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Abstract. The notion of regular variation is extended to functions de�ned on homoge-
neous cones in Rn. For these functions we prove the Uniform Convergence Theorem and the
Representation Theorem.

Regularly varying functions were de�ned by Karamata [10] in 1930, and the
theory of regular variation was developed by him and some of his students (see, for
example, [11, 1, 2, 3]). Nowadays, there are several books on this theory: [13], [4]
and [6] (see also the very extensive bibliography in [4]). The following is a standard
de�nition of regular variation.

De�nition 1. A function F is said to be regularly varying at in�nity if it is
real-valued, positive and measurable on [A;1), for some A > 0, and if for every
y > 0 the limit

(1) lim
x!1

F (xy)

F (x)
= �(y)

exists. �

In this paper we shall extend this de�nition to functions of several variables.
Regular variation in many variables was investigated much less than in one variable.
The references [3, 5, 8, 9, 12, 14] make a representative, though not an exhaustive
list. Most of the papers deal with functions de�ned on Rn

+ (the cone in Rn whose
elements have all coordinates positive). Jakymiv [8, 9] introduces regular variation
for functions de�ned on arbitrary cones, but his notion of convergence is very close
to radial convergence. On the other hand, Baj�sanski and Karamata [3] deal with
functions de�ned on topological groups.

We shall consider functions de�ned on homogeneous cones (these are cones
that have a transitive group of automorphisms), thus choosing a middle way be-
tween [8] and [3] (but relying more on [3]). On the one hand, the cones will have
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more structure than the arbitrary cones in [8], and each will determine its own
class of regularly varying functions. For example, by looking just at what is the
generalization of the power functions, we see that two homogeneous cones carry two
essentially di�erent classes of regularly varying functions. On the other hand, the
group of automorphisms of the cone (which is a Lie group) has much more prop-
erties than an arbitrary topological group. In particular, it has the exponential
mapping, which makes it possible to develop an approach in many respects similar
to the one-dimensional case.

Our de�nition of regular variation in many variables is formally similar to
De�nition 1 above, and many properties of regular variation will follow along the
same lines as in the one-dimensional case. For example, it is well known and easily
seen that once the limit �(u) (called the index function) exists in (1), it is necessarily
of the form �(u) = u�, for some � 2 R (this is usually called the Characterization
Theorem). In other words, � is a homomorphism from the group (R+; �) into
itself. We shall have, similarly, that the index function in many variables is a
homomorphism of the group of automorphisms of the cone into (R+; �).

There is another well-known fact in the theory of regular variation which is
used as a standard trick. Instead of dealing with functions as in De�nition 1, we
introduce the change of variables

(2) f(u) = logF (eu)

and we pass to the (equivalent) \additive" class of functions f :R! R, such that
the limit

(3) lim
u!1

(f(u+ v)� f(u)) = �(v)

exists. (We have put y = ev and �(v) = log�(ev) in (1).)

There will be an analogous \additive" class in many variables, too. The
\change of variables" like the one in (2) will be provided by the exponential mapping
of the Lie group G of the automorphisms of the cone

(4) exp: g! G

where g is the Lie algebra of G. For a homogeneous cone the group G has the
property that (4) is a di�eomorphism onto, so we shall have again the equivalence
of the classes of regularly varying functions and of \additively regularly varying"
functions. Since g is isomorphic with Rn, we have to deal with functions de�ned
on Rn satisfying a condition like (3).

We �rst examine in section 2 these functions, which are regularly varying with
respect to an abelian group (the vector space addition). In this more elementary
setting we prove the main theorems of the theory of regular variation: the Uniform
Convergence Theorem and the Representation Theorem. Everything pertinent to
regular variation is contained in this section.

In section 3 we prove some facts about �lters with respect to which the limit
is taken in the de�nition of regular variation.
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Section 4 deals with the relationship between \multiplicative" and \additive"
regular variation. We start with a regularly varying function de�ned on the group
of a homogeneous cone and apply the exponential mapping to obtain an additively
regularly varying function. However, we now work with a more restricted de�ni-
tion (De�nition 4.1) in which uniformity is assumed with respect to the nilpotent
variables. In this setting we have the equivalence of the two classes of functions.

