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1. Introduction.

In this paper, we shall study Hammerstein operator equations of the form

x�KFx = f (1:1)

where K is linear and F is a nonlinear map. We �rst study Eq. (1.1) in the oper-
ator form using the (pseudo) A-proper mapping approach and the Brouwer degree
theory. Then we apply the obtained results to Hammerstein integral equations.
There is an extensive literature on Hammerstein equations and we refer to [Kr],
[KZ] and [V].

2. Some preliminries on A-proper maps.

Let fXng and fYng be �nite dimensional subspaces of Banach spacesX and Y
respectively such that dimXn = dim Yn for each n and dist(x;Xn)! 0 as n!1
for each x 2 X . Let Pn : X ! Yn and Qn : Y ! Yn be linear projections onto Xn

and Yn respectively such that Pnx ! x for each x 2 X and Æ = max jjQnjj < 1.
Then � = fXn; Pn;Yn; Qng is a projection scheme for (X;Y ).

De�nition 2.1. A map T : D � X ! Y is said to be approximation-proper (A-
proper for short) with respect to � if (i) QnT : D\Xn ! Yn is semicontinuous for
each n and (ii) whenever fxnk 2 D\Xnkg is bounded and jjQnkTxnk�Qnkf jj ! 0
for some f 2 Y , then a subsequence xnk(i) ! x and Tx = f . T is said to be pseudo

A-proper w.r.t. � if in (ii) above we do not require that a subsequence of fxnkg
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converges to x for which f 2 Tx. If f is given in advance, we say that T is (pseudo)
A-proper at f .

For the developments of the (pseudo) A-proper mapping theory and appli-
cations to di�erential equations, we refer to [Mi-5,8] and [P]. To demonstrate the
generality and the unifying nature of the (pseudo) A-proper mapping theory, we
state now a number of examples of A-proper and pseudo A-proper maps.

To look at �-condensing maps, we recall that the set measure of noncompact-
ness of a bounded set D � X is de�ned as (D) = inffd > 0 : D has a �nite
covering by sets of diameter less than dg. The ball-measure of noncompactness of
D is de�ned as �(D) = inffr > 0jD � [ni=1B(xi; r); x 2 X; n 2 Ng. Let � denote
either the set or the ball-measure of noncompactness. Then a mapN : D � X ! X
is said to be k � � contractive (�-condensing) if �(N(Q)) � k�(Q) (respectively
�(N(Q)) < �(Q)) whenever Q � D (with �(Q) 6= 0).

Recall that N : X ! Y is K-monotone for some K : X ! Y � if (Nx �
Ny;K(x � y)) � 0 for all x, y 2 X . It is said to be generalized pseudo-K-
monotone (of type (KM)) if whenever xn * x and lim sup(Nxn;K(xn � x)) � 0
then (Nxn;K(xn � x)) ! 0 and Nxn * Nx (then Nxn * Nx). Recall that N
is said to be of type (KS+) if xn * x and lim sup(Nxn;K(xn � x)) � 0 imply
that xn ! x. If xn * x implies that lim sup(Nxn ;K(xn � x)) � 0, N is said
to be of type (KP). If Y = X� and K is the identity map, then these maps are
called monotone, generalized pseudo monotone, of type (M) and (S+) respectively.
If Y = X and K = J the duality map, then J-monotone maps are called accretive.
It is known that bounded monotone maps are of type (M). We say that N is
demicontinuous if xn ! x in X implies that Nxn * Nx. It is well known that
I�N is A-proper ifN is ball-condensing and thatK-monotone like maps are pseudo
A-proper under some conditions on N and K. Moreover, their perturbations by
Fredholm or hyperbolic like maps are A-proper or pseudo A-proper. (see [Mi-5,7].

The following result states that ball-condensing perturbations of stable A-
proper maps are also A-proper.

Theorem 2.1. [Mi-1] Let D � X be closed, T : X ! Y be continuous and
A-proper w.r.t. a projectional scheme � and a-stable, i.e., for some c > 0 and n0

jjQnTx�QnTyjj � cjjx� yjj for x; y 2 Xn and n � n0

and F : D ! Y be continuous. Then T + F : D ! Y is A-proper w.r.t. � if F is
k-ball contrctive with kÆ < c, or it is ball-condensing if Æ = c = 1.

