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SLOWLY VARYING SOLUTIONS OF SECOND ORDER

LINEAR DIFFERENTIAL EQUATIONS

Vojislav Mari�c and Miodrag Tomi�c

Abstract. Asymptotic behavior of slowly varying (in the sense of Karamata) solutions of
second order linear di�erential equations is determined under less restrictive conditions then in
the known results.

Introduction

Let f(x) be continuous and positive on a half-axis [a;1), a > 0. We obtain
the precise asymptotic behavior for x!1 of slowly varying solutions y(x) of the
equation

y00(x) � f(x)y(x) = 0; (E)

As it is well known, the class of slowly varying solutions was introduced by
Karamata [6], by the following

De�nition. A positive measurable function L de�ned on [a;1); a > 0 is said
to be slowly varying (s.v.) at in�nity if, for each t > 0

lim
x!1

L(xt)=L(x) = 1:

The function g(x) = x�L(x) is said to be regularly varying (r.v.) at in�nity of
index �.

All functions tending to positive constants as x!1, or the function

L(x) =
nY

�=1

(log� x)
��

(�� reals, log� denotes the �-th iteration of the logarithm) may serve as the simplest
examples of s.v. functions.

From the extensively developed theory of s.v. (and related) functions ([2], [4],
[8]) we quote only a few needed here:
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Theorem A. (The representation theorem, [6]) A function L is s.v. at in�nity
i� it is of the form

L(x) = c(x) exp

�
�

Z x

a

(�(t)=t) dt

�
;

where, for x!1, c(x)! c > 0, �(x)! 0, a > 0.

If especially c(x) = c > 0, then L is called normalized and is denoted by L0.
The later class is relevant here.

For di�erentiable functions (which are of use here) there holds, [8], [1, vi].

Theorem B. A positive di�erentiable function g is a normalized s.v. one at
in�nity if

lim
x!1

xg0(x)=g(x) = 0; (1.1)

conversely if g is s.v. with g0 monotone, then (1.1) holds.

In [7] we proved the existence of s.v. solutions by the result we reproduce
here as the keystone of our analysis in this paper.

Theorem C. All positive, decreasing solutions of equation (E) are s.v. func-
tions at in�nity i� for x!1

x

Z
1

x

f(t)dt! 0: (1.2)

Such solutions are of the form

y(x) = L0(x) = A exp

�
�

Z x

a

(�(t)=t)dt

�
; (1.3)

where �(t) is positive and tends to zero as x!1 and A > 0.

For the sake of completeness we include the proof of Theorem C:

a) Necessity. Let y(x) be s.v. then, since it is also convex by (E), it satis�es
(1.1) in virtue of the second part of Theorem B. Hence, (1.3) follows. Also, since
L000=L0 � (L00=L0)

0 + (L00=L0)
2, equation (E) becomes

(L00=L0)
0 + (L00=L0)

2 = f(x);

or by integrating over (x;1) and multiplying throughout by x,

�xL00=L0 + x

Z
1

x

(tL00=L0)
2t�2dt = x

Z
1

x

f(t)dt:

Now because of (1.1) both integrals converge. Moreover the left-hand side and
hence the right-hand one of the above equation tend to zero as x!1.

b) SuÆciency. By integrating both sides of (E) over (x;1) and since y(x)
is positive, decreasing and thus such that y0(x)! 0, as x!1, one has

�xy0=y = x

Z �

x

f(t)dt = �(x):
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�(x) is obviously positive and, due to (1.2), tends to zero as x ! 1. Whence, by
the �rst part of Theorem B, y(x) is s.v.

We remark that a positive s.v. solution of (E) cannot increase. For otherwise,
in virtue of its convexity, one would have eventually y0(x) � k for some k > 0, or by
integrating y(x) � kx+l. Hence y(x) cannot be s.v. since for any " > 0 x�"L(x)!
0 as x!1, [8, x1.5, 10]. This shows that we are dealing here with all s.v. solutions
of (E).

