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Abstract. In [6, 8] slow oscillation is generalized to linear topological spaces. Linear
functionals are used to control the distribution of sequences. Consequently, charcterizations of
slow oscillation in norm and corresponding Tauberian theorems are obtained.

1. Introduction. In normed linear spaces questions regarding convergence
are often resolved by estimates via the triangle inequality. In fact, spaces for which
the absolute convergence of series implies the convergence in norm of the series
characterize the Banach spaces.

We may then ask, can some information be gained about the absolute conver-
gence of the series from convergence in norm of the series? To answer this question
we address the problem of �nding inequalities for which the norms of partial sums
of the series dominate partial sums of the absolute values of the terms of the series.
The following theorem is instructive:

Theorem A. Let fz1; . . . ; zng be a set of points in the complex plane C . Then

there exists a subset S of f1; . . . ; ng for which
����
X

k2S

zk

���� �
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Remark 1. This theorem is well known. The proof requires �nding an angle
�� � � < � which maximizes the sum

nX
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jzkj cos
+((arg zk)� �)(cos+(u) =
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The theorem is unsatisfactory in addressing the question of convergence since
the subset S depends on n. It does however provide some insight. It is possible to
�nd a more suitable inequality by controlling the arguments of the points.

From Gauss' Theorem regarding the center of gravity [1] follows an important
inequality found by Petrovi�c [2].

Theorem B. Let fz1; . . . ; zng be a set of points in the complex plane C . If

for zk 6= 0 j arg zkj � �0 < �=2; 1 � k � n; then

����
nX

k=1

zk

���� � cos �0

nX

k=1

jzkj:

Remark 2. A condensed proof is due to Karamata [3]. It can be shown that
the theorem is rotationally invariant.

Diaz and Metcalf [4] have generalized the Gauss{Petrovi�c inequality for
Hilbert and Banach spaces. The Banach space theorem is as follows:

Theorem C. Let (B; k �k) be a Banach space and let F be a linear functional

of unit norm. Suppose the vectors fv1; . . . ; vng � B. If 0 � rkvkk � ReF (vk),
1 � k � n, then

r
nX

k=1

kvkk �


nX

k=1

vk

:

The goal of this paper is to use the Gauss{Petrovi�c inequality, complementary
triangle inequalities, and a characterization of slow oscillation of positive sequences
to obtain a characterization of slow oscillation in norm.

2. De�nitions and observations. R. Schmidt introduced slow oscillation
as a Tauberian condition to restore convergence of positive sequences from (C; 1)
summability. Schmidt's [5] de�nition of slow oscillation of sequences has been
extended to normed linear spaces by �C. V. Stanojevi�c [6] as follows. Let (X; k � k)
be a normed linear space and x = fxkg � X . Denote

Sn(x) =

NX

k=1

xk and Sn(kxk) =

NX

k=1

kxkk:

De�nition 2.1. The sequence fSN(x)g � X is slowly oscillating in norm if

lim
N>M!1

N=M!1

kSN (x)� SM (x)k = 0:

In normed linear spaces the interplay between the norm topology and the
topology induced by bounded linear functionals is often of interest. This motivates
the next de�nition. Let ' be a linear functional on X .
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De�nition 2.2. The sequence fSN (x)g � X is '-slowly oscillating if for some
',

lim
N>M!1

N=M!1

j'(SN (x))� '(SM (x))j = 0:

If fSN (x)g is '-slowly oscillating for each bounded linear functional on X the
fSN(x)g is weakly slowly oscillating.

The next de�nition is needed for the characterization result. Denote

VN (x) =
1

N

NX

k=1

kxk and VN (kxk) =
1

N

NX

k=1

kkxkk:

De�nition 2.3. The sequence fVN (x)g � X is strongly slowly oscillating in
norm if

lim
N>M!1

N=M!1


N

M
VN (x)� VM (x)

 = 0:

Remark 3. A Renyi [7] has shown that for a sequence of positive numbers a =

fakg that VN (a) = N�1
PN

k=1 kak = O(1), N !1 is not a Tauberian condition.

The following observations were made in [8].

1. Let a = fakg be a sequence of positive numbers. Then fSN(a)g is slowly
oscillating if and only if fVN (a)g is strongly slowly oscillating. This is evident from
the following inequality.

SN (a)� SM (a) �
N

M
VN (a)� VM (a) �

N

M
[SN (a)� SM (a)]

for positive integers N > M .

2. Let b = fbkg be a sequence of positive numbers and let VN (b) = O(1),
N !1. Then fSN (b)g slowly oscillating is equivalent to fVN (b)g slowly oscillating.

Theorem B motivates the next de�nition.

