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Abstract. Let P, be the class of algebraic polynomials P(z) = 3"}_, arz® of degree
at most n and [|P||¢, = (fg |P(z)|2do(x))1/2, where do(z) is a nonnegative measure on R. We
determine the best constant in the inequality |ay| < C,, 1(do)||P||4s, for k = 0,1,... ,n, when
P € Py and such that P(§) =0,k =1,... ,m. The cases Cpn n(do) and Cy n—1(do) were studed
by Milovanovi¢ and Guessab [6]. In particular, we consider the case when the measure do(x)
corresponds to generalized Laguerre orthogonal polynomials on the real line.

1. Introduction

n

Let P, be the class of algebraic polynomials P(z) = Y apz® of degree at
k=0
most n. The first inequality of the form |ag| < Cy || P|| was given by Markov [3].
Namely, if ||P|| = ||P|lcc = max,e(—1,17|P(x)] and Ty(x) = > tn,,a” denotes the
0

n-th Chebyshev polynomial of the first kind, then Markov przved that

[tnke = || Pl oo if n—k iseven,
lak| < . ) (1.1)
ltn—1.k] - [IPllc if n—Fk isodd.
For k =n (1.1) reduces to the well-known Chebyshev inequality
|an] < 27| P]|oo. (1.2)
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Using a restriction on the polynomial class like P(1) = 0 or P(—1) = 0, Schur
[8] found the following improvement of (1.2)

2n
_ ™
ol <2 (cos )P

This result was extended by Rahman and Schmeisser [7] for polynomials with real
coefficients, which have at most n — 1 distinct zeros in (—1,1).

Similarly in L? norm,

iPI=rt = ( / 11 () dw)m,

Tariq [10] improved the following result of Labelle [2]

1-3.5---(2k—1 N2 ([ = k) /2] + k+1/2
R S Gt B Gy A [ R

for P € P, and 0 < k < n, where the symbol [z] denotes as usual the integral
part of z. Equality in this case is attained only for the constant multiplies of the
polynomial

[(n—Fk)/2]
k —1/2
R ] (i L ASE)

v=0

where P, (z) denotes the Legendre polynomial of degree m.

Under restriction P(1) = 0, Tariq [10] proved that

n (2n)! [2n+1 1/2
n < ° P y 1.4
] < 1 2n(n!)2( . ) 1P (1.4
with equality case P(z) = Z (2v + 1)P,(z). Also, he obtained that
m2+2)2  (@2n-2)!  [(2n—1\"?
-1 < . P 1.5
|a’n 1| = n+1 2”71((71 — 1)')2 9 || ||27 ( )

with equality case

1 n—2

> (v +1)P,(x).

v=0

2n + 1

Pl =33



An estimate for coefficients of polynomials in L2 norm. IT 139

In the absence of the hypothesis P(1) = 0 the factor (n? 4+ 2)'/?/(n + 1) appearing
on the right-hand side of (1.5) is to be dropped.

This result was extended by Milovanovi¢ and Guessab [4] for polynomials
with real coefficients, which have m zeros on real line.

In this paper we consider more general problem including L? norm of poly-
nomials with respect to a nonnegative measure on the real line R. The generalized
Laguerre measure is is also included.

2. Main results

Let do(z) be a given nonnegative measure on the real line R, with compact
or infinite support, for which all moments pu; = fR ¥ do(z), k = 0,1,..., exist
and are finite, and po > 0. In that case, there exist a unique set of orthonormal
polynomials 7, (-) = m,(-;do), n =0,1, ..., defined by

() = b (do)z™ + b0, (do)z" " + -+ b (do), b (do) >0,

(7rn>7rm) = 6nm> n,m Z 07

where

(1) = [ F@ o) (g € ). (21)
For P € P,,, we define
1/2
1Pla = VPP = ([ IP@Pdota)) (22
Also, for &, € C, k =1,... ,m, we define a restricted polynomial class
Py ém) ={P €P, | P(&) =0, k=1,...,m} (0 <m < n).

In the case m = 0 this class of polynomials reduces to P,. The case m = n

is trivial. If & = -+ - = & = € (1 < k < m) then the restriction on polynomials at
the point z = £ becomes P(¢) = P'(¢) = --- = P*-D (&) = 0.
Let
m

H(m &) =™ — sz e (D) s+ (1) sy,
i=1

where sy denotes elementary symmetric functions of &, ... ,&y, i.e.,

sk=3 &-&  for k=1,...,m. (2.3)

For k =0 we have sg = 1, and s =0 for k > m or k < 0.
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THEOREM 2.1. Let P € Pp(&1,--- ,€m) and s1, ..., S, be given by (2.3). If the
measure do(x) is given by

H |z — & |*do(z) (2.4)

and ||P||45 is defined by (2.2), then

E ok 2\ 1/2
mus(Z( (C1)* sy zbé’x;”ﬁ))) 1Pllas, (2.5)
Jj=0 J

for k =0,1,... ,n, where I;f,‘ =bi(ds), v =0,1,...,pu, are the coefficients in the
orthonormal polynomial 7, (-) = m,(-;dé).

