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REGULARLY VARYING ULTRADISTRIBUTIONS

B. Stankovi�c

Abstract. Regularly varying ultradistributions are de�ned in such a way that they gen-
eralize Karamata's regularly varying functions. Basic properties are proved and a relation with
q-strictly admissible tempered distributions is given.

1. Introduction.

Karamata's regularly varying functions are very useful in analysing the
asymptotic behaviour of solutions of mathematical models of real systems. Slow-
ly varying functions \measure" the growth of functions which behave more slowly
than any power. Originally they were de�ned and analysed in the one-dimensional
case ([8], [2], [17]). In the last years many authors proposed and elaborated the
multi-dimensional case too ([4], [7], [10], [20], [22]) because of the applications,
especially in the probability theory.

The quantum �eld theory, spectral operator's theory, integral transforms,...
gave an impulse to the study of the asymptotic behaviour of elements belonging
to di�erent spaces of generalized functions (see [1], [3] and [21]). In the litera-
ture one can �nd di�erent approaches to the asymptotic behaviour of distributions.
Certainly, the greatest inuence to the theory and applications of the asymptotics
of distributions has been made by Vladimirov, Drozhinov and Zavyalov by many
papers and by the book [20]. Since our aim is to generalize the regular variation of
functions to ultradistributions we shall not count up all de�nitions of the asymp-
totics of generalized functions, but we shall mention generalizations of the regular
variation.

In [5] and [20] one can �nd de�nitions, the theory and applications of the
q-admissible and of the q-strictly admissible tempered distributions belonging to
S 0�, where � is a closed, convex, acute, solide and regular cone in Rn, with ver-
tex at zero. In case of one variable and q = 0, admissible functions are so-called
dominated varying functions considered by Feller [6], and strictly admissible func-
tions are regularly varying functions. In such a way q- strictly admissible tempered
distributions generalize regularly varying functions.
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Denote by �� the characteristic function of the cone �. For an � 2 R; ���
is de�ned by L(��� )(z) = [KC(x)]

� = L(��)�(z), where L denotes the Laplace

transform. If f 2 S 0�, then we use the notation by f (��) = ��� � f . The de�nition
of a q-strictly admissible tempered distribution f is based on the fact that there
exists an � 2 R such that f (��) is a continuous tempered function with support
belonging to �: Unfortunately, tempered ultradistributions, in general, have not
such a property. An ultradistribution of this kind is

P (D)Æ =

1X
i=0

aiD
iÆ; ai 6= 0; i 2 N ;

where P (D) is an ultradi�erential operator.

For this reason it was not possible to follow the idea which was used in the
de�nition of the q-strictly admissible tempered distributions, to generalize regular
variation for ultradistributions.

Let us remark that in [18] one can �nd de�ned and elaborated regularly vary-
ing distributions which generalize a class of functions which is wider than Kara-
mata's regularly varying functions. In [19] there is a generalization of De Haan's
class �g of function [7]. The class �g is a proper subclass of Karamata's class of
regularly varying functions.

In Proposition 4 we prove that the set of regularly varying ultradistributions
with supports in [0;1) equals to the set S 0�+ of tempered ultradistributions de�ned
on [0;1) which have the S-asymptotics related to h�L(h), where � 2 R and L
is a slowly varying function. Since the S-asymptotics can be applied in analysing
many mathematical models, regularly varying ultradistrubutions give possibilities
to obtain more precise results in these applications.

2. Notation and notions

For the space of distributions and its subspaces we shall use the notation as
in Schwartz [16].

The class of distributions ��; � 2 R, belonging to S 0+; is de�ned by:

��(t) =

�
H(t)t��1=�(�); � > 0

Dm��+m(t); � � 0; �+m > 0;
(1)

where Dm is the m-th derivative in the distributional sense and H(t) = 0; t <
0; H(t) = 1; t � 0:

A function f 2 Lloc(R+) is said to be regularly varying [2], [8] (f 2 RV�) if
f(x) > 0; x � a > 0 and limk!1 f(kx)=f(k) = x�; x > 0; � 2 R. Then there
exists an a0 > 0 such that f(x) = x�L(x); x � a0, where L 2 RV0 (L is slowly
varying).

