conversely, from (2.12) we obtain C(x) � g(x) 2 SV, C(x) 2 O�(K(x))
and K(x) = o(1)C(x). Using (2.19) we have xC 0(x) = O(1)K(x). If we set
L(x) = K(x)=C(x) we have L(x) 2 SV, L(x) = o(1) and xC 0(x)=C(x) = O(1)L(x).
Hence A(1� 1=x) = O(1)xL(x) and (2.11) follows.

The �nal statement of part (ii) follows as in the proof of the �nal statment
in part (i).

3. Concluding remarks 1) For nondecreasing functions f(x) and g(x)
with f(0) = g(0) = 0, consider the convolution equation xf(x) = f =// g(x) where
=// denotes the Stieltjes convolution (i.e.). f =// g(x) =

R x
0
f(x � y)dg(y) ). Using

Laplace transforms one easily obtains that x(xF (1=x))0 = F (1=x)G(1=x) and with
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C(x) = xF (1=x) we have xC 0(x)=C(x) = G(1=x)=x. If for example g(x) � �x wtih
� � 1, then [A(i)] shows that G(1=x) � �x and hence xC 0(x)=C(x) ! �. This
implies that C(x) 2 RV� and F (1=x) 2 RV��1. It follows that f(x) �RV��1.

2) Sundt (1982) studied discrete probability distributions fb(n)g for which
there exist sequences fc(n)g and fa(n)g so that nb(n) = nc � b(n) + a � b(n) The
case where c(n) = 0 corresponds to (1.1). It may be of interest to study the
relationship between the asymptotic behaviour of the sequences involved.
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