At the end of this introduction let us make two more remarks. The function
in De�nition 1 is de�ned in the neighbourhood of in�nity. It is easy to have in-
stead a function de�ned on the whole half-line: just put, for example, F (x) = 1
on the complement of [A;1). That is why we shall have functions de�ned on the
whole cone, without loss of generality. On the other hand, we shall assume that all
our functions are smooth (since they are de�ned on Lie groups). This can be done
without a�ecting the regular variation property of F , since (1) is a condition on the
oscillation of F in the neighbourhood of in�nity and is not related to the smooth-
ness. Indeed, it is well known that for a regularly varying function as in De�nition
1, there is an asymptotically equivalent smooth regularly varying function.

1. Introduction

1.1. De�nition of regular variation. In this section we give a de�nition
of regular variation for functions de�ned on an arbitrary topological group. This
is basically the de�nition of Baj�sanski and Karamata [3]. Later we shall have two
special cases of this de�nition. First we shall consider regularly varying functions
on the group of automorphisms of a homogeneous cone V inRn (De�nition 1.5). As
a second application of the de�nition we shall have regular variation with respect
to the additive group of the vector space Rn (which carries the Lie algebra of the
group of the cone) (De�nition 2.2). In Section 4 we show that there is a close
relationship between these two classes.

De�nition 1.1. Let G be a topological group. Let U be a �lter of open convex
subsets of G with a countable basis. Then U is said to be G-invariant if

(1.1) U 2 U and h 2 G implies Uh 2 U and hU 2 U : �

We shall denote by g !
U
1, or simply by g ! 1, the convergence with respect to

this �lter. Note that (1.1) means

(1.10) g !
U
1 implies gh!

U
1 and hg !

U
1 for every h 2 G:

De�nition 1.2. Let G be a topological group and (R+; �) the multiplicative
group of positive real numbers. Let F :G ! R+ be a continuous function, and let
U be a G-invariant �lter in G. Then F is said to be regularly varying with respect
to U , if the following limit

(1.2) lim
g!
U
1

F (gh)

F (g)
= �(h)

exists for every h 2 G. �
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Remark. It is possible to consider analogous \right-sided" regular variation,
with the quotient in (1.2) replaced by F (hg)=F (g).

Lemma 1.3. (The Characterization Theorem) Let F :G ! R+ be a regularly

varying function. Then the function F in (1:2) is a homomorphism of G into R+.�

Proof. Put Fg(h) = F (gh)=F (g). Then we have

(1.3) Fg(h1h2) = Fgh1(h2)Fg(h1):

Now let g !
U
1; then by property (1:10) we have that gh1 !U 1 and thus �(h1h2) =

�(h2)�(h1). �

1.2. Homogeneous cones. The theory of homogeneous cones was founded
in [7] and [15].

De�nition 1.4. Let V be an open, convex cone in Rn. The cone V is called
homogeneous if its group of linear automorphisms is transitive on V . �

In more detail the de�nition states the following. Consider the subgroup
GL(V ) of the general linear group GL(Rn) that leaves the cone invariant, i.e. such
that gV = V , for every g 2 GL(V ). The group GL(V ) is said to be transitive on
V if for every two points x and y of V there is a g 2 GL(V ) such that x = gy.
If we �x an e 2 V , this is equivalent with: for every x 2 V there is an element
g 2 GL(V ) such that x = ge.

When such a correspondence between the elements of V and the elements of
a subgroup G � GL(V )

(1.4) �:G! V; g 7! x

is one-to-one, the group G is said to be simply transitive. Then for every two points
x and y of V we have a unique g 2 G such that x = gy.

A most important property of homogeneous cones is that they always have a
simply transitive group of automorphisms.