Remark 2.1. The A-properness of T in Theorem 2.2 is equivalent to T being
surjective. In particular, as T we can take a c-strongly K- monotone map for a
suitable K : X ! Y �, i.e., (Tx � Ty;K(x � y)) � cjjx � yjj2 for all x; y 2 X .
In particular, since c-strongly accretive maps are surjective, we have the following
important special case [Mi-1].

Corollary 2.1. Let X be a �1 space, D � X be closed, T : X ! X be
continuous and c-strongly accretive and F : D ! X be continuous and either k-ball
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contractive with k < c, or it is ball-condensing if c = 1. Then T + F : D ! X is
A-proper w.r.t. �.

To study error estimates of approximate solutions for nondi�erentiable maps,
we need a notion of a multivalued derivative. Let U � X be an open set and
T : �U ! Y . A positively homogeneous map A : X ! 2Y , with Ax closed and
convex for each x 2 X , is said to be a multivalued derivative of T at x0 2 U if there
is a map R = R(x0) : �U � x0 ! 2Y such that jjyjj=jjx � x0jj ! 0 as x ! x0 for
each y 2 R(x� x0) and

Tx� Tx0 2 A(x � x0) +R(x� x0) for x near x0:

A map A : X ! 2Y is m-bounded if there is m > 0 such that jjyjj � mjjxjj for each
y 2 Ax, x 2 X . It is c-coercive if jjyjj � cjjxjj for each y 2 Ax, x 2 X .

The following result from [Mi-5] will be needed below.

Theorem 2.2. Let T : U � X ! Y be A-proper w.r.t. � and x0 be a solution
of Tx = f . Suppose that A is an odd multivalued derivative of T at x0 and there
exist constants c0 > 0 and n0 � 1 such that

jjQnujj � c0jjxjj for x 2 Xn; u 2 Ax; n � n0: (2:1)

(a) If x0 is an isolated solution, then the equation Tx = f is strongly approximation
solvable in Br(x0) for some r > 0:
(b) If, in addition, A is c1-coercive for some c1 > 0, then x0 is an isolated solution,
the conclusion of (a) holds and, for � 2 (0; c0), approximate solutions xn satisfy

jjxn � x0jj � (c0 � �)�1jjTxn � f jj for n � n1 � n0: (2:2)

(c) If x0 is an isolated solution in Br(x0), A is c2-bounded for some c2 and

Tx� Ty 2 A(x� y) +R(x� y) whenever x� y 2 Br (2:3)

and z=jjx�yjj ! 0 as x! x0 and y ! x0 for each z 2 R(x�y), then the equation
Tx = f is uniquely approximation solvable in Br(x0) and the unique solutions
xn 2 Br(x0) \Xn of QnTx = Qnf satisfy

jjxn � x0jj � kjjPnx0 � x0jj � c dist(x0; Xn); (2:4)

where k depends on c0, c2, � and Æ and c = 2kÆ1, Æ1 = sup jjPnjj.

3. Hammerstein operator equations

We shall consider (1.1) in a general setting between two Banach spaces. To
that end, we shall use two approaches. One is based on applying the Brouwer
degree theory directly to the �nite dimensional approximations of the map I�KF ,
and the other one is based on splitting �rst the map K as a product of two suitable
maps and then use the Brouwer degree.

A. A direct method. In this section, we shall prove a number of solvability
results of (1.1) imposing various types of conditions on K and F .
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Theorem 3.1. Let X and Y be Banach spaces, K : Y ! X be linear and
continuous and N : X ! Y be nonlinear and such that I �KF : X ! X is pseudo
A-proper w.r.t. � = fXn; Png. Suppose that there are some constants a and b such
that ÆajjKjj < 1, Æ = max jjPnjj, and

jjFxjj � ajjxjj+ b for all jjxjj � R:

Then Eq. (1:1) is solvable for each f 2 X.

Proof. Consider the homotopy H(t; x) = x� tKFx� tf . Then our assump-
tions imply that for each f 2 X there is an r > R and n0 � 1 such that

PnH(t; x) 6= tPnf for all t 2 [0; 1]; x 2 @B(0; r) \Xn; n � n0:

By the Brouwer degree properties and the pseudo A-properness of I �KF , there
is an x 2 X such that x�KFx = f . �

We say that a map T satis�es condition (+) if whenever Txn ! f in Y then
fxng is bounded in X . T satis�es condition (++) if whenever fxng is bounded and
Txn ! f , then Tx = f for some x 2 X .

Let �(K) denote the spectrum of K. Our next result involves a suitable
Leray-Schauder type of condition.