Inequality (2.5) is sharp and becomes an equality if and only if P(x) is a
constant multiple of the polynomial

k m

k
> Fnemei(@) Y (1) sl | [ (@ - &)
=0

i=1 k=1

Proof. At first we consider the inner product (2.1). Then the polynomial P(z) =
> ayx¥ € P, can be represented in the form P(z) = Y a,m,(z;do), where
v=0

v=0
a, = (Pym,),v=0,1,...,n. Then we have

k
ank—Zanz(nZ ( Z nl)daﬂ'n Z>, k=0,1,...,n, (2.6)

=0
where 7, (-) = 7, (-; do).

Suppose now that P € P,(&,... ,&n). Then we can write

z) [T (@ - &), (2.7)
k=1

where Q(z) = al,_,, 2" ™ +al,_,, 12" " L+ ... 4+ af € Pp_m. Also, we have
m
H(m &) =" —siz™ e (D) s+ (1) s,
i=1
where si, k = 0,1,...,m, denotes elementary simmetric functions (2.3). Now,

putting this in (2.7), we obtain
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where
Ak =Y ah (D)5, k=0,1,...,n, (2.8)

and aj, =0 for k <0and k >n—m

Now, the corresponding equalities (2.6) for polynomial @ in the measure
dé (z), given by (2.4), become

(Q,Zb(” D nmes), =01, n—m, (2.9)

where 7, () = 7, (+; do).
According to (2.7), we have
k

Ap—k = Z(_l k_isk—i Q:Zb;n nT z] Tn—m— il = (Q:Wn—m) (2-10)

=0

where

k

(@) S (~1)F sy bl

i=j

k

Wy m() :Z —1)k iy, ,Zb(” "D ()
N
-2

and 13,(,“ ) =0 for v < 0. Now, using Cauchy inequality we get
|an7k| S Cn,nfk”Q”d&

ko, k 2 1/2
where Cn,n—k = ||Wn—m||d(7 = <Z<Z(—l)k_lsk Zb;n nT z])> > . Since
i=j

=0

1QIE, = / Q)26 (x) = / |P(2)Fdo (z) = || P2,

we obtain inequality (2.5).

m
The extremal polynomial is x — W,,_,,(z) [[ (z —&). O
k=1

Remark 2.1. For k = 0 and k¥ = 1 Theorem 2.1 gives the results obtained by
Milovanovi¢ and Guessab [4] (see also [6, pp. 432-439]).

Consider now the generalized Laguerre measure do(z) = 2%~ *dz, a > —1,

n (0,+00). With £l (z) we denote the generalized orthonormal Laguerre poly-
nomial. The coefficient b,gn) of z* in £{®) (z) is given by

b(") — (_l)nfk <n> (a +k+ ]-)nfk -
k k) \/n'C(n+a+1)

As a direct corollary of Theorem 2.1, we have:
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COROLLARY 2.2. Under restriction P%)(0)=0,i=0,1,... ,m — 1, we have that

|an—r| < \/MIIPHdm

where

k . .
1 n+m—j+a\/n—m-—j
Ank = . .
* (n—m—k)!l‘(n+m—k+a+1)]z:;< k—j >< k—j )

forn—k>m, and A, =0 for n —k <m. The equality is attained if and only if
P(z) is a constant multiple of the polynomial

m

. i)(n—m—j)i(oﬁ-Qm) (:L’)

n—m—=k n—m-—j

k
Jj=

0

REFERENCES

[1] A. Giroux and Q.I. Rahman, Inequalities for polynomials with a prescribed zero, Trans.
Amer. Math. Soc. 193 (1974), 67-98.

[2] G. Labelle, Concerning polynomials on the unit interval, Proc. Amer. Math. Soc. 20
(1969), 321-326.

[3] V.A. Markov, On functions deviating least from zero in o given interval, Izdat. Imp. Akad.
Nauk, St. Petersburg 1892 (Russian) [German transl. Math. Ann. 77 (1916), 218-258].

[4] G.V. Milovanovié¢ and A. Guessab, An estimate for coefficients of polynomials in L2 norm,
Proc. Amer. Math. Soc. 120 (1994), 165-171.

[5] G.V. Milovanovi¢ and L.Z. Marinkovié, Eztremal problems for coefficients of algebraic
polynomials, Facta Univ. Ser. Math. Inform. 5 (1990), 25-36.

[6] G.V. Milovanovi¢, D.S. Mitrinovi¢ and Th.M. Rassias, Topics in Polynomials: Extremal
Problems, Inequalities, Zeros, World Scientific, Singapore-New Jersey-London-Hong Kong,
1994.

[7] Q.I. Rahman and G. Schmeisser, Inequalities for polynomials on the unit interval, Trans.
Amer. Math. Soc. 231 (1977), 93-100.

[8] I. Schur, Uber das Mazimum des absoluten Betrages eines Polynoms in einem gegebenen
Intervall, Math. Z. 4 (1919), 217-287.

[9] G. Szegd, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, 4th ed., Amer.
Math. Soc., Providence, R.I., 1975.

[10] Q.M. Tariq, Concerning polynomials on the unit interval, Proc. Amer. Math. Soc. 99
(1987), 293-296.

Elektronski fakultet (Received 29 06 1995)
Katedra za matematiku

18001 p.p. 73

Yugoslavia

e-mail: grade@Qefnis.elfak.ni.ac.yu



