AN ESTIMATE FOR COEFFICIENTS OF POLYNOMIALS IN L^{2} NORM. II

G. V. Milovanović and L. Z. Rančić

Dedicated to the memory of Professor S. Aljančić

Abstract

Let \mathcal{P}_{n} be the class of algebraic polynomials $P(x)=\sum_{k=0}^{n} a_{k} x^{k}$ of degree at most n and $\|P\|_{d \sigma}=\left(\int_{\mathbb{R}}|P(x)|^{2} d \sigma(x)\right)^{1 / 2}$, where $d \sigma(x)$ is a nonnegative measure on \mathbb{R}. We determine the best constant in the inequality $\left|a_{k}\right| \leq C_{n, k}(d \sigma)\|P\|_{d \sigma}$, for $k=0,1, \ldots, n$, when $P \in \mathcal{P}_{n}$ and such that $P\left(\xi_{k}\right)=0, k=1, \ldots, m$. The cases $C_{n, n}(d \sigma)$ and $C_{n, n-1}(d \sigma)$ were studed by Milovanović and Guessab [6]. In particular, we consider the case when the measure $d \sigma(x)$ corresponds to generalized Laguerre orthogonal polynomials on the real line.

1. Introduction

Let \mathcal{P}_{n} be the class of algebraic polynomials $P(x)=\sum_{k=0}^{n} a_{k} x^{k}$ of degree at most n. The first inequality of the form $\left|a_{k}\right| \leq C_{n, k}\|P\|$ was given by Markov [3]. Namely, if $\|P\|=\|P\|_{\infty}=\max _{x \in[-1,1]}|P(x)|$ and $T_{n}(x)=\sum_{\nu=0}^{n} t_{n, \nu} x^{\nu}$ denotes the n-th Chebyshev polynomial of the first kind, then Markov proved that

$$
\left|a_{k}\right| \leq\left\{\begin{array}{lll}
\left|t_{n, k}\right| \cdot\|P\|_{\infty} & \text { if } \quad n-k & \text { is even } \tag{1.1}\\
\left|t_{n-1, k}\right| \cdot\|P\|_{\infty} & \text { if } & n-k \\
\text { is odd }
\end{array}\right.
$$

For $k=n$ (1.1) reduces to the well-known Chebyshev inequality

$$
\begin{equation*}
\left|a_{n}\right| \leq 2^{n-1}\|P\|_{\infty} \tag{1.2}
\end{equation*}
$$

AMS Subject Classification (1991): Primary 26 C 05, 26 D 05, 33 C 45, 41 A 44.
*Research partly supported by Science Fund of Serbia under grant 0401F.

Using a restriction on the polynomial class like $P(1)=0$ or $P(-1)=0$, Schur [8] found the following improvement of (1.2)

$$
\left|a_{n}\right| \leq 2^{n-1}\left(\cos \frac{\pi}{4 n}\right)^{2 n}\|P\|_{\infty}
$$

This result was extended by Rahman and Schmeisser [7] for polynomials with real coefficients, which have at most $n-1$ distinct zeros in $(-1,1)$.

Similarly in L^{2} norm,

$$
\|P\|=\|P\|_{2}=\left(\int_{-1}^{1}|P(x)|^{2} d x\right)^{1 / 2}
$$

Tariq [10] improved the following result of Labelle [2]

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{k!}\left(k+\frac{1}{2}\right)^{1 / 2}\binom{[(n-k) / 2]+k+1 / 2}{[(n-k) / 2]}\|P\|_{2} \tag{1.3}
\end{equation*}
$$

for $P \in \mathcal{P}_{n}$ and $0 \leq k \leq n$, where the symbol $[x]$ denotes as usual the integral part of x. Equality in this case is attained only for the constant multiplies of the polynomial

$$
\sum_{\nu=0}^{[(n-k) / 2]}(-1)^{\nu}(4 \nu+2 k+1)\binom{k+\nu-1 / 2}{\nu} P_{k+2 \nu}(x)
$$

where $P_{m}(x)$ denotes the Legendre polynomial of degree m.
Under restriction $P(1)=0$, Tariq [10] proved that

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{n}{n+1} \cdot \frac{(2 n)!}{2^{n}(n!)^{2}}\left(\frac{2 n+1}{2}\right)^{1 / 2}\|P\|_{2} \tag{1.4}
\end{equation*}
$$

with equality case $P(x)=P_{n}(x)-\frac{1}{n^{2}} \sum_{\nu=0}^{n-1}(2 \nu+1) P_{\nu}(x)$. Also, he obtained that

$$
\begin{equation*}
\left|a_{n-1}\right| \leq \frac{\left(n^{2}+2\right)^{1 / 2}}{n+1} \cdot \frac{(2 n-2)!}{2^{n-1}((n-1)!)^{2}}\left(\frac{2 n-1}{2}\right)^{1 / 2}\|P\|_{2} \tag{1.5}
\end{equation*}
$$

with equality case

$$
P(x)=\frac{2 n+1}{n^{2}+2} P_{n}(x)-P_{n-1}(x)+\frac{1}{n^{2}+2} \sum_{\nu=0}^{n-2}(2 \nu+1) P_{\nu}(x)
$$