We shall take two slowly varying functions L1 and L2 as equal if

lim
x!1

L1(x)=L2(x) = 1:
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We denote by c a positive and locally integrable function de�ned on (a;1); a > 0:
For ultradistributions we shall use notation and de�nitions as it is done in [9].
Let us repeat some of them: By fMp; p 2 N0g we denote a sequence of positive
numbers satisfying some of the following conditions: M0 =M1 = 1 and

(M.1) M2
p �Mp�1Mp+1; p 2 N ;

(M.2)0 Mp+1=Mp � ABp; (M.2) Mp=(MqMp�q) � ABp; 0 � q � p;

(M.3)0
1X
p=1

Mp�1=Mp <1; (M.3)
1X

q=p+1

Mq�1=Mq � AMp=Mp+1;

where A and B are constants independent of p. We will always assume (M.1),
(M.2)' and (M.3)' to hold. If we need some stronger condition to be satis�ed by
fMp; p 2 N0g, we shall explicitly give them.

Let u be a positive number. By E
upMp

K we denote the space of smooth func-
tions ' on R such that

qupMp
(') = sup

x2K;�2N0

j '(�)(x) j

u�M�

<1; D
upMp

K = f' 2 E
upMp

K ; supp' � Kg:

Note that qupMp
is a norm on D

upMp

K . Then

E(Mp) = proj lim
K��R

proj lim
u!0

E
upMp

K ; EfMpg = proj lim
K��R

ind lim
u!1

E
upMp

K ;

D
(Mp)
K = proj lim

u!0
D
upMp

K ; D(Mp) = ind lim
K��R

D
(Mp)
K ;

D
fMpg
K = ind lim

u!1
D
upMp

K ; DfMpg = ind lim
K��R

D
fMpg
K ;

where K �� R means that K are compact sets which \grow" up to R:

Spaces with the upper index (Mp) are Beurling type spaces of ultradi�eren-
tiable functions and with the upper index fMpg are Roumieu type spaces of ul-
tradi�erentiable functions. Their strong duals are spaces of Beurling and Roumieu
type ultradistributions.

By SMp;m ; m > 0, we denote the space of smooth functions ' on R such that

�m(') = sup
�;�2N0

x2R

m�+�

M�M�

j x�'(�)(x) j<1:

Then S(Mp) = proj lim
m!1

SMp;m ; SfMpg = ind lim
m!0

SMp;m :

In the sequel we will use � for both (Mp) and fMpg:

The strong dual of S�; S 0�, is the space of tempered ultradistributions (of
Beurling and Roumieu types). There holds D� ,! S� ,! E� where ,! means that
the space on the left is dense in the space on the right and that the inclusion
mapping is continuous. Thus, E 0� � S 0� � D0�:
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We denote S 0�+ = ff 2 S 0�; suppf � [0;1)g:

Let S�[0;1) be the space of restrictions of functions ' 2 S
� on [0;1) i.e.

S�[0;1) = f 2 C1[0;1);  = ' j[0;1) for some ' 2 S�g

with the induced convergence structure from S�; its strong dual is denoted by
S 0�[0;1). We know [14] that S 0�[0;1) and S 0�+ are isomorphic. If f 2 S 0�, then

f (�m) = �m � f 2 S 0�+ (� is the sign of convolution).

An operator of the form

P (D) =

1X
n=0

anD
n; an 2 C; n 2 N0

is called an ultradi�erential operator of (Mp) class (of fMpg class) if there are
constants L and C (for every L > 0 there is a constant C) such that janj �
CLn=Mn; n 2 N0:

3. De�nitions and comments

The next two de�nitions are from [14].

De�nition A. An ultradistributions f 2 S 0�[0;1) has the quasi-asymptotics
related to c if for every ' 2 S�[0;1) there exists the limit

lim
k!1

hf(kt)=c(k); '(t)i = hF; 'i ; (2)

where F 2 S 0�[0;1) and F 6= 0. We write for short: f
q
� F related to c.

