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MEASURING ASYMPTOTIC CONVEXITY

A.A. Balkema, J.L. Geluk and L. de Haan

Abstract. We study a class of functions which are almost convex in a certain sense for
large values of the argument. For this class of functions an Abel{Tauber theorem is proved.

0. Introduction

The theory of regular variation, including second order regular variation (the
class �) is well established by now. Basic properties were developed by Karamata
in the thirties in order to de�ne a suitable class of functions in connection with
Tauberian theorems. In the �rst order theory basically functions f are studied
which are slowly varying. These are measurable, eventually positive and satisfy

f(tx)=f(t)! 1 (t!1) for x > 0: (0.1)

The next step is a second order theory: One considers the class of functions f for
which there exists a positive function a such that limt!1ff(tx)�f(t)g=a(t) exists.
The most interesting case is the class �, for which

ff(tx)� f(t)g=a(t)! logx (t!1) for x > 0: (0.2)

A third order class, connected with the class �, is de�ned by the relation

ff(tx)� f(t)� a(t) log xg=a1(t)!
1

2
(log x)2 (t!1) for x > 0:

or equivalently,

ff(txy)� f(tx)� f(ty) + f(t)g=a1(t)! (log x)(log y) (t!1) for x; y > 0:
(0.3)

The relations (0.1) and (0.2) are discussed in [3] and [4]. The third order relation
(0.3) is discussed in [2] and [6]. Note the relation with convexity: If f satis�es
(0.3), there exists a function f1 such that f1(e

x) is convex and f1(t) � f(t) =
o(a1(t)) (t!1). See the appendix in [2].
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If in the de�ning relation (0.1) for slowly varying functions the existence of
the limit is replaced by a boundedness condition one obtains the concept of O-
regular variation. This concept was introduced in the paper [1] by Aljan�ci�c and
Aran -delovi�c in 1977. For more recent references the reader is referred to [3] and
[4]. A measurable, eventually positive function f is O-regularly varying (f 2 RO)
if

lim
t!1

f(tx)=f(t) <1 for x > 0: (0.1a)

Similarly if in the de�ning relation (0.2) of the class � the existence of the limit
is replaced by boundedness conditions, one obtains the class AB of asymptotically
balanced functions. In the paper by de Haan and Resnick [5] this class is used in
the study of extreme values in probability theory. For a more restricted de�nition
the reader is referred to [3, Ch. 3.11].

De�nition 0.1. A measurable function f is asymptotically balanced (f 2 AB
or f 2 AB(�)) if there exists a positive function � such that

lim
t!1

ff(tx)� f(t)g=�(t) < 1 for x > 1 (0.2a)

lim
t!1

ff(tx)� f(t)g=�(t) > �1 for x > 0 (0.2b)

and if there exists x0 > 1 such that

lim
t!1

ff(tx)� f(t)g=�(t) > 0 for all x > x0: (0.2c)

The class AB is related to the class RO in the sense that if f 2 AB(�), then
� 2 RO. See [4, lemma 3.10]. In the de�ning relation (0.3) we shall now replace
the existence of a limit by appropriate boundedness conditions. The following class
of functions results.

De�nition 0.2. Suppose the function f : R+ ! R is measurable. The
function f is asymptotically balanced of second order and we write f 2 AB2 or
f 2 AB2(�) if there exists a positive function � and a constant y0 > 1 such that
the function �x;y(t) de�ned by

�x;y(t) :=
f(txy)� f(tx)� f(ty) + f(t)

�(t)

satis�es

lim
t!1

�x;y(t) <1 for x > 1; y � y0 (0.4)

lim
t!1

�x;y(t) > �1 for x > 0; y � y0 (0.5)

lim
t!1

�x;y(t) > 0 for x > y0; y � y0 (0.6)

Notation: f 2 AB2(�) or f 2 AB2.