Theorem 3.2. Let K : X ! X be a continuous linear map, ��1 =2 �(K),
F : X ! X be nonlinear, Tp = pI � (I � �K)�1K(F � �I) : X ! X for p � 1, T1
satisfy condition (+) and either F is odd or, for some R > 0,

K(F � �I)x 6= t(I � �K)x for jjxjj � R; t > 1: (3:1)

a) If T1 is A-proper w.r.t. �, then Eq. (1:1) is approximation solvable for each
f 2 X.
b) If Tp is A-proper w.r.t. � for each p > 1 and T1 satis�es condition (++), then
Eq. (1:1) is solvable for each f 2 X.

Proof. Eq. (1.1) is equivalent to

Ax�Nx = f (3:2)

where A = I � �K and N = K(F � �I). It is easy to see that (3.1) implies that

Nx 6= tAx for jjxjj � R; t > 1:

Hence, the conclusion follows from Theorem 3.1 in [Mi-2]. �

Corollary 3.1. Let K : X ! X be a continuous linear map, ��1 =2 �(K),
F : X ! X be nonlinear, Tp = pI� (I ��K)�1K(F ��I) : X ! X for p � 1, and

lim sup
jjxjj!1

jjFx� �xjj=jjxjj < jj(I � �K)�1Kjj�1: (3:3)

a) If T1 is A-proper w.r.t. �, then Eq. (1:1) is approximation solvable for each
f 2 X.
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b) If Tp is A-proper w.r.t. � for each p > 1 and T1 satis�es condition (++), then
Eq. (1:1) is solvable for each f 2 X.

Corollary 3.2. Let X be a uniformly convex space with a scheme � =
fXn; Png, max jjPnjj = 1, K : X ! X be a continuous linear map, ��1 =2 �(K)
and F : X ! X be nonlinear such that (I � �K)�1K(F � �I) : X ! X is
nonexpensive and (3:3) hold. Then Eq. (1:1) is solvable for each f 2 X.

Let us now look at some special cases.

Theorem 3.3. Let K : X ! X be a continuous linear map, ��1 =2 �(K),
d = jj(I � �K)�1Kjj�1 and F : X ! X be nonlinear and continuous.
a) Let, for some k 2 (0; d)

jjFx� �x � (Fy � �y)jj � kjjx� yjj for all x; y 2 H: (3:4)

Then Eq. (1:1) is uniquely solvable for each f 2 X and the solution is the limit of
the iteration process

xn � �Kxn = KFxn�1 � �Kxn�1 + f: (3:5)

b) If, in addition, either K is compact or Æ = max jjPnjj = 1 and kjj(I � �K)�1jj�
jjKjj < 1, then Eq. (1:1) is approximation solvable w.r.t. � for each f 2 X and the
approximate solutions fxn 2 Xng of x� PnKFx = Pnf satisfy

jjxn � xjj � cjjxn �KFxn � f jj for some c and all large n: (3:6)

and

jjxn � xjj � cjjPnx� xjj � c1 dist(x;Xn): (3:7)

c) If condition (3:4) holds with k = d, X is a uniformly convex space with Æ = 1
and

jjFx� �xjj � ajjxjj+ b for some a < k; b > 0; x 2 X: (3:8)

then Eq. (1:1) is solvable for each f 2 X.

Proof. Eq. (1.1) is equivalent to (3.2) with A = I ��K and N = K(F ��I).
Hence, it is easy to show that A�1N is k1 = kjjA�1Kjj-contractive with k1 < 1.
Thus, part a) follows from the contractive �xed point principle and c) follows from
Corollary 3.2. Regarding part b), we need only to show that condition (2.1) of
Theorem 2.2 holds. Assume �rst that K is compact. Then I � KF is A-proper
w.r.t. �. Set B1x = fK(y��x) j jjy��xjj � kjjxjjg and Bx = Ax�B1x for x 2 X .
Then B is homogeneous with Bx convex for each x 2 X and A(x�y)�(Nx�Ny) 2
B(x� y) for each x; y 2 X . Moreover, if 0 2 Bx, then Ax = K(y� �x) for some y
and

jjxjj � jjA�1Kjj jjy � �xjj < jjxjj:

Hence, x = 0. Since B1 is upper semicontinuous and compact, B = A � B1 is
A-proper w.r.t. � and satis�es (2.1) by Lemma 2.2 in [Mi-2]. Since also Nx�Ny 2
B1(x� y), the conclusions follow from Theorem 2.2.
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Next, let Æ = 1 and kjj(I � �K)�1jj jjKjj < 1. Then I � KF is A-proper
w.r.t. � = fXn; Png. Indeed, let fxn 2 Xng be bounded and xn � PnKFxn ! f .
Set yn = (I � �K)xn. Then yn � PnK(F � �I)(I � �K)�1yn ! f and the map
F1 = (F � �I)(I � �K)�1 is an l-contraction with l < 1. Hence, I � F1 is A-
proper w.r.t. � and therefore, a subsequence ynk ! y and y � F1y = f . Hence,
x�KFx = f with x = (I � �K)�1y, proving that I �KF is A-proper.