Troughout the text all inequalities hold for x � a, for some a > 0, n 2 N ,
and all majorizing (minorizing) constants are denoted by the same letter k.

Results

2.1. We may point out that condition (1.2) is the sole one we use in our
analysis. Properties of s.v. functions do the rest.

Put Z
1

x

f(t)dt = F (x); (2.1)

then there holds

Theorem 1. Any s.v. solution of equation (E) is of the form

y(x) = A exp

�
�

Z x

a

(�(t)=t)dt

�
: (2.2)

Here A is a constant, �(t) > 0 for t � a, �(t) ! 0, as t ! 1 and �(x) =
limn!1 �n(x) uniformly in [a;1), where �n(x) is de�ned recursively by

�0(x) = xF (x); �n(x) = xfF (x)�

Z
1

x

(�n�1(t)=t)
2dtg; (2.3)

or by

�n(x) = x
n
F (x)�

Z
1

x

[F (x0)�

Z
1

x0

F (x1)�. . .�

Z
1

xn�2

F 2(xn�1)dxn�1]
2 . . . ]2dx1]dx0

o
:

(2.4)

2.2. The asymptotic formula for the considered solution is obtained using
Theorem 1, in terms of functions �n(x) in the following

Theorem 2. Put

u1(x) =

Z
1

x

F 2(t)dt; un(x) = 2

Z
1

x

F (t)un�1(t)dt; n � 2: (2.5)

Then each �n(x)=x for n � 1, contains the term un(x) such that for x!1

�n(x)=x� �n�1(x)=x = (�1)nun(x) + o(un(x)) (2.6)



132 V. Mari�c and M. Tomi�c

and
un+1(x) = o(un(x)): (2.7)

If there exists a positive integer n such thatZ
1

un(t)dt <1; (2.8)

then for any s.v. solution of the equation (E) the following asymptotic formula holds
for x!1, and for some A

a) y(x) � A exp

�
�

Z x

a

(�n�1(t)=t)dt

�
; b) xy0(x)=y(x)! 0: (2.9)

Notice that the behaviour of the second linearly independent solution ~y(x) is
obtained by applying to the integral in ~y(x) = y(x)

R x
a
y�2(t)dt Karamata's theo-

rem, [8, Th. 1.4], to obtain for x !1 ~y(x) � x=y(x). Hence ~y(x) is a regularly
varying function of index 1. In addition a direct calculation gives x~y0(x)=~y(x)! 1.

2.3. Condition (2.8) might be cumbersome to verify. It can, however,
be replaced by a simpler, in general a cruder one, as it is done in the Corollary
following proof of Theorem 2.

Proofs

3.1. Proof of Theorem 1. By Theorem C there is a solution of the form

y(x) = exp

�
�

Z x

a

(�(t)=t)dt

�
; (3.1)

where �(t) ! 0 as t ! 1. Also, �(t) > 0 due to the concluding remark in
the Introduction. Obviously all other s.v. solutions are of the form Ay(x). By
substituting y(x) from (3.1) into (E) one obtains the Riccati equation

f�(t)=tg0 � f�(t)=tg2 + f(t) = 0: (3.2)

We shall reduce it to a corresponding integral one where condition (1.2) occurs
explicitely. By integrating (3.2) over (x;1) one obtains

�(x) = x

Z
1

x

f(t)dt� x

Z
1

x

(�(t)=t)2dt: (3.3)

Now observe that the sequence (2.3) is the one of successive approximations
for (3.3) which we shall show to converge uniformly on [a;1) to a solution �(x) of
(3.3) with desired properties. To that end put into (3.3) and (2.3) respectively

m(x) = �(x)=xF (x); mn(x) = �n(x)=xF (x); n = 0; 1; . . . (3.4)

to obtain

m(x) = 1� F�1(x)

Z
1

x

m2(t)F 2(t)dt (3.5)
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and

m0(x) = 1; mn(x) = 1� F�1(x)

Z
1

x

m2
n�1(t)F

2(t)dt: (3.6)

Also notice that condition (1.2) implies that for any " > 0 there exists a > 0
such that for x � a Z

1

x

F 2(t)dt � "F (x): (3.7)

For, by a partial integration,Z
1

x

F 2(t)dt = �xF 2(x) + 2

Z
1

x

tF (t)f(t)dt

and (3.7) follows by (1.2).