In this paper we study the relation between the classes AB and AB2. In
section 1 we consider the case where  (t) := f(et) is convex. Note that the relation

f(txy)� f(tx)� f(ty) + f(t) > 0 for x; y > 1; t > 0
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is equivalent to  being convex. This is not implied by de�nition 0.2, but relation
(0.6) in the de�nition can be seen as a form of asymptotic convexity. The size
of the function � (which is an element of RO) in the denominator can be seen as
a measure of the asymptotic convexity of  . We show that if  is convex, the
condition f 2 AB2 is equivalent to: tf

0(t) 2 AB. This is similar to the connection
between the class � and slow variation: If f is concave, then f 2 � if and only if
tf 0(t) is slowly varying. In section 2 the convexity condition on the function  is
replaced by the weaker condition of asymptotic convexity (see (2.2) below). In that
case the connection between the classes AB and AB2 runs via fractional integrals
rather than derivatives. More speci�cally, using the function r de�ned by

r(t) := f(t)� rt�r
tZ

t0

sr�1f(s) ds

it follows that f 2 AB2(�) if and only if r 2 AB(�) for r suÆciently large. We
close the section with an Abel{Tauber theorem for the class AB2.

1. Asymptotic balance with convexity

In this section we assume that  (t) := f(et) is convex. Then  has a non-
decreasing Radon{Nikodym derivative ' =  0. We shall prove

Theorem 1.1. Suppose  is convex with derivative '. The function f(s) :=
 (log s) is asymptotically balanced of second order if and only if g(s) := '(log s) is
asymptotically balanced (of �rst order).

For the proof of the theorem we need two propositions in which it is shown
that the convexity assumption allows us to describe the concepts AB and AB2 in
terms of the asymptotic behaviour of certain sequences.

Proposition 1.1. Suppose ' is a non-decreasing function. Equivalent are:

1. The function g de�ned by g(s) := '(log s) is asymptotically balanced.

2. There exists a constant c > 0 such that log(an=an+1) is bounded (n ! 1)
where an := '((n+ 1)c)� '(nc):

Proof. For the proof of 1 ) 2 note that in de�nition 0.1 we may replace
�(t) by either �(ty) for any y > 0 (since � is RO, see [4, Lemma 3.10]) or by
f(tz) � f(t) for any z > x0 (obvious from the de�nition). It follows that
f'(t+z)�'(t)g=f'(t+z0)�'(t)g is bounded away from zero and in�nity (t!1)
for z > 0 and z0 suÆciently large.

Next we prove the implication 2 ) 1. Note that for n = [t=c] and k � 1
integer we have

k�1P
i=1

an+i

2P
i=0

an+i

�
'(t+ kc)� '(t)

'(t+ 2c)� '(t)
�

kP
i=0

an+i

an+1
:
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Now (0.2c) follows by taking the lim inf as t ! 1. Moreover (0.2a) follows with
x = exp(kc) and by monotonicity (0.2a) is also true for any x > 1. Similarly (0.2b)
is a consequence of the inequality

'(t� kc)� '(t)

'(t+ 2c)� '(t)
� �

kP
i=0

an�i

an+1
;

valid for n = [t=c] and k � 1.

Proposition 1.2. Suppose  is convex. Equivalent are

1. The function f de�ned by f(s) :=  (log s) is asymptotically balanced of second
order.

2. There exists a constant c > 0 such that

lim
t!1

�(nc; 2c)

�(nc; c)
<1 (1.1)

where �(t; x) :=  (t+ x)� 2 (t) +  (t� x):

Proof. We prove the implication 1 ) 2. Set s(t) = �(et). The conditions
(0.4) and (0.6) imply the conditions

lim
t!1

�(t; x)=s(t) <1 for x � x0

lim
t!1

�(t; x)=s(t) > 0 for x � x0:

It follows that we may choose s(t) = �(t; x1) for any �xed x1 > x0. This gives
(1.1) with c = x0. For the converse implication one can use similar arguments as
in the proof of Proposition 1.1.