Proposition (see [15]). Let V be a homogeneous cone in Rn. Then there

exists a subgroup G in the group of all linear automorphisms GL(V ) of the cone V
which is simply transitive on V . This group is the maximal triangular subgroup of

GL(V ). �

Here a group is said to be triangular if there is a basis in Rn in which all the
elements of the group are written in the form of (upper) triangular matrices (with
real coeÆcients). In other words, this group is real solvable. This simply transitive
group G will be called the group of the cone.

Now, on a homogeneous cone one can de�ne a product of its elements x and
y, which are written as x = gxe and y = gye according to (1.4), by putting

(1.5) xy = gxgye:
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The mapping � from (1.4) makes it also possible to correlate with every function
F :V ! R+ a function �F :G! R+ by putting

(1.6) �F = F Æ �

Remark. To simplify notation, we shall sometimes omit the bar and use the
same letter for both functions, when no confusion is likely.

1.3. Regularly varying functions on V . Let F be a positive function
de�ned on the homogeneous cone. We shall say that F is regularly varying if the
corresponding function �F , de�ned on the group of the cone G by (1.6), is regularly
varying in the sense of De�nition 1.2. More precisely, given a �lter U of subsets of
G de�ne a �lter of subsets of V by W = �(U). It is obvious that the �lter W is
translation invariant in V , in the sense that it has a countable basis and that

(1.7) W 2 W and x 2 V implies Wx 2 W and xW 2 W

where the product Wx and xW is de�ned in (1.5).

De�nition 1.5. A smooth function F :V ! R+ is said to be regularly varying

with respect to a translation invariant �lter W if for every y 2 V the limit

(1.8) lim
x!
W
1

�F (xy)
�F (x)

= �(y)

exists. �

Obviously, F is regularly varying if and only if the corresponding function �F
de�ned in (1.6) is regularly varying, that is

(1.9) lim
g!
U
1

�F (gh)
�F (g)

= ��(h)

where now the limit is taken with respect to the �lter U = ��1(W) in G; (1.9) is
obtained from (1.8) by just putting x = ge and y = he.

1.4. The exponential mapping. Let, as above, G be the simply transitive
group of the cone V and let g be the Lie algebra of G. Since G is real solvable, the
exponential mapping

(1.10) exp: g! G

is a di�eomorphism onto.

This is a very important property for our considerations since it shall enable
us to correlate with every function F de�ned on G a companion function f de�ned
on the Lie algebra g. By (1.10), we have that

(1.11) log:G! g

is de�ned globally (and gives a coordinate system for G). This means that for every
g 2 G there is a unique X 2 g such that g = expX .
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Now to every F :G! R+ there is a corresponding function f : g! R de�ned
by

(1.12) f(X) = logF (expX);

this is in fact the coordinate form of F in the coordinates of (1.11) (compare with
(2) in the Introduction).

Next, let F :G! R+ be a regularly varying function. By imitating the one-
dimensional case, we shall introduce the \change of variables" of (1.12) into the
de�nition (1.9). For g; h 2 G, let X and Y be the corresponding unique elements
of g

(1.13) g = expX; h = expY:

Let S be the inverse image under the mapping exp in (1.10) of a G-invariant �lter
U in G, i.e.

(1.14) S = fS � g: expS 2 Ug:

This shall be written as expS = U . Then S is obviously a �lter of subsets in g. In
section 3 we shall prove that the G-invariance of U implies the invariance of S with
respect to the additive group in (the vector space) g.

Now put (1.12), (1.13), (1.14) and

(1.15) �(X) = log�(expX)

into the de�ning relation (1.9) of regular variation. Although it is obviously not
true that expX expY = exp(X + Y ), we shall see in section 4 below that under
some additional conditions the function f de�ned in (1.12) still satis�es a relation
of the form

lim
X!
S
1
(f(X + Y )� f(X)) = �(Y )

which means that it is regularly varying with respect to the additive group in the
vector space Rn that carries g. We shall call such functions additively regularly

varying. We shall �rst study these functions.

2. Additive regular variation

2.1. De�nition. We now write down the special case of De�nition 1.1
and 1.2 for the abelian group (Rn;+). We shall have a small modi�cation: the
codomain of the function is the additive group of reals (R;+), rather than (R+; �).