Now, let y 2 Pn(Ax � B1x) for some x 2 Xn. Then y = Pn(Ax � Kv) =
Ax� PnKv for some v with jjvjj � kjjxjj and x = A�1Pn(y +Kv). Hence,

jjxjj � ÆjjA�1jj(jjyjj+ kjjKjj jjxjj)

and

(1� kjjA�1jj jjKjj))jjxjj � jjA�1jj jjyjj

which implies that A is c-coercive. Thus, Theorem 2.2 applies. �

Let us now specialize this to a Hilbert spase H setting. Let �(K) be the set
of characteristic values of K, i.e., �(K) = f� j 1=� 2 �(K)g.

Theorem 3.4. Let K : H ! H be a selfadjoint map, � =2 �(K), F : H ! H
be nonlinear and continuous and Tp = pI � (I � �K)�1K(F � �I) : H ! H for
p � 1. Suppose that for some k with kÆ < d = dist(�;�(K))

lim sup
jjxjj!1

jjFx� �xjj=jjxjj < k:

a) If T1 is A-proper w.r.t. �, then Eq. (1:1) is approximation solvable for each
f 2 H.
b) If Tp is A-proper w.r.t. � for each p > 1 and T1 satis�es condition (++), then
Eq. (1:1) is solvable for each f 2 H.

Proof. Eq. (1.1) is equivalent to x = (I � �K)�1K(F � �)x + (I � �K)�1f .
Since (I��K)�1K = �1=�+1=�(I��K)�1, we have that ([K]) jj(I��K)�1Kjj =
sup�2�(K) j � 1=� + 1=�(1 � ��)�1j = sup�2�(K) j(� � �)�1j = d�1. Then the
concluions follow from Corollary 3.1 �

Let �� = inff� j � 2 �(K) \ (0;1)g. For c 2 �(K) \ (�1; ��], de�ne
d�c = dist(c;�(K) \ (�1; c)).

Theorem 3.5. Let K : H ! H be a selfadjoint map, F : H ! H be
nonlinear and continuous and
(i) (Fx� Fy; x� y) � �jjx � yjj2 for all x; y 2 H,
(ii) jjFx� Fyjj � �jjx� yjj for all x; y 2 H.
(a) If (i){(ii) hold and �2 < �d�c + c(d�c � c� 2�) for some c � ��, then Eq. (1:1)
is uniquely approximation solvable for each f 2 H and (3.6){(3.7) hold.
(b) If �2 � �d�c + c(d�c � c� 2�) and, for some a < � = c� d�c =2 and b > 0,

jjFx� �xjj � ajjxjj+ b for all x 2 H

then Eq. (1:1) is solvable for each f 2 H.
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Proof. Let � = c � d�c =2. Then � =2 �(K) and d = dist(�;�(K)) > 0 with
d�1 = jj(I � �K)�1Kjj. Using conditions (i){(ii), we get

jjFx+ �x� (Fy + �y)jj � (�2 + �2 + 2��)1=2jjx� yjj:

By our choice of � and the condition on �, we get

�2 + �2 + 2�� = �2 + �d�c + c(d�c � c� 2�) + (d�c =2)
2 < (d�c =2)

2 = d2:

Hence, the conclusions follow from Theorem 3.3. �

Theorem 3.6. Let K : H ! H be selfadjoint, F : H ! H be a gradient map
and B� : H ! H be selfadjoint maps such that
(i) (B�(x � y); x� y) � (Fx� Fy; x� y) � (B+(x� y); x� y) for all x; y 2 H.
(ii) ÆjjB� � �I jj � d = minfj�j j � 2 �(I � �K)�1Kg.
(a) If the inequality is strict in (ii), then Eq. (1:1) is uniquely approximation solvable
w.r.t. � for H for each f 2 H and the approximate solutions satisfy (3.6){(3.7).
(b) If, in addition, there are 0 < a < d and b � 0 such that

jjFx� �xjj � ajjxjj+ b for all x 2 H

then Eq. (1:1) is solvable for each f 2 H.