Proof of Theorem 1.1. Suppose f 2 AB2. Set dn = �(nc; c). Then

�(nc; 2c) = dn+1 + 2dn + dn�1: (1.2)

Divide by dn. Proposition 1.2 ensures that dn+1=dn and dn�1=dn are bounded.
Since ' =  0 it follows that

dn+1 = �((n + 1)c; c) =  ((n+ 2)c)� 2 ((n+ 1)c) +  (nc) (1.3)

=

(n+2)cZ
(n+1)c

'(s) ds�

(n+1)cZ
nc

'(s) ds =

cZ
0

f'(c(n+ 1) + s)� '(nc+ s)g ds:

Using monotonicity of ' gives

cf'((n+ 2)c)� '(nc)g � dn+1: (1.4)

Similarly we �nd

cf'((n+ 2)c)� '(nc)g �

(n+3)cZ
(n+2)c

'(s) ds�

ncZ
(n�1)c

'(s) ds = dn + dn+1 + dn+2: (1.5)
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If we replace n by 2n and c by c=2 in (1.4) and (1.5) we see that the conditions of
Proposition 1.1 are satis�ed, hence g is asymptotically balanced. The proof of the
converse statement is an immediate consequence of the inequalities (1.4) and (1.5)
and Propositions 1.1 and 1.2.

2. Asymptotic balance with asymptotic convexity

In this section we do not assume that  (s) = f(es) is convex. However in
order to obtain non-trivial results we have to impose condition (2.2) below which
can be seen as an asymptotic convexity condition. First we consider the possible
order of growth of the function � in de�nition 0.2.

Lemma 2.1. If f 2 AB2(�), then limt!1 �(at)=�(t) < 1 for all a > 0.
Moreover we may take � measurable, hence � 2 RO.

Proof. Take a > 0 arbitrary. Observe that

�(at)=�(t) = f�ay;x(t)� �a;x(t)g=�x;y(at): (2.1)

Note that limt!1 �(at)=�(t) < 1 if we choose x > y0, y > max(a�1; y0)
and use de�nition 0.2. We may choose �(t) = f(ty20) � 2f(ty0) + f(t) which is
measurable.

The basic result in this section relates second order asymptotic balance of a
function f to �rst order asymptotic balance of the transform r of f .

Theorem 2.1. Suppose f : R+ ! R is measurable and suppose there exists
a positive function � such that

lim
t!1

�x;y(t) = lim
t!1

f(txy)� f(tx)� f(ty) + f(t)

�(t)
� 0 for all x; y > 1: (2.2)

De�ne the functions r(t) and st(x) by

r(t) := f(t)� rt�r
tZ

t0

sr�1f(s) ds (t > t0) (2.3)

st(x) :=
f(tx)� f(t)� r logxr(t)

�(t)
(2.4)

Consider the following statements:

(i) f 2 AB2(�)

(ii) there exist t0, r such that r(t) is well de�ned for t > t0 and r(t) 2 AB(�)

(iii) there exist t0, r such that the function r(t) is well de�ned for t > t0 and
st(x) satis�es the conditions

lim
t!1

jst(x)j <1 for all x > 0 (2.5)

lim
t!1

fst(y)� st(x)g � 0 for all y > x � 1 (2.6)
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and there exists a constant x0 > 0 such that

lim
t!1

st(x) > 0 for all x > x0: (2.7)

Moreover � 2 RO.

Statement (i) implies (ii) for all suÆciently large r. For �xed r > 0 the
statements (ii) and (iii) are equivalent and imply statement (i).

In order to be able to formulate the proof of this theorem we need the following
class of functions: a measurable, eventually positive function f is of bounded and
positive increase (f 2 BI \ PI) if f 2 RO with lower Matuszewska index positive.
See [3, Chapter 2.1] or [4, Chapter 3]. In order to prove the theorem we need an
auxiliary result on ordinary AB functions which is an analogue of Theorem 3.13 in
[4].