De�nition 2.1. Let S be a �lter of open convex subsets inRn with a countable
basis. Then S is said to be additively invariant, or +-invariant, if for every S 2 S
and for every x 2 Rn, the set x+ S belongs to S. �

De�nition 2.2. Let S be a +-invariant �lter in Rn. A smooth function
f :Rn ! R is said to be additively regularly varying with respect to S if for every
y 2 Rn the following limit exists

(2.1) lim
x!
S
1
(f(x+ y)� f(x)) = �(y): �
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For these functions we shall show that they have the main properties of regular
variation, in complete analogy to the classical theory of one variable. This section
is independent from the rest of the paper. It presents the theory of regular variation
in the abelian case.

Write, for short

(2.2) fx(y) = f(x+ y)� f(x)

for the expression on the left-hand side of (2.1). Then we have a familly of functions
fx converging to f , for which we prove in the next lemma that it is a linear function.
The functions fx themselves are not linear; still they satisfy the equation

(2.3) fx(y + u) = fx(y) + fx+y(u)

which is an additive version of (1.3).

Lemma 2.1. The function � in (2:1) is linear; that is �(y) = �1y1+ � � �+�nyn
for some �i 2 R. �

Proof. By Lemma 1.3, it follows that � is a homomorphism from Rn into
R, i.e. an additive function �(y + u) = �(y) + �(u). But this is enough to ensure
linearity. �

For an (additively) regularly varying function f , we shall call the limit func-
tion �, or even the corresponding vector �, the index of regular variation. When
� = 0, the function f is called additively slowly varying. Every additively regularly
varying function is the sum of its index function and of a slowly varying function
l: f = �+ l. Thus it is enough to study the properties of additively slowly varying
functions.

2.2. The Uniform Convergence Theorem. The most important property
of regularly varying functions, from which all other properties follow easily, is the
fact that the limit in the de�ning equation (2.1), which is assumed to exist only
pointwise in y, holds in fact uniformly in y on compact sets in Rn. This is Theorem
2.4 below.

The proof, divided into several lemmas, is essentially a generalization of the
Banach{Steinhaus Theorem, applied to the functions fx, which are not linear, but
satisfy instead equation (2.3) { a substitute for additivity. Note that we don't need
any substitute for homogeneity; thus the theorem holds for any topological group.
The proof is essentially a modi�cation of a proof given in [3].

Lemma 2.2. Let fx:R
n ! R, with x 2 Rn, be a family of continuous func-

tions; let S be a �lter with a countable basis and let B = fBk : k 2 Ng be a basis

for S. If for every u 2 Rn

(2.4) lim
x!
S
1
fx(u) = 0

then for every " > 0 there is a k 2 N and an open set U � Rn such that

(2.5) x 2 Bk =) sup
u2U

jfx(u)j < ": �
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Remark. A family of functions fx satisfying condition (2.5) is said to be
asymptotically equicontinuous at (the points of) the set U (see [3]). In the next
lemma, when the �lter is +-invariant and the functions fx are of a special form,
the set U will be moved to the origin. Finally, in Theorem 2.4 a compact set
will be covered with translations of this neighbourhood of zero to prove uniform
convergence on compacts.

Proof. By the assumption (2.4) we have that

(2.6) (8" > 0)(8u 2 Rn)(9k)(8x 2 Bk)jfx(u)j < ":

Let us �x an ". Consider for x 2 Rn the set Ex := fu 2 Rn : jfx(u)j � "=2g. The
set Ex is closed, since fx is continuous. For k 2 N put Ek =

T
x2Bk

Ek. The set Ek
is closed, as an intersection of closed sets. Now by the assumption (see (2.6)), for
every u 2 Rn there is a k 2 N such that u 2 Ek. In other words, Rn =

S
k2N Ek.

Thus Rn is a countable union of closed sets, and by Baire's Category The-
orem, we have that at least one of the sets Ek contains an open set U . That is,
there exist a k0 and a U such that U � Ek0 , which, in more detail, means

(9k0)(8u 2 U)(8x 2 Bk0)jfx(u)j � "=2

and this