Proof. Since C is a gradient of the functional x ! (Cx; x)=2, N � C is a
gradient map and

�jjB� � �I jj jjx� yjj2 � ((B� � �I)(x � y); x� y);

((B+ � �I)(x � y); x� y) � jjB+ � �I jj jjx� yjj2:

Hence, by Lemma 1 in [Mi-3],

jjFx� �x � (Ny � �y)jj � kjjx� yjj for all x; y 2 H

where k = max(jjB� � �I jj; jjB+ � �I jj). Since d = jj(I � �K)�1Kjj�1 ([K]), the
conclusions follow from Theorem 3.3. �

For c 2 �(K) \ (��;1), de�ne d+c = dist(c;�(K) \ (c;1)). We have the
following sharper version of Theorem 3.5.

Theorem 3.7. Let K : H ! H be selfadjoint, F : H ! H be a gradient map
and �; � 2 R be such that

�kx� yk2 � (Fx� Fy; x� y) � �kx� yk2 for x; y 2 H:

(a) If either c 2 �(K)\(�1; ��] and �c < � � � < �c+d�c , or c 2 �(K)\(��;1)
and �c� d+c < � � � < �c, then Eq. (1:1) is uniquely approximation solvable for
each f 2 H and (3.6){(3.7) hold.
(b) If the conditions in (a) hold with each \<" sign replaced by \�" and, for some
a < � with � = c� d�c =2 if c � �� and � = c+ d+c =2 if c > ��, and b > 0,

jjFx� �xjj � ajjxjj+ b for all x 2 H
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then Eq. (1:1) is solvable for each f 2 H.

Proof. As above, we have that

jjFx+ �x� Fy � �yjj � max(j�+ �j; j� + �j)jjx � yjj:

By our choice of � as given in b), we conclude that j�+ �j � d = dist(�;�(K)) =
d�c =2 and j� +�j � d with the inequalities being strict in part a). Hence, Theorem
3.3 is applicable. �

B. A splitting method. In this section, we shall study Eq. (1.1) by using a
suitable splitting of K. We shall look at Hammerstein equtions with asymptotically
linear and fB1; B2g-quasilinear nonlinerities F .

B1. Hammerstein equations with asymptotically linear nonlinear-

ities. Recall that a Banach space X is embeddable if there is a Hilbert space H
such that X � H � X� with each inclusion being dense and hy; xi = (y; x)H for
each y 2 H and x 2 X , where h�i is the duality pairing of X and X�.

For asymptotically linear nonlinearity F , we have the following basic result.

Theorem 3.8. Let X be a reexive embeddable Banach space (X � H �

X�), K : X� ! X be a positive de�nite bounded selfadjoint map and C = K
1=2
H ,

where KH is the resrtiction of K to H, and T : X� ! H be a bounded linear

extension of K
1=2
H . Suppose that F : X ! X� and F1 : X ! X� is a linear map

such that
(i) the homotopy Ht = I � (1 � t)TF1C � tTFC : H ! H is A-proper w.r.t.
� = fHn; Png for each t 2 [0; 1]
(ii) there are positive constants a, b and R such that

jjFx� F1xjj � ajjxjj + b for jjxjj � R

(iii) 1 =2 �(KF1) and ajjKjj < jj(I � TF1C)
�1jj�1.

Then Eq. (1:1) is solvable in X for each f 2 C(H) � X.

Proof. We know that the positive square root K
1=2
H can be extended to a

bounded linear map T : X� ! H such that K = T �T , where the adjoint of T is

T � = K
1=2
H = C : H ! X and C� = T (cf. [V]). Hence, we can write K = CT .

De�ne the homotopy H(t; x) = x � (1 � t)TF1Cx � tTFCx on [0; 1] � H . Let
f 2 C(H) � X , f = Ch, be �xed. Then there is an r > R such that

H(t; x) 6= th for x 2 @B(0; r); t 2 [0; 1]:

If not, then there would exist xn 2 H , tn 2 [0; 1] such that jjxnjj ! 1 and

xn � TF1Cxn = tn(TFCxn � TF1Cxn + h):

But I�TF1C is invertible if and only if I�KF1 is invertible and so (I�TF1C)�1

exists by (ii). Then

jj(I � TF1C)
�1jj�1jjxnjj � jj(I � TF1C)xnjj

� jjT (F � F1)Cxnjj+ jjhjj � jjT jj (ajjCjj jjxnjj+ b) + jjhjj:
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Since jjT jj = jjCjj = jjKjj1=2, we get that

jj(I � TF1C)
�1jj�1 � ajjKjj+ (b+ jjhjj)=jjxnjj:

Passing to the limit, we get that jj(I � TF1C)
�1jj�1 � ajjKjj, a cotradiction.