Now, by a standard induction argument we show that for any " > 0 and
x 2 [a;1) one has

jmn(x) �mn�1(x)j � 2n�1"n: (3.8)

Obviously, due to (3.7), one obtains from (3.6)

jm1(x) �m0(x)j � ":

Also,

mn+1(x)�mn(x) = F�1(x)

Z
1

x

(m2
n(t)�m2

n�1(t))F
2(t)dt: (3.9)

Assuming (3.8) holds and since by (3.6), mn(x) < 1, there follows from (3.9)

jmn+1(x) �mn(x)j � 2n"n+1:

The uniform convergence over [a;1) of sequence (3.6) to a function m(x) follows
from

mn(x) = m0 +

nX
�=1

(m�(x)�m��1(x))

and (3.8), by choosing " < 1=2. In addition, due to 0 < mn(x) < 1 and the
convergence of

R
1

F 2dt, there follows by the Lebesgue dominated convergence
theorem

lim
n!1

Z
1

x

m2
n�1(t)F

2(t)dt =

Z
1

x

m2(t)F 2(t)dt;

so that m(x) is a solution of equation (3.5). The same then applies to the sequence
�n(x) = xF (x)mn(x).

3.2. Proof of Theorem 2. Formula (2.6) holds for n = 1 trivially due to
(2.3) and (2.5). Assume its validity for some n, then, again because of (2.3) and
(2.5), one has

�n+1(x)=x� �n(x)=x = (�1)n+1un+1(x) +

5X
�=1

R�(x);
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where

R1(x) = 2(�1)n
Z
1

x

un(t)

Z
1

t

(�n�2(s)=s)
2dsdt;

R2(x) =

Z
1

x

(�n�1(t)=t)o(un(t))dt; R3(x) = �

Z
1

x

u2n(t)dt;

R4(x) =

Z
1

x

un(t)o(un(t))dt; R5(x) =

Z
1

x

[o(un(t))]
2dt:

Since, by (2.3), �n(x)=x � F , one has, by (3.7), jR1(x)j � 2"
R
1

x
F (t)un(t)dt

and so by (2.5) for x ! 1, R1(x) = o(un+1(x)). The estimate for R2(x) follows
analogously. To treat R�(x), � = 3; 4; 5, observe that (2.5) implies for any " > 0,
and for suÆciently large x, un(x) � "F (x), which leads to the desired estimate.

Formula (2.7) follows by an easy induction argument: For n = 1 this is true
due to inequality (3.7). Assume for any " > 0 and x 2 [a;1)

un+1(x) � "un(x): (3.10)

Then, because of (2.5) and (3.10),

un+2(x) � 2"

Z
1

x

F (t)un(t)dt = "un+1(x);

so that (2.7) holds. In addition, by a repeated use of (3.10) one obtains for all
n; p 2 N

un+p(x) � "pun(x): (3.11)

On the other hand, due to (2.6), one has for x 2 [a;1), for some a > 0,

j�n(x)=x � �n�1(x)=xj � 2un(x): (3.12)

To complete the proof, bearing in mind Theorem 1, put

�(x)=x = �n�1(x)=x+ rn(x); (3.13)

rn(x) =

1X
�=n

(��(x)=x� ���1(x)=x):

To estimate the remainder one makes use of inequalities (3.12) and (3.11) to obtain

jrn(x)j � 2

1X
�=n

u�(x) � 2(1� ")�1un(x): (3.14)

In virtue of (3.1), (3.13), (3.14) and (2.8), the proof of (2.9) a) is completed.
Also b) is a direct consequence of the second part of Theorem B.