In the absence of the hypothesis $P(1)=0$ the factor $\left(n^{2}+2\right)^{1 / 2} /(n+1)$ appearing on the right-hand side of (1.5) is to be dropped.

This result was extended by Milovanović and Guessab [4] for polynomials with real coefficients, which have m zeros on real line.

In this paper we consider more general problem including L^{2} norm of polynomials with respect to a nonnegative measure on the real line \mathbb{R}. The generalized Laguerre measure is is also included.

2. Main results

Let $d \sigma(x)$ be a given nonnegative measure on the real line \mathbb{R}, with compact or infinite support, for which all moments $\mu_{k}=\int_{\mathbb{R}} x^{k} d \sigma(x), k=0,1, \ldots$, exist and are finite, and $\mu_{0}>0$. In that case, there exist a unique set of orthonormal polynomials $\pi_{n}(\cdot)=\pi_{n}(\cdot ; d \sigma), n=0,1, \ldots$, defined by

$$
\begin{aligned}
\pi_{n}(x) & =b_{n}^{(n)}(d \sigma) x^{n}+b_{n-1}^{(n)}(d \sigma) x^{n-1}+\cdots+b_{0}^{(n)}(d \sigma), \quad b_{n}^{(n)}(d \sigma)>0 \\
\left(\pi_{n}, \pi_{m}\right) & =\delta_{n m}, \quad n, m \geq 0
\end{aligned}
$$

where

$$
\begin{equation*}
(f, g)=\int_{\mathbb{R}} f(x) \overline{g(x)} d \sigma(x) \quad\left(f, g \in L^{2}(\mathbb{R})\right) \tag{2.1}
\end{equation*}
$$

For $P \in \mathcal{P}_{n}$, we define

$$
\begin{equation*}
\|P\|_{d \sigma}=\sqrt{(P, P)}=\left(\int_{\mathbb{R}}|P(x)|^{2} d \sigma(x)\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

Also, for $\xi_{k} \in \mathbb{C}, k=1, \ldots, m$, we define a restricted polynomial class

$$
\mathcal{P}_{n}\left(\xi_{1}, \ldots, \xi_{m}\right)=\left\{P \in \mathcal{P}_{n} \mid P\left(\xi_{k}\right)=0, k=1, \ldots, m\right\} \quad(0 \leq m \leq n)
$$

In the case $m=0$ this class of polynomials reduces to \mathcal{P}_{n}. The case $m=n$ is trivial. If $\xi_{1}=\cdots=\xi_{k}=\xi(1 \leq k \leq m)$ then the restriction on polynomials at the point $x=\xi$ becomes $P(\xi)=\overline{P^{\prime}}(\xi)=\cdots=P^{(k-1)}(\xi)=0$.

Let

$$
\prod_{i=1}^{m}\left(x-\xi_{i}\right)=x^{m}-s_{1} x^{m-1}+\cdots+(-1)^{m-1} s_{m-1} x+(-1)^{m} s_{m}
$$

where s_{k} denotes elementary symmetric functions of ξ_{1}, \ldots, ξ_{m}, i.e.,

$$
\begin{equation*}
s_{k}=\sum \xi_{1} \cdots \xi_{k} \quad \text { for } \quad k=1, \ldots, m \tag{2.3}
\end{equation*}
$$

For $k=0$ we have $s_{0}=1$, and $s_{k}=0$ for $k>m$ or $k<0$.

Theorem 2.1. Let $P \in \mathcal{P}_{n}\left(\xi_{1}, \ldots, \xi_{m}\right)$ and s_{1}, \ldots, s_{m} be given by (2.3). If the measure $d \hat{\sigma}(x)$ is given by

$$
\begin{equation*}
d \hat{\sigma}(x)=\prod_{k=1}^{m}\left|x-\xi_{k}\right|^{2} d \sigma(x) \tag{2.4}
\end{equation*}
$$

and $\|P\|_{d \sigma}$ is defined by (2.2), then

$$
\begin{equation*}
\left|a_{n-k}\right| \leq\left(\sum_{j=0}^{k}\left(\sum_{i=j}^{k}(-1)^{k-i} s_{k-i} \hat{b}_{n-m-i}^{(n-m-j)}\right)^{2}\right)^{1 / 2}\|P\|_{d \sigma} \tag{2.5}
\end{equation*}
$$

for $k=0,1, \ldots, n$, where $\hat{b}_{\nu}^{\mu}=b_{\nu}^{\mu}(d \hat{\sigma}), \nu=0,1, \ldots, \mu$, are the coefficients in the orthonormal polynomial $\hat{\pi}_{\mu}(\cdot)=\pi_{\mu}(\cdot ; d \hat{\sigma})$.