De�nition B. An ultradistribution T 2 D0� has the S-asymptotics related to
c if for every � 2 D� there exists the limit

lim
h!1

hT (x+ h)=c(h); �(x)i = hU ; �i ; (3)

where U 2 D0� and U 6= 0: We write for short: T
s
� U related to c:

The quasi-asymptotics and S-asymptotics of ultradistributions are natural
extensions of the same notions for distributions (see [14]).

By the property of D0� and S 0�[0;1) limits (2) and (3) are equivalent to

limk!1 f(kt)=c(k) = F in S 0�[0;1) and limh!1 T (x + h)=c(h) = U in D0� respec-
tively.

De�nition 1. An ultradistribution T 2 D0� is said to be regularly varying if
and only if: (a) for a '0 2 D�;

R
'0(x)dx = 1, there exists a k0 2 R+ such that

hT (x+ k); '0(x)i > 0; k � k0; (b) there exists � 2 R such that for every ' 2 D�

and y > 0

lim
k!1

�
hT (x+ ky); '(x)i

hT (x+ k); '0(x)i

�
= lim

k!1

�
(T � �')(ky)

(T � �'0)(k)

�
= hy�; '(x)i ;
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where �'(x) = '(�x). We write for short: T 2 RV U�

Remark. 1) We can take that the last limit is U(x; y) 2 D0� instead of y�H(x)
and then prove that U(x; y) has to be y�H(x) using Theorem 1.4.1. in [2].

2) Because of (a), T cannot belong to E 0�:

3) As a consequence of the Wiener Tauberian theorem for ultradistributions
[15] it is enough to suppose that the limit in b) of De�nition 1 is satis�ed for only
one ' 2 D� with the property F ['](�) 6= 0; � 2 R: By F we denote the Fourier
transform.

4. Properties of regularly varying ultradistributions

Proposition 1. The property that an ultradistribution T belongs to RV U�
is a local property. Namely, if S; T 2 D0�; S = T on an interval (a;1); a > 0,
and S 2 RV U�, then T 2 RV U�, as well.

Proof. Suppose that

hS(x+ k); '0(x)i > 0; k � k0; supp'0 � [p; q];

Z
'0(x)dx = 1;

then hT (x+ k); '0(x)i > 0; k � max(k0; a � p) = k1 and (a) in De�nition 1 is
satis�ed by T:

For a �xed y > 0 and k > k1=y; T (x+ky) = S(x+ky). Since (b) in De�nition
1 is satis�ed by S, it is also satis�ed by T .

Remark. To an ultradistribution T we associate the ultradistribution T^ in
such a way that T^ = T on an interval (w;1); w > 0 and suppT^ � [w;1):
Proposition 1 asserts that an ultradistribution T is regularly varying if and only it
T^ has this property.

Proposition 2. If f 2 Lloc(a;1); a > 0 and f 2 RV�; � 2 R, then it
de�nes an associated ultradistribution f^ which is regularly varying, f^ 2 RV U�.

Proof. Let f(t) = t�L(t); t � a > 0, and let K be a compact set in R. For a
�xed y > 0; x = ln �; ky = ln �, where �; � 2 R+,

lim
k!1

f(x+ ky)

f(ky)
= lim

k!1

(x+ ky)�L(x+ ky)

(ky)�L(ky)
; x 2 K

= lim
�!1

(ln ��)�L(ln ��)

(ln �)�L(ln �)
= 1 (4)

uniformly in x 2 K (see Proposition 1.3.6 and Theorem 1.2.1. in [2]).

Now, using (4) we have

lim
k!1

f(x+ k)

f(ky)
= lim

k!1

f(x+ k)

f(k)

f(k)

f(yk)
= y�� (5)

uniformly in x 2 K:
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By supposition, f is locally integrable and positive on [a;1); a > 0. Let '0
be a positive ultradi�erentiable function, supp'0 � K and

R
'0(x)dx = 1. We can

choose k0 such that x+ k > a for x 2 K and k � k0. Then

hf^(x+ k); '0(x)i =

Z
K

f(x+ k)'0(x)dx > 0; k � k0

and (a) in De�nition 1 is satis�ed. We have to show that (b) is satis�ed, as well:

lim
k!1

�Z
K

f(x+ ky)'(x)dx
.Z

K

f(x+ k)'0(x)dx

�

= lim
k!1

�Z
K

f(x+ ky)

f(ky)
'(x)dx

.Z
K

f(x+ k)

f(ky)
'0(x)dx

�

= hy�; '(x)i ; ' 2 D�

because of (4) and (5).