3.3. Estimate (3.7) implies the existence of a positive decreasing function
c(x) tending to zero as x!1 and such that

u1(x) =

Z
1

x

F 2(t)dt � c(x)F (x)=2: (3.15)



Slowly varying solutions of. . . 135

Thus inequality (3.10), with c(x) replacing ", leads to

un(x) � cn(x)F (x):

Hence, Theorem 2 implies the following

Corollary. If for some n
Z
1

cn(t)F (t)dt <1 (3.16)

then asymptotic formula (2.9) holds.

Remarks and examples

4.1. Hartman and Wintner proved, [5, Ch. XI, Ex. 9.9.b], the following

Theorem D. Let f(t) be a continuous complex function de�ned for t � a. If
for some p 2 [1; 2] Z

1

t2p�1jfp(t)jdt <1 (4.1)

then equation (E) has a pair of solutions such that for x!1

y1(x) � exp

�
�

Z x

a

tf(t)dt

�
and xy01(x)=y1(x)! 0 (4.2)

y2(x) � t exp

�Z x

a

tf(t)dt

�
and xy02(x)=y2(x)! 1: (4.3)

For positive f Theorem 2 gives, for n = 1, the behaviour (4.2) (hence also
(4.3)) by integrating partially in (2.9) a) and then using (1.2). Instead of (4.1)
we have the condition

R
1

tF 2dt < 1 (obtained from (2.8) again by a partial
integration). These two conditions are not comparable in general. However, for the
rather general example f(x) = "(x)=x2 where "(x) is almost decreasing (meaning
that x2 > x1 implies "(x2) � k"(x1) for some k > 1), condition (4.1) is reduced toR
1

"pt�1dt < 1 and (2.8) to
R
1

"2t�1dt < 1. They coincide for p = 2 whereas
for the remaining values of p it might happen that the later is ful�lled but the
former is not.

For another result in this direction see [3].

4.2. As an example take f(x) = x�2ln��x with � > 0. Notice that �2 is the
only exponent relevant here. For any smaller one s.v. solutions tend to constants
(e.g. by (4.2) in Theorem D), whereas for any larger one condition (1.2) is not
satis�ed so y(x) cannot be s.v. Here as x!1

F (x) =

Z
1

x

t�2 ln�� tdt � x�1 ln�� x and

Z
1

x

F 2(t)dt � ln�� xF (x)
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so that one can take in (3.15) c(x) = kln��x for some k > 0. Therefore, condition
(3.16) becomes Z

1

t�1(ln t)�(n+1)�dt <1 (4.4)

and the Corollary may be applied.

To illustrate how it works take e.g. 1=4 < � � 1=3, then in (4.4) one has to
take n = 3 and the asymptotic formula (2.9) a) gives for x!1

y(x) � A exp

�
�

Z x

a

t�1 ln�� tdt+

Z x

a

t�1 ln�2� tdt� 2

Z x

a

t�1 ln�3� tdt

�
: (4.5)

Notice that for 1=3 < � � 1=2 one takes n = 2 and in (4.5) only the �rst two
integrals remain. Finally, if 1=2 < � � 1 one takes n = 1 and only the �rst integral
remains. In this case Theorem D is also applicable.

4.3 Each of the exponentials in (4.5) is a normalized s.v. function Li,
i = 1; 2; 3 and such that Li+1 = o(Li). Thus by (4.5) for x ! 1, y(x) �
AL1(x)L2(x)L3(x). If, however, the number n in Theorem 2 does not exist then
we can represent s.v. solutions as in�nite products of the form

y(x) =

1Y
i=1

Li(x)(1 + o(1))

but we have no approximation formula. These considerations apply also to the
general case (2.2) (and thus to (2.9)).
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