Lemma 2.2. Suppose f : R+ ! R is measurable. Consider the following
statements:

(i) There is a (positive) function � such that f 2 AB(�) and

lim
t!1

f(tx)� f(t)

�(t)
� 0 for all x > 1; (2.8)

(ii) For some t0 > 0

gr(t) := trf(t)� r

tZ
t0

sr�1f(s) ds

is well de�ned for t > t0 and in BI \ PI. Moreover

lim
t!1

f(tx)� f(t)

t�rgr(t)
� 0 for all x > 1: (2.9)

Statement (i) implies (ii) for all suÆciently large r. If statement (ii) is true for
some r > 0, then (i) holds with �(t) := t�rgr(t).

Proof. (i) ! (ii) Since f 2 AB(�) we may choose � 2 RO (see [4, Lemma
3.10]). Then tr�(t) 2 BI \ PI for any r > r0 := ��(�), the lower Matuszewska
index of � (see [3, Chapter 2.2] or [4, Chapter 3]). We prove that tr�(t) � gr(t) for
r > r0 as t ! 1. Note that this proves gr 2 BI \ PI (r > r0) and the implication
(2.8) ! (2.9). Since f 2 AB(�) there exist c, �, t0 > 0 such that jf(t)j < ct� for
t > t0 (see [4, Lemma 3.12]). We have

gr(t)

tr�(t)
= r

1Z
t0=t

f(t)� f(ts)

�(ts)

�(ts)

�(t)
sr�1ds+

tr0f(t)

tr�(t)
:

Hence gr(t) is �nite for t > t0 and if we choose r suÆciently large, then
f(t)=tr�(t) ! 0 as t ! 1. Since � 2 RO we can use Lemma 3.12 in [4] together
with Fatou's lemma to �nd that

lim
t!1

gr(t)

tr�(t)
� r

1Z
0

lim
t!1

f(t=s)� f(t)

�(t)
lim
t!1

�(ts)

�(t)
sr�1ds:
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Now by (2.8) and the de�nition of AB(�)

lim
t!1

f(t=s)� f(t)

�(t)

�
� 0 for all 0 < s < 1

> 0 for s < x�10

It follows that limt!1 gr(t)=ft
r�(t)g > 0.

Similarly using the inequality

���f(t)� f(ts)
�(ts)

����(ts)
�(t)

� c1s
��1c2s

�2 (see [4])

for t0=t < s < 1 where ci, �i are positive constants, we have lim
t!1

gr(t)=ft
r�(t)g <

1 if we choose r > �1 � �2. This proves gr 2 BI \ PI for r suÆciently large.

(ii) ! (i) From the de�nition of gr, for x > 1 we have

gr(tx)� gr(t)

gr(t)
=
f(tx)� f(t)

t�rgr(t)
+ r

xZ
1

f(tx)� f(ts)

(ts)�rgr(ts)

(ts)�rgr(ts)

t�rgr(t)
sr�1ds:

Application of Fatou's lemma (using again Lemma 3.12 in [4] and (2.9)) shows that

lim
t!1

gr(tx)=gr(t) � 1 for r > r0; x > 1: (2.10)

From the de�nition of gr(t) it follows that

f(t) = t�rgr(t) + r

tZ
t0

gr(s)s
�r�1ds

for t > t0, hence

f(tx)� f(t)

t�rgr(t)
= r

xZ
1

gr(tu)

gr(t)
u�r�1du+

(xt)�rgr(tx)

t�rgr(t)
� 1: (2.11)

Using the inequalities c�1x� � gr(tx)=gr(t) � cx� for x � 1, t > t0 where �; � > 0,
c > 1 (see [4, Theorem 3.5]) we see that (2.8) holds,

lim
t!1

f(tx)� f(t)

t�rgr(t)
<1 for x > 1 and lim

t!1

f(tx)� f(t)

t�rgr(t)
> �1 for x > 0:

It remains to prove that limt!1ff(tx) � f(t)g=ft�rgr(t)g > 0 for x > x0. By
(2.10)

lim
t!1

r

x0Z
1

gr(tu)

gr(t)
u�r�1du � r

x0Z
1

u�r�1du: (2.12)

Moreover, since

lim
t!1

gr(tx)=gr(t) > 1 for x > x0; r > r0;



Measuring asymptotic convexity 113

we get for x > x0

lim
t!1

r

xZ
x0

gr(tu)

gr(t)
u�r�1du+

(xt)�rgr(tx)

t�rgr(t)
� 1 > r

xZ
x0

u�r�1du+ x�r � 1 (2.13)

Combination of (2.11), (2.12) and (2.13) gives the claimed result.