Hence, H(t; x) 6= tf on [0; 1]� @B(0; r) for some r > R. Since H(t; x) is A-proper,
there is an n0 � 0 such that

PnH(t; x) 6= tPnh for x 2 @B(0; r) \Hn; t 2 [0; 1]; n � n0:

Hence

deg(I � PnTFC;B(0; r) \Hn; Pnh) = deg(I � PnTF1C;B(0; r) \Hn; 0) 6= 0

for all n � n0. This and the A-properness of I�TFC imply that y�TFCy = h for
some y 2 H . Applying C and using the fact thatK = CT , we get that x�KFx = f
with x = Cy 2 X . �

B2. Hammerstein equtions with fB1; B2g-quasilinear nonlinearities.
In this section we shall study Eq. (1.1) with fB1; B2g-quasilinear nonlinearities N ,
where B1; B2 : H ! H are selfadjoint maps with B1 � B2, i.e. (B1x; x) � (B2x; x)
for x 2 H . A �xed point theory for such maps has been developed by Perov [Pe] and
Krasnoselskii-Zabreiko (cf. [KZ]) assuming that fB1; B2g is a regular pair. These
maps have been studied extensively in the context of semilinear equations by the
author [Mi-1,5,6,7].

De�nition 3.1. a) A map K : H ! H is fB1; B2g-quasilinear on a set S � H
if for each x 2 S there exists a selfadjoint map B : H ! H such that B1 � B � B2

and Bx = Kx; b) A map N : H ! H is said to be asymptotically fB1; B2g-
quasilinear if there is a fB1; B2g-quasilinear outside some ball map K such that

jN �Kj = lim sup
jjxjj!1

jjNx�Kxjj

jjxjj
<1:

This class of maps is rather large. For example, let N : H ! H have a self-
adjoint weak Gateaux derivative N

0

(x) on H . Assume that B1 � N
0

(x) � B2

for each x and some selfadjoint maps B1 and B2. Then N is asymptotically
fB1; B2g-quasilinear with jN �Kj = 0 (cf. [Mi-4,5]). In the nondi�erentiable case,
if Nx = B(x)x+Mx for some nonlinear map M with the quasinorm jM j <1 and
selfadjoint maps B(x) : H ! H with B1 � B(x) � B2 for each x 2 H , then N is
asymptotically fB1; B2g-quasilinear.

The pair fB1; B2g is said to be regular if 1 is not in the spectrum �(B1) [
�(B2), �(B1) \ (1;1) = f�1; :::; �kg, �(B2)\ (1;1) = f�1; :::; �mg, where the �i's
and the �j 's are eigenvalues of B1 and B2 respectively of �nite multiplicities and
the sum of the multiplicities of the �i's is equal to the sum of multiplicities of the
�j 's. It has been shown in [KZ] that if fB1; B2g is a regular pair, then there is a
constant c > 0 such that for each selfadjoint map C with B1 � C � B2 we have
that

jjx� Cxjj � cjjxjj for all x 2 H:
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Using this fact, we have proved in [Mi-4] the following extension of the �xed point
theorem of Perov [P] and its extension in [KZ] for compact maps.

Theorem 3.9. Let fB1; B2g be a regular pair, M;N : H ! H be bounded
and N be asymptotically fB1; B2g- quasilinear with jM + N � Kj < c. Suppose
that for some selfadjoint map C0 : H ! H with B1 � C0 � B2, the map Ht = I�
(1� t)C0� t(M +N) is A-proper w.r.t. � = fXn; Png for each t 2 [0; 1) and H1 is
either pseudo A-proper w.r.t. � or satis�es condition (++). Then (I�M�N)(H) =
H.

If C0 and N are compact maps, M = 0 and jN�Kj = 0, we obtain the result
of Perov [P] and [KZ]. If N is k-ball contractive, M is c1-strongly monotone and
C0 is a k1-ball contractive with k + k1 < c1, then Ht is A-proper for each t 2 [0; 1]
and Theorem 3.9 is applicable. Or, we can take N and C0 to be compact and M
such that (Mx�My; x� y) � �jjx� yjj2.