It is easy to construct a function g 2 Lloc(R) such that g de�nes an ultradis-
tribution, g 2 RV U� for an � �xed, but g 62 RV� for any � 2 R. Such a function
is the following: Suppose that g is a positive function, g 2 L1(R) \ C(R) and has
the property g(n) = 1; g(n + 1=2) = n; n 2 N . This function is not regularly
varying for any � 2 R because the set fg(k=2)=g(k); k 2 Ng is not bounded in R.
The same property has also the function 1 + g. But the function 1 + g de�nes an
ultradistribution which belongs to RV U0. Let us show it. With ' 2 D� and y > 0Z 1

�1
g(x+ ky)'(x)dx = �

Z 1

�1

Z x

�1
g(t+ ky)dt'0(x)dx

= �

Z 1

�1

Z x+ky

�1
g(u)du'0(x)dx

!

Z 1

�1
g(u)du

Z 1

�1
'0(x)dx = 0; k !1:

Let '0 2 D�; '0 > 0 and
R
'0(x)dx = 1. Then a) in De�nition 1 is satis�ed

and b) follows from (6) because of

lim
k!1

�
h1 + g(x+ ky); '(x)i

h1 + g(x+ k); '0(x)i

�

= lim
k!1

�
h1; '(x)i

h1 + g(x+ k); '0(x)i

�
+ lim

k!1

�
hg(x+ ky); '(x)i

(1 + hg(x+ k); '0(x)i)

�

= h1; '(x)i ; ' 2 D�:

Proposition 3. If T 2 RV U�, then there exists an '0 2 D�;
R
'0(x)dx = 1

such that hT (x+ k); '0(x)i = (T � �'0)(k) 2 RV�.

Proof. For y > 0 and '0 de�ned in (a) of De�nition 1

lim
k!1

hT (x+ ky); '0(x)i

hT (x+ k); '0(x)i
= lim

k!1

(T � �'0)(ky)

(T � �'0)(k)
= y�:
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By Theorem 1.4.1 in [2] it follows that (T � �'0)(k) 2 RV�:

Proposition 4. Suppose that (M.1), (M.2) and (M.3) are satis�ed by

fMp; p 2 Ng: A necessary and suÆcient condition for T 2 RV U� is that T
s
� 1

related to c(h) = h�L(h) for an L 2 RV0. For a �xed T 2 RV U�; L is unique in
the sense of equivalence of slowly varying functions.

A necessary condition for T 2 D0�+ to belong to RV U� is that T 2 S 0�+ n E
0�.

Proof. First we shall prove that if T 2 RV U�, then there exists a slowly
varying function L such that T has the S-asymptotics related to c(h) = h�L(h)
with the limit U = 1:

Let y > 0, then by De�nition 1 there exists a '0 2 D� such that

lim
k!1

�
hT (x+ ky); '(x)i

hT (x+ k); '0(x)i

�
= hy�; '(x)i ; ' 2 D�:

By Proposition 3, hT (x+ k); '0(x)i = c(k) is a regularly varying function of the
form c(k) = k�L(k); k � k1 > 0; and for ' 2 D�

lim
h!1

�
T (x+ h)

c(h)
; '(x)

�
= lim

k!1

c(k)

c(ky)

�
T (x+ ky)

c(k)
; '(x)

�
= h1; '(x)i ; y > 0:

If T 2 D0�+; then by Theorem 3 and Theorem 5 in [14] it follows that T 2 S 0�+:

Concerning the uniqueness of L; suppose that T
s
� 1 related to h�L1(h); as

well. Then

lim
k!1

L(k)

L1(k)
= lim

k!1

hT (x+ k)=L1(k); '0(x)i

hT (x+ k)=L(k); '0(x)i
= 1:

Now, suppose that T 2 D0�+ and that T
s
� 1 related to c(h) = h�L(h) with

an L 2 RV0: Then for every ' 2 D�

lim
h!1

hT (x+ h)=(h�L(h)); '(x)i = h1; '(x)i : (7)

Among those ' 2 D� which satisfy (7) we can choose a '0 2 D� so that
R
'0(t)dt =

1. Since h�L(h) > 0; h � h0 > 0; it follows from (7) that there exists h1 > 0 such
that hT (x+ h); '0(x)i > 0; h � h1. Consequently, (a) in De�nition 1 is satis�ed.
We have, now, to satisfy (b).

lim
k!1

hT (x+ ky); '(x)i

hT (x+ k); '0(x)i

= lim
k!1

hT (x+ ky); '0(x)i

(ky)�L(ky)
�
(ky)�L(ky)

k�L(k)
=
hT (x+ k); '0(x)i

k�L(k)

= hy�; '(x)i ; ' 2 D�:

The necessary condition follows from the remark after De�nition 1.

Corollaries 1. The set of regularly varying ultradistributions, with sup-

ports in [0;1) equals to the set fT 2 S 0�+; T
s
� 1 related to h�L(h); � 2 R; L 2

RV0g: This is a direct consequence of Proposition 4.



124 B. Stankovi�c

2. An ultradi�erential operator P (D) of � class with a0 6= 0 maps the set
RV U� into itself. This is a consequence of Proposition 4 and of continuity of the op-
erator P (D): Namely, if T 2 RV U�; then there exists limh!1 T (x+h)=(h�L(h)) =
1 in D0�. Let S = P (D)T , then

lim
h!1

S(x+ h)=(h�a0L(h)) = lim
h!1

(P (D)T (x+ h)=(a0h
�L(h)) = 1:

The assumption a0 6= 0 is essential because if we know the asymptotic be-
haviour of a function, then there is no rule to provide the asymptotic behaviour of
its derivative.

Proposition 5. Suppose that (M.1), (M.2) and (M.3) are satis�ed by
fMp; p 2 N0g: A necessary and suÆcient condition that T 2 RV U� is that there
exist:

a positive number a;
an ultradi�erential operator P (D) =

P1
i=0 aiD

i of � class;
continuous functions f1 and f2 on [a;1) with the properties a0f1+f2 2 RV�

and limh!1(fi(x + h)=(h�L(h))) = Ci; i = 1; 2; uniformly in x 2 [a; b]; b < 1;
such that T = P (D)f1 + f2 on (a;1).

Proof. By Proposition 4, if T 2 RV U�; then it belongs to the set of ultradis-
tributions which have the S-asymptotics related to x�L(x), where � 2 R and L is
slowly varying. By the property of such ultradistributions (see Theorem 5 in [13])
there exist an ultradi�erential operator P (D) of � class and continuous functions
f1 and f2 on [a;1); 0 < a � 1, such that limh!1(fi(x + h)=(h�L(h))) = Ui(x);
uniformly on [a; b]; b <1; such that T = P (D)f1 + f2 on (a;1):

By Corollary 4.1 in [12], if Ui 6= 0; then Ui has to be a constant Ci 6=
0: f1 and f2 as ultradistributions have the limit limh!1(fi(x + h)=c(h)) = Ci
in D0�[a;1) (Ci can be zero too). But, since P (D) is a continuous operator which

maps D0� into D0�, then a0f1 + f2
s
� a0C1 + C2 6= 0 related to h�L(h). We can

suppose that a0C1 + C2 > 0: Then

lim
k!1

a0f1(kx) + f2(kx)

a0f1(k) + f2(k)
= lim

p!1

a0f1(x + px) + f2(x+ px)

a0f1(1 + p) + f2(1 + p)

lim
p!1

c(px)

c(p)

a0f1(x+ px) + f2(x+ px)

c(px)

c(p)

a0f1(p+ 1) + f2(p+ 1)
= x�; x > 0:

Conversely, the condition is suÆcient. By Theorem 5 in [13] T has the S-
asymptotics related to c(h) = h�L(h). Proposition 4 asserts that T 2 RV U�.