Inequality (2.5) is sharp and becomes an equality if and only if $P(x)$ is a constant multiple of the polynomial

$$
\left(\sum_{j=0}^{k} \hat{\pi}_{n-m-j}(x) \sum_{i=j}^{k}(-1)^{k-i} s_{k-i} \hat{b}_{n-m-i}^{(n-m-j)}\right) \prod_{k=1}^{m}\left(x-\xi_{k}\right)
$$

Proof. At first we consider the inner product (2.1). Then the polynomial $P(x)=$ $\sum_{\nu=0}^{n} a_{\nu} x^{\nu} \in \mathcal{P}_{n}$ can be represented in the form $P(x)=\sum_{\nu=0}^{n} \alpha_{\nu} \pi_{\nu}(x ; d \sigma)$, where $\alpha_{\nu}=\left(P, \pi_{\nu}\right), \nu=0,1, \ldots, n$. Then we have

$$
\begin{equation*}
a_{n-k}=\sum_{i=0}^{k} \alpha_{n-i} b_{n-k}^{(n-i)}(d \sigma)=\left(P, \sum_{i=0}^{k} b_{n-k}^{(n-i)}(d \sigma) \pi_{n-i}\right), \quad k=0,1, \ldots, n \tag{2.6}
\end{equation*}
$$

where $\pi_{\nu}(\cdot)=\pi_{\nu}(\cdot ; d \sigma)$.
Suppose now that $P \in \mathcal{P}_{n}\left(\xi_{1}, \ldots, \xi_{m}\right)$. Then we can write

$$
\begin{equation*}
P(x)=Q(x) \prod_{k=1}^{m}\left(x-\xi_{k}\right) \tag{2.7}
\end{equation*}
$$

where $Q(x)=a_{n-m}^{\prime} x^{n-m}+a_{n-m-1}^{\prime} x^{n-m-1}+\ldots+a_{0}^{\prime} \in \mathcal{P}_{n-m}$. Also, we have

$$
\prod_{i=1}^{m}\left(x-\xi_{i}\right)=x^{m}-s_{1} x^{m-1}+\cdots+(-1)^{m-1} s_{m-1} x+(-1)^{m} s_{m}
$$

where $s_{k}, k=0,1, \ldots, m$, denotes elementary simmetric functions (2.3). Now, putting this in (2.7), we obtain

$$
P(x)=\sum_{i=0}^{n-m} \sum_{\nu=0}^{m} a_{i}^{\prime}(-1)^{\nu} s_{\nu} x^{m+i-\nu}=\sum_{k=0}^{n} a_{n-k} x^{n-k}
$$

where

$$
\begin{equation*}
a_{n-k}=\sum_{i=0}^{k} a_{n-m-i}^{\prime}(-1)^{k-i} s_{k-i}, \quad k=0,1, \ldots, n \tag{2.8}
\end{equation*}
$$

and $a_{k}^{\prime}=0$ for $k<0$ and $k>n-m$.
Now, the corresponding equalities (2.6) for polynomial Q in the measure $d \hat{\sigma}(x)$, given by (2.4), become

$$
\begin{equation*}
a_{n-m-i}^{\prime}=\left(Q, \sum_{j=0}^{i} \hat{b}_{n-m-i}^{(n-m-j)} \hat{\pi}_{n-m-j}\right), \quad i=0,1, \ldots, n-m \tag{2.9}
\end{equation*}
$$

where $\hat{\pi}_{\nu}(\cdot)=\pi_{\nu}(\cdot ; d \hat{\sigma})$.
According to (2.7), we have

$$
\begin{equation*}
a_{n-k}=\sum_{i=0}^{k}(-1)^{k-i} s_{k-i}\left(Q, \sum_{j=0}^{i} \hat{b}_{n-m-i}^{(n-m-j)} \hat{\pi}_{n-m-j}\right)=\left(Q, W_{n-m}\right) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{aligned}
W_{n-m}(x) & =\sum_{i=0}^{k}(-1)^{k-i} s_{k-i} \sum_{j=0}^{i} \hat{b}_{n-m-i}^{(n-m-j)} \hat{\pi}_{n-m-j}(x) \\
& =\sum_{j=0}^{k} \hat{\pi}_{n-m-j}(x) \sum_{i=j}^{k}(-1)^{k-i} s_{k-i} \hat{b}_{n-m-i}^{(n-m-j)}
\end{aligned}
$$