Remark. Note that the lemma fails if the assumptions (2.8) and (2.9) are
omitted. Take e.g. f(t) = log t+ sin t.

Proof of Theorem 2.1. Without loss of generality we may assume that f(t) = 0
on a neighborhood of zero.

(i) , (ii) De�ne ~fy(t) := f(ty)�f(t). From the de�nitions of AB and AB2 it

follows that (i) is equivalent to: ~fy 2 AB(�) for all y > y0. Application of Lemma
2.3 shows that (i) holds if and only if there exists y0 such that for y � y0, r � r0(y)

trfr(ty)� r(t)g = tr ~fy(t)� r

tZ
t0

~fy(s)s
r�1ds is in BI \ PI

r(ty)� r(t) � �(t) (t!1):

(2.14)

Since � is positive, the convexity condition (2.2) implies that the functions

 y(x) := lim
t!1

~fy(tx)� ~fy(t)

�(t)
and 	y(x) := lim

t!1

~fy(tx)� ~fy(t)

�(t)

are non-decreasing in x and y for all x; y > 0. Indeed this follows since 	y(x) =
	x(y) and 	y(x) is non-decreasing in x since for x 2 (0; u) we have

	y(x) � lim
t!1

~fy(tx) � ~fy(tu)

�(tx)

�(tx)

�(t)
+ lim

t!1

~fy(tu)� ~fy(t)

�(t)
: (2.15)

Note that the convexity condition (2.2) is equivalent to

lim
t!1

~fy(tx)� ~fy(t)

�(t)
� 0 for x > 1:

Hence (2.15) is at most

� lim
t!1

~fy(tu)� ~fy(tx)

�(tx)
lim
t!1

�(tx)

�(t)
+ 	y(u) � 	y(u) � 1

and a similar argument for  y(x). Hence for all x; y > 1 we have 0 �  y(x) �
	y(x) � 	max(y0;y)(x) <1. Applying Lemma 3.12 in [4] we get

��� ~fy(tx)� ~fy(t)

�(t)

��� � c1(y)x
�1(y) for x � 1; t � t0:
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It follows that for arbitrary y > 1 there exist c, � such that

lim
t!1

r(ty)� r(t)

�(t)
= lim

t!1
r

1Z
t0=t

~fy(t)� ~fy(ts)

�(t)
sr�1ds

� r

1Z
0

	y(1=s) lim
t!1

�(ts)

�(t)
sr�1ds � c

1Z
0

s�+r�1ds � 1 (2.16)

if r > ��. The proof of limt!1fr(ty) � r(t)g=�(t) > �1 for y > 0, r > r0 is
similar. Hence (i) implies (ii) for all suÆciently large r. The implication (ii) !
(2.14) is trivial.

(ii) ! (iii) From (2.3) it follows that

f(t) = r(t) + r

tZ
t0

r(s)
ds

s
; t > t0

hence

st(x) =
f(tx)� f(t)� rr(t) log x

�(t)
=
r(tx)� r(t)

�(t)
+ r

xZ
1

r(ts)� r(t)

�(t)

ds

s
:

(2.17)
The last expression together with application of Lemma 3.12 in [4] and

lim
t!1

fr(tx) � r(t)g=�(t) � 0 for x > 1

(which follows as in (2.16)), shows that (ii) implies (iii).