De�nition 2.4. Let �� � �0 < � and 0 �  < �=2. The set M�0 = fz 2
C
��j arg z � �j < g, is the Gauss-Petrovi�c cone at �0, with index . If fxkg � B is

a sequence in the normed linear space (B; k � k) and ' is a linear functional on B
such that:

(2.4.1) (i) j'(xk)j � rkxkk, r > 0, for all k;

(2.4.2) (ii) '(xk) 2M�0 , for all k where M�0 is a Gauss-Petrovi�c cone

then ' is said to be a Gauss-Petrovi�c linear functional on the sequence fxkg � B.

�C. V. Stanojevi�c has shown [10] that linear functionals of this type can be
used to obtain structural information.

3. Results. Let (B; k � k) be a normed linear space and x = fxkg � B. The
following theorem uses a Gauss{Petrovi�c linear functional to control the distribution
of the sequence.
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Theorem 3.1. Let ' be a Guass-Petrovi�c linear functional on x = fxkg � B.

Then

(i) '-slow oscillation of fSN(x)g implies norm slow oscillation of fSN(x)g,
(ii) ' bounded implies norm slow oscillation of fSN (x)g is equivalent to strong

slow oscillation of fVN (kxk)g.

Proof of 3.1 (i). Since ' is a Gauss-Petrovi�c linear functional on fxkg then
there exists 0 � �0 < �=2 and by theorem B we have for positive integers N > M ,

����
NX

k=M+1

'(xk)

���� � cos�0

NX

k=M+1

j'(xk)j: (3.1.1)

From (2.4.1) together with (3.1.1) we obtain,

����
NX

k=M+1

'(xk)

���� � r cos�0

NX

k=M+1

kxkk: (3.1.2)

Since ' is linear we have,

j'(SN (x)) � '(SM (x))j � r cos�0

NX

k=M+1

kxkk: (3.1.3)

Then (i) follows from (3.1.3).

Proof of 3.1 (ii). The continuity of ' together with (3.1.3) and Observation
1 yields (ii).

In the following theorem the linear functional has range which allows use of
Theorem C.

Theorem 3.2 Let  be a linear functional. If

0 � rkxkk � Re (xk); 1 � k <1; (3.2.1)

then,

(i)  -slow oscillation of fSN(x)g implies the norm slow oscillation of fSN (x)g,
(ii)  bounded implies norm slow oscillation of fSN (x)g is equivalent to strong

slow oscillation of fVN (kxk)g.

The proof is similar to the proof of Theorem 3.1.

Remark 4. The functionals in Theorems 3.1 and 3.2 control the distribution
of the sequences in the complex plane.

Remark 5. There is an analogous theorem to Theorem 3.2 for the imaginary
case of condition (3.2.1).

In the next theorem we shall show that the condition for equivalence of slow
oscillation in norm and strong slow oscillation is also a Tauberian condition for the
recovery of convergence in norm out of the (C; 1) summability in norm.
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Theorem 3.3. Let f'kg � B� each of unit norm. If there exists a sequence

of positive numbers frkg bounded and bounded away from zero such that for every

pair of non-negative integers N >M ,
��'k(Sj+1(x))

�� �
��'k(Sj(x))

�� � rkkxkk; M � j; k � N; (3.3.1)

then

(i) norm slow oscillation of fSN(x)g is equivalent to strong slow oscillation of

fVN (kxk)g,
(ii) x = fxkg (C; 1) summable in norm implies x = fxkg converges in norm to

the (C; 1)-limit of x = fxkg.

Proof. Part (i), from (3.3.1) and summing on j from M to N � 1 we have,

j'(SN (x))j � j'k(SM (x))j � (N �M)rkkxkk; M � k � N: (3.3.2)

Majorizing the di�erence in (3.3.2) and the fact that each 'k is continuous we
obtain, 

NX

l=M+1

xl

 � (N �M)rkkxkk; M � k � N: (3.3.3)

We now divide by rk and (N �M) and sum on k from M to N . Hence,


NX

l=M+1

xl


1

(M �N)

NX

k=M+1

1

rk
�

NX

k=M+1

kxkk: (3.3.4)

Part (i) follows from (3.3.4),
1

N �M

NX

k=M+1

1

rk
is bounded and bounded away from

zero, and Observation 1.

Part (ii). Fix M = 0 in (3.3.2) and we have,
��'k(SN (x))

�� � Nrkkxkk; : (3.3.5)

Letting k = N then ��'k(SN (x))
�� � NrNkxNk: (3.3.6)

So,

1

N


NX

k=1

xk

 � rNkxNk:

Then (ii) follows from (3.3.6).