Next, we shall apply Theorem 3.9 to Hammerstein equations with TFC
asymptotically fB1; B2g-quasilinear.

Theorem 3.10. Let X be a reexive embeddable Banach space (X � H �
X�), fB1; B2g be a regular pair of selfadjoint maps in H, K : X� ! X be a positive

de�nite bounded selfadjoint map and C = K
1=2
H , where KH is the resrtiction of K

to H, and T : X� ! H be a bounded linear extension of K
1=2
H . Suppose that

F : X ! X� is such that TFC is asymptotically fB1; B2g -quasilinear and, for
some selfadjoint map C0 with B1 � C0 � B2, the homotopy Ht = I�(1�t)TC0C�
tTFC : H ! H is A-proper w.r.t. � = fHn; Png for each t 2 [0; 1) and H1 is
pseudo A-proper w.r.t. �. Then Eq. (1:1) is solvable in X for each f 2 C(H) � X.

Proof. As before, we can write K = CT . Let f 2 C(H) � X , f = Ch, be
�xed. Then, by Theorem 3.9, there is an y 2 H such that y�TFCy = h. Applying
C and using the fact thatK = CT , we get that x�KFx = f with x = Cy 2 X . �

Next, we shall look at the case when K is not positive de�nite. Let X be an
embeddable reexive Banach space (X � H � X�) and K : X� ! X be a bounded
linear map whose restriction KH to H is a selfadjoint map in H . De�ne

K+
H = 1=2(jKH j+KH); K�

H = 1=2(jKH j �KH)

A = (K+
H)

1=2 + (K�
H)

1=2; C = (K+
H)

1=2 � (K�
H)

1=2

where jKH j is the absolute value of KH and (:)1=2 is the positive square root of the
corresponding positive selfadjoint map in H . C is known as the principal square
root of KH .

Recall that K is said to be regular if K+
H and K�

H have bounded extensions
K+ and K� from X� to X . Note that if KH is quasinegative, i.e., the subspace
H1 � H , determined by the positive part of the spectrum of KH , has positive �nite
dimension, then K is a regular map.

It is known that [V] if X is an embeddable reexive Banach space and K :
X� ! X is a regular bounded linear map, then K can be represented in the
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form K = V �W = W �V , where V and W are bounded extensions of A and C,
respectively, from X� to H , V � = A and W � = C.

Theorem 3.11. Let X be an embeddable reexive Banach space (X � H �
X�) and K : X� ! X be a regular bounded selfadjoint map and F : X ! X� be
such that V FA is a bounded asymptotically fB1; B2g-quasilinear map. Let P be the
projection from H onto the subspace H1 � H determined by the positive spectrum
of KH , Q = I�P and the pair fB1�2P;B2�2Pg be regular. Suppose that C0 is a
selfadjoint map with B1�2P � C0 � B2�2P , Ht = I�(1�t)C0�t(V FA�2P ) is
A-proper w.r.t. � = fHn; Png for H for each t 2 [0; 1) and H1 is pseudo A-proper
w.r.t. �. Then Eq. (1:1) is solvable in X for each f = Ah with h 2 H.

Proof. The map V FA�2P is asymptotically fB1�2P;B2�2Pg- quasilinear.
Then, for each f = Ah with h 2 H , the equation u � 2Pu + V FAu = Qh is
solvable in H by Theorem 3.9. Since P � Q = 2P � I and (P � Q)A = C [V],
we have that (P � Q)V = W . Applying 2P � I to the above equation, we get
u �WFAu = h. Applying V � = A to this equation and setting x = Au, we get
that x�KFx = f . �

4. Hammerstein integral equations

Let Q � Rn be a bounded domain, k(t; s) : Q � Q ! R be measurable and
f(s; u) : Q � R ! R is a Caratheodory function. We consider the problem of a
solution u 2 L2(Q) of the Hammerstein integral equation

u(t) =

Z
Q

k(t; s)f(s; u(s))ds+ g(t) (4:1)

where g is a measurable function. There is a vast literature on the solvability of
(4.1) and we just mention the books by Krasnoselskii [K] and Vainberg [V]. De�ne
the linear map

Ku(t) =

Z
Q

k(t; s)u(s)ds

in H = L2(Q). De�ne Fu = f(s; u(s)) and note that Eq. (4.1) can be written in
the form u�KFu = g.