(iii) ! (ii) De�ne qt(x) := fr(tx) � r(t)g=�(t). From (2.4) it follows that
for y > x > 0

qt(x) =
st(y)� st(x)� stx(y=x)�(tx)=�(t)

r log y=x
: (2.18)

Hence by the assumptions on the functions st(x) and � it follows that lim
t!1

jqt(x)j<1
for x > 0. Application of Lemma 3.12 in [4] then shows that

jqt(x)j � cx" for x > 1; t > t0; (2.19)

where "; c > 0. Hence using (2.17), i.e.

st(x) = qt(x) + r

xZ
1

qt(s)
ds

s
; (2.20)

it follows that st(x) satis�es the inequality

jst(x)j < c0x
"0 for x � 1; t � t0; (2.21)
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where c0 and "0 are constants. From (2.20) it follows that the function qt(x) satis�es
the relation

qt(x) = rx�r
xZ
1

(st(x)� st(u))u
r�1du+ x�rst(x): (2.22)

The proof of limt!1 qt(x) > 0 for x > x0 follows by application of Fatou's lemma
to the integral in (2.14) (use (2.6) and (2.7)). Note that by (2.6) for x > 1 we have
limt!1 st(x) = limt!1fst(x) � st(1)g > 0.

In order to formulate our next result we need the following notion. The
functions f; f0 : R

+ ! R are O-inversely asymptotic if there exist constants a > 1

and t0 such that f(t) � f0(at) and f0(t) < f(at) for t � t0. Notation: f
O
� f0 or

f(t)
O
� f0(t) (t ! 1). Observe that if f , f0 are increasing and unbounded, then

f
O
� f0 if and only if the inverse functions satisfy f � f 0 , which explains the

terminology.

Theorem 2.2. Suppose f : R+ ! R is measurable and suppose

f̂(s) := s

1Z
0

e�stf(t) dt <1 for s > 0:

Then
f 2 AB2(�) with �(�) > �1 (2.23)

implies

f̂(1=t) 2 AB2(�) with �(�) > �1: (2.24)

If there exists t0 such that

f(et) is convex for t > t0 (2.25)

then the converse holds: (2:24) implies (2:23). Moreover if the function f in (2:23)
satis�es (2:2), then there exist r0, x0 such that the transforms r and �r satisfy

rr(t) log x
O
� f(tx)� f(t)

O
� f̂(1=tx)� f̂(1=t)

O
� r�r (t) logx (2.26)

as t!1 for r > r0, x > x0, where r(t) is as de�ned in theorem 2:2 and

�r (t) = f̂(t�1)� rt�r
tZ

t0

sr�1f̂(s�1) ds:

In particular we have for r > r0

r(t)� 
�

r (t) = O(�(t)) (t!1): (2.27)

Proof. By the de�nitions of AB and AB2 it follows that f 2 AB2(�) is equiv-

alent to ~fy(t) = f(ty)� f(t) 2 AB(�) for all y � y0. Application of theorem 4.2 in
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[4] shows that this implies ~̂fy(t) = f̂(1=ty) � f̂(1=t) 2 AB(�) for y � y0 which is

equivalent to f̂(1=t) 2 AB2(�). A converse statement is true if ~fy(t) is eventually
non-decreasing in t which is condition (2.25). In order to prove (2.26) note that for
x > x0, r > r0, there exists t0 = t0(x; r) such that f(tx) � f(t) > r logxr(t) for
t > t0 by (2.7).

For a converse inequality, �x x > x0, r > r0. Since r 2 AB(�) we have by
(2.17) for y > x suÆciently large

lim
t!1

f(tx)� f(t)� rr(ty) logx

�(t)
� c1 + r

xZ
1

lim
t!1

r(ts)� r(ty)

�(t)

ds

s

� c1 � rc2

xZ
1

ds

s
(2.28)

where c1; c2 > 0 are constants (depending on r, see (2.4)). The right-hand side in
(2.28) is negative if we choose x > x0 suÆciently large, then y > x suÆciently large

in order to ensure the validity of (2.28). Hence rr(t) log x
O
� f(tx) � f(t). The

statements f(tx)� f(t)
O
� f̂(1=tx)� f̂(1=t) and (2.27) follow from [4, theorem 4.2].

The proof of f̂(1=tx)� f̂(1=t)
O
� r�r (t) logx (t!1) follows as above.
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