The relation between the property that an ultradistribution is regularly vary-
ing and that it has the S-asymptotics is given by Proposition 4. The relation
between the regular variation and quasi-asymptotics of ultradistributions is more
complicated; it can be considered only in D0�+: It is easy to �nd an ultradistri-
bution which has the quasi-asymptotics related to c(h) = h�L(h) for an � 2 R
and L 2 RV0 but which has no S-asymptotics and, consequently, is not regularly
varying. Such an ultradistribution is �1(t) sin t (see [12, p. 91]).
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Proposition 6. Suppose that (M.1), (M.2) and (M.3) hold. Let T 2 RV U�
with support in [0;1); then

a) if � > �1; T has the quasi-asymptotics related to k�L(k); L 2 RV0;
b) if � < �1; � = �1� p � �, where p 2 N0 and 0 < � < 1, then T has the

quasi-asymptotics related to one of the following functions: k�1, k�2,...; k�p, k�

L(k);
c) if � = �1;

R y
y1
t�1L(t)dt = L^(y) < 1; then T has the quasi-asymptotics

related to k�1; or k�1L(k);
d) if � = �1 and L^(y) ! 1, then T has the quasi-asymptotics related to

k�1L^(k).

Proof. If T 2 RV U�, then by Proposition 4, T
s
� 1 related to c(h) = h�L(h)

for a slowly varying function L:

a) By Theorem 3 in [14], T
q
� �(�+ 1)��+1 related to k�L(k):

Other cases. Denote by ! a function belonging to D� such that !(x) = 1; x 2
[0; a]; a > 0. Then T = !T + (1 � !)T ; the support of !T is compact. We know
that (1 � !)T has the same S-asymptotics as T and supp(1 � !)T � [a;1). By
the property of the S-asymptotic of ultradistributions (see [14])

(1� !)T = P (D)c(x)E1(x) + c(x)E2(x); x > a > 0;

where Ei are continuous functions on [a;1); limx!1Ei(x) = Ci; i = 1; 2; and
P (D) is an ultradi�erential operator of � class. By the property of the operator
P (D) and the operation of the convolution, we have

((1� !)T )(m) = �m � (t�L(t)(a0E1(t) +E2(t))) (8)

+

1X
i=1

aiD
i(�m � (t�L(t)E1(t))); m+ � > 0; m 2 N :

Let us analyse the function F = �m � (t�L(t)E(t)) where E is continuous,
suppE � [a;1) and limx!1E(x) = C. Let � = �1� p� �; 0 � � < 1; p 2 N0:

�(m)F (x) =

Z x

a

(x� t)m�1t�L(t)E(t)dt

=

m�1X
i=0

�
m� 1

i

�
xm�1�i

Z x

a

t�+1L(t)E(t)dt:

(9)

For 0 � i � p

Z x

a

t�+iL(t)E(t)dt!

Z 1

a

t�+iL(t)E(t)dt; x!1

and xm�1�i
R x
a
t�+iL(t)E(t)dt has the S-asymptotics related to c(h) = hm�1�i

with the limit equal to a constant, m� 1� i � m+ �+ � > 0; 0 � i � p:
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For p+ 1 � i � m� 1
Z x

a

t�+iL(t)E(t)dt � (� + 1 + i)�1x�+1+iL(x)E(x); x!1

and

xm�1�i
Z x

a

t�+iL(t)E(t)dt � (�+ 1 + i)�1xm+�L(x)E(x); x!1

has the S-asymptotics related to c(h) = h�L(h) with the limit equal to a constant.
Since m + � > 0, it has the quasi-asymptotics related to c(k) = km+�L(k). By
the continuity of the operator P (D) it follows by (8) that ((1 � !)T )(�m) has the
S-asymptotics related to the same c(h) as �m � (t�L(t)(a0E1(t) +E2(t))):

By Theorem 4 and Proposition 3 in [14] (T!)(�m) can have the S-asymptotics
related to hm�j�1 for some j 2 N and m large enough, such that m + � > 0 and
m � j � 1 > 0; as well. Therefore T = !T + (1 � !)T has the quasi-asymptotics
as it is asserted in b) and c). In b), �� 62 N and in c) L(t) does not converge to a
constant.