Theorem 4.1. Let K : H ! H be compact and selfadjoint, �(K) =
f� j ��1 2 �(K)g and assume that either one of the following conditions holds
(i) Let � =2 �(K) and a < dist(�;�(K)) be such that for some h 2 L2(Q)

jf(s; u)� �uj � ajuj+ h(s) for all s 2 Q; u 2 R;

(ii) There are �; � 2 �(K) such that (�; �) \ �(K) = ; and � < � < � < � and
� > 0 such that for s 2 Q

�+ � � f�(s) = lim inf
juj!1

(f(s; u)=u) � f+(s) = lim sup
juj!1

(f(s; u)=u) � � � �:

Then Eq. (4:1) is solvable in L2 for each g 2 L2.



82 P.S. Milojevi�c

Proof. We shall show �rst that (ii) implies (i). From (ii), we get that there is
R > 0 such that

� < f�(s)� � � f(s; u)=u � f+(s) + � < �; for all s 2 Q and juj � R:

Hence, for each s 2 Q,

���f(s; u)
u

�
�+ �

2

��� � min
�
f+(s) + ��

�+ �

2
;
�+ �

2
� f�(s) + �

�

� min
�
� �

�+ �

2
;
�+ �

2
+ �

�
= a <

�� �

2
= dist

��+ �

2
;�(K)

�
:

Thus, (i) holds and the conclusion holds by Theorem 3.4. �

Theorem 4.2. Let K : H ! H be continuous, � =2 �(K) and d�1 =
dist(�;�(K)). Let Æ = max jjPnjj and for some k 2 (0; d=k),

jf(s; u)� �u� (f(s; v)� �v)j � kju� vj for s 2 Q; u; v 2 R:

Then Eq. (4:1) is uniquely solvable for each g 2 L2 and (3.6)-(3.7) hold.

Proof. It follows from Theorem 3.3. �

Theorem 4.3. Let K : H ! H be selfadjoint and for some �; � 2 R,

�ju� vj2 � (f(s; u)� f(s; v))(u� v) � �ju� vj2 for s 2 Q; u; v 2 R

(i) If �c < � � � < �c + d+c for some c 2 �(K) \ (�1; ��) or �c � d+c < � �
� < �c for some c 2 �(K) \ (��;1), then Eq. (5:1) is uniquely solvable for each
g 2 L2.
(ii) If < is replaced by � in (i) and if, for some a < � with � = c� d�c =2 if c � ��

and � = c+ d+c =2 if c > ��, and some b 2 L2, we assume

jf(s; u)� �uj � ajuj+ b(s) for s 2 Q; u 2 R

then Eq. (4:1) is solvable for each g 2 L2 and (3.6){(3.7) hold.

Proof. It follows from Theorem 3.7. �

Part (i) of this theorem extends a result of Dolph [Do]. For asymptotically
linear nonlinearities F , we have

Theorem 4.4. Let K : L2(Q)! L2(Q) be compact, selfadjoint and positive
de�nite and also acts from Lp0(Q) into Lp(Q) with 2 < p �1 and p0 = p=(p� 1).
Assume that f(s; u) is a Caratheodory function and
(i) There are a(s) 2 Lp0(Q) and b � 0 such that

jf(s; u)j � a(s) + bjujp�1 for s 2 Q; u 2 R:

(ii) There are functions f1(s) 2 Lp�2(Q), b(s) 2 Lp0(Q) and a � 0 such that

jf(s; u)� f1(s)uj � b(s) + ajuj for s 2 Q; u 2 R:
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(iii) For the linear map F1u(s) = f1(s)u(s) in L2(Q) and the decomposition
K = CT , assume that

1 =2 �(KF1) and ajjKjj < jj(I � TF1C)
�1jj�1:

Then Eq. (4:1) is solvable in Lp(Q) for each g 2 C(L2(Q)) � Lp(Q).

Proof. By our assumptions on K, it can be written in the form (see [K])

K = CT , where C = K
1=2
H is the selfadjoint positive de�nite square root of K,

C = T � : L2(Q) ! Lp(Q) and T = C� acting from Lp0(Q) to L2(Q). Since C is
compact ([K]), it follows that I � (1 � t)TF1C � tTFC : L2(Q) ! L2(Q) is A-
proper w.r.t. to any scheme � = fHn; Png for L2(Q). Hence, the theorem follows
from Theorem 3.8. �
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