and $\hat{b}_{\nu}^{(\mu)}=0$ for $\nu<0$. Now, using Cauchy inequality we get

$$
\begin{gathered}
\left|a_{n-k}\right| \leq C_{n, n-k}\|Q\|_{d \hat{\sigma}} \\
\text { where } C_{n, n-k}=\left\|W_{n-m}\right\|_{d \hat{\sigma}}=\left(\sum_{j=0}^{k}\left(\sum_{i=j}^{k}(-1)^{k-i} s_{k-i} \hat{b}_{n-m-i}^{(n-m-j)}\right)^{2}\right)^{1 / 2} . \text { Since } \\
\|Q\|_{d \hat{\sigma}}^{2}=\int_{\mathbb{R}}|Q(x)|^{2} d \hat{\sigma}(x)=\int_{\mathbb{R}}|P(x)|^{2} d \sigma(x)=\|P\|_{d \sigma}^{2}
\end{gathered}
$$

we obtain inequality (2.5).
The extremal polynomial is $x \mapsto W_{n-m}(x) \prod_{k=1}^{m}\left(x-\xi_{k}\right)$.
Remark 2.1. For $k=0$ and $k=1$ Theorem 2.1 gives the results obtained by Milovanović and Guessab [4] (see also [6, pp. 432-439]).

Consider now the generalized Laguerre measure $d \sigma(x)=x^{\alpha} e^{-x} d x, \alpha>-1$, on $(0,+\infty)$. With $\tilde{L}_{n}^{(\alpha)}(x)$ we denote the generalized orthonormal Laguerre polynomial. The coefficient $b_{k}^{(n)}$ of x^{k} in $\tilde{L}_{n}^{(\alpha)}(x)$ is given by

$$
b_{k}^{(n)}=(-1)^{n-k}\binom{n}{k} \frac{(\alpha+k+1)_{n-k}}{\sqrt{n!\Gamma(n+\alpha+1)}} .
$$

As a direct corollary of Theorem 2.1, we have:

Corollary 2.2. Under restriction $P^{(i)}(0)=0, i=0,1, \ldots, m-1$, we have that

$$
\left|a_{n-k}\right| \leq \sqrt{A_{n, k}}\|P\|_{d \sigma}
$$

where

$$
A_{n, k}=\frac{1}{(n-m-k)!\Gamma(n+m-k+\alpha+1)} \sum_{j=0}^{k}\binom{n+m-j+\alpha}{k-j}\binom{n-m-j}{k-j}
$$

for $n-k \geq m$, and $A_{n, k}=0$ for $n-k<m$. The equality is attained if and only if $P(x)$ is a constant multiple of the polynomial

$$
x^{m} \sum_{j=0}^{k} \hat{b}_{n-m-k}^{(n-m-j)} \tilde{L}_{n-m-j}^{(\alpha+2 m)}(x)
$$

REFERENCES

[1] A. Giroux and Q.I. Rahman, Inequalities for polynomials with a prescribed zero, Trans. Amer. Math. Soc. 193 (1974), 67-98.
[2] G. Labelle, Concerning polynomials on the unit interval, Proc. Amer. Math. Soc. 20 (1969), 321-326.
[3] V.A. Markov, On functions deviating least from zero in a given interval, Izdat. Imp. Akad. Nauk, St. Petersburg 1892 (Russian) [German transl. Math. Ann. 77 (1916), 218-258].
[4] G.V. Milovanović and A. Guessab, An estimate for coefficients of polynomials in L^{2} norm, Proc. Amer. Math. Soc. 120 (1994), 165-171.
[5] G.V. Milovanović and L.Z. Marinković, Extremal problems for coefficients of algebraic polynomials, Facta Univ. Ser. Math. Inform. 5 (1990), 25-36.
[6] G.V. Milovanović, D.S. Mitrinović and Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore-New Jersey-London-Hong Kong, 1994.
[7] Q.I. Rahman and G. Schmeisser, Inequalities for polynomials on the unit interval, Trans. Amer. Math. Soc. 231 (1977), 93-100.
[8] I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z. 4 (1919), 217-287.
[9] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
[10] Q.M. Tariq, Concerning polynomials on the unit interval, Proc. Amer. Math. Soc. 99 (1987), 293-296.

Elektronski fakultet
Katedra za matematiku
18001 p.p. 73
Yugoslavia
e-mail: grade@efnis.elfak.ni.ac.yu