In Theorems 3.1, 3.2, and 3.3 we have analogous results where we require that
VN (kxk) = O(1), N ! 1 and then fVN (kxk)g strongly slowly oscillating is re-
placed by slow oscillating in the conclusion.

In Theorem 3.3 the condition (3.3.1) may be replaced by,
��'k(SN (x)) � 'k(SM (x))

�� � rkkxkk; M � k � N: (3:3:1)
0
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Also, corollaries follow Theorem 3.3 where 'k is replaced by the real or imaginary
parts of 'k in (3.3.1).

The following theorems are the Hilbert space analogues to the preceding
theorems. Let H be a Hilbert space with inner product denoted (�; �) and let
y = fykg � H .

Theorem 4.1. For a 2 H let K�0(�) be a Gauss-Petrovi�c cone such that

(yk; a) 2 K�0(�) for each k 2 N. If

0 � rkyjk � (yj ; a); 1 � j <1; (4.1.1)

then norm slow oscillation of fSN (y)g is equivalent to strong slow oscillation of

fVN (kyk)g.

Theorem 4.2. Let b 2 H. If

0 � rkykk � Re (yk; b); 1 � k <1; (4.2.1)

then norm slow oscillation of fSN (y)g is equivalent to strong slow oscillation of

fVN (kyk)g.

Theorem 4.3. Let fakg � H, kakk = 1, 1 � k < 1. If there exists a

sequence of positive numbers frkg bounded and bounded away from zero such that,

j(Sj+1(y); ak)j � j(Sj(y); ak)j � rkkykk; M � j; k � N; (4.3.1)

then

(i) norm slow oscillation of fSN (y)g is equivalent to strong slow oscillation of

fVN (kyk)g,
(ii) y = fykg (C; 1) summable in norm implies y = fykg converges in norm to

the (C; 1)-limit of y = fykg.

Remark 6. The proofs of 4.1{4.3 follow by making the appropriate choice of
linear functionals and applying Theorems 3.1{3.3.

We now focus on a more general space. H. Rubin and M. H. Stone have
set down postulates for a linear space that carries a positive de�nite, Hermitian
symmetric, bilinear form [9]. The following postulates establish such a space we
shall call a Rubin{Stone space.

Postulate 1. X is a linear space over the complex �eld.

Postulate 2. On X there is de�ned a non-negative real function q such that

q(x+ y) + q(x� y) = 2q(x) + 2q(y):

Postulate 3. As a function of the real number � the quantity q(�x) is bounded
in some neighborhood of � = 0 for each x.

Postulate 4. The relation q(x) = q(ix) holds for all x.

Postulate 5. If q(x) = 0, then x = 0.
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Rubin and Stone have formed an inner product on X by de�ning the quantity
hx; yi 2 C by the relation

hx; yi =
q(x+ y)� q(x� y)

4
+ i

q(x+ iy)� q(x� iy)

4
:

It was shown [9] that the inner product hx; yi is Hermitian symmetric, linear in the
�rst variable and conjugate linear in the second variable, and positive de�nite for
all x 2 X . It also obeys a Schwarz inequality of the form jhx; yij2 � hx; xihy; yi:
Postulate 5 requires that kxk = hx; xi is a norm on X . If a space has Postulates
1{4 and not 5 then the space carries a semi-norm.

Let S be a Rubin{Stone space and z = fzkg � X .

Theorem 5.1. For c 2 S let K�0(�) be a Gauss{Petrovi�c cone such that

hzk; ci 2 K�0(�) for each k 2 N. If

0 � rkzkk � hzk; ci; 1 � k <1; (5.1.1)

then norm slow oscillation of fSN(z)g is equivalent to strong slow oscillation of

fVN (kzk)g.

Theorem 5.2. Let d 2 S. If

0 � rkzkk � Re hzk; di; 1 � k <1; (5.2.1)

then norm slow oscillation of fSN(z)g is equivalent to strong slow oscillation of

fVN (kzk)g.

Theorem 5.3. Let f�kg � S, k�kk = 1. If there exists a sequence of positive

numbers frkg bounded and bounded away form zero, such that for positive integers

N >M ,

��hSj+1(z); �ki
���
��hSj(z); �ki

�� � rkkzkk; M � j; k � N; (5.3.1)

then

(i) norm slow oscillation of fSN(z)g is equivalent to strong slow oscillation of

fVN (kzk)g,
(ii) z = fzkg (C; 1) summable in norm implies z = fzkg converges in norm to

the (C; 1)-limit of z = fzkg.

Remark 7. The proofs of 5.1{5.3 are identical to the proofs, of 4.1{4.3 with
(�; �) replaced by h�; �i.
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