In the case d) it is enough to take m = 1. Then

F (x) =

Z x

a

t�1L(t)E(t)dt = L^(x)!1; x!1;

where L^ is slowly varying. Now, T has to have the quasi-asymptotics related to
k�1L^(k). In [14] one can �nd an example which illustrates all these possibilities.

5. Some comments

5.1. Relation between RV U� and strict admissibility. The strict ad-
missibility in the one-dimensional case is given by the following de�nition (see [5]
and [20]).

De�nition C. The distribution U 2 S 0+ is called q-strictly admissible if the
following conditions hold

1. U (�q) > 0; t > 0 and U (�q) 2 Lloc;
2. U (�q)(kt)=U (�q)(k) ! t�; k ! 1, uniformly on every compact set be-

longing to (0;1);
3. There exist a k0 such that U (�q)(kt)=U (�q)(k) �  (t); k > k0; t > 0 and

Z 1

0

 (t)(1 + t)�mdt <1; for an m 2 N0:

In comments of this de�nition (see [20]) one can �nd the following sentence:
\0-strictly admissible functions are nothing else but regularly varying functions".
To be precise, because of the de�nition of the regular variation (see [2], [8] and
[17]) it should read: \0-strictly admissible functions are nothing else but regularly
varying functions which satisfy condition 3 in De�nition C".
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By Proposition 2, regularly varying ultradistributions generalize regularly
varying functions which belong to L(a;1); a > 0. This class contains the class
of 0-strictly admissible functions as a proper subclass. For example, the function
f(t) = H(t� 1)t�2 is a regularly varying function belonging to L(1;1) but it does
not satisfy condition 3; for k > 1 and a > 1; f(kt)=f(k) = H(kt � 1)t�2 = t�2

when k � a=t; t > 0:

Also, by Proposition 1, it follows that if a distribution U 2 S 0+ is q-strictly

admissible, then U (�q) 2 RV U�, where � � �1:

Suppose that U is q-strictly admissible. Then by Theorem 1.4.1 in [2] there
exist � 2 R; t0 > 0 and L 2 RV0 such that U (�q)(t) = t�L(t); t � t0. Suppose
that � < �1: By Theorem 1.5.6. in [2] for any Æ > 0 there exists x(Æ) such that

U (�q)(kx)

U (�q)(k)
= x�

L(kx)

L(k)
� x�+Æ ; k � t0; kx � maxft0; x(Æ)g:

We can choose Æ such that � + Æ < �1: Then condition 3 in De�nition C can not
be satis�ed.

5.2. Regularly varying ultradistributions and the generalized S-
asymptotics. In [11] Pilipovi�c de�ned generalized S-asymptotics and applied it
to obtain Wiener{Tauberian type results for non-negative distributions.

De�nition D. [11]. Let f 2 D0 and c 2 C1 be such that c(x) > 0; x � x0: f
is said to have generalized S-asymptotics related to c if limk!1(f(x+k)=c(x+k)) =

1 in D0. We write for short f
gs
� c:

It is easy to extend the generalized S-asymptotics to ultradistributions.

De�nition 2. Suppose that T 2 D0� and c 2 E�; c(x) > 0; x � x0: T is said
to have the generalized S-asymptotics related to c if limk!1(T (x+k)=c(x+k)) = 1
in D0�.

Proposition 7. Suppose that (M.1), (M.2) and (M.3) hold. A necessary

and suÆcient condition for T 2 RV U� is that T
gs
� c, where c 2 E� and c(h) =

h�L(h); h � h0 > 0; L 2 RV0 \ E�.

Proof. Suppose that T 2 RV U�. By Proposition 4, T
s
� 1 related to c(h) =

h�L(h); � 2 R; L 2 RV0. Using the same method as in [11] one can prove
that there exists c 2 E� and L 2 RV0 \ E� such that limx!1(L(x)=L(x)) = 1 in

E�; c(h) = h�L(h); h � h0 and T
gs
� c.

We will discuss many-dimensional case and applications in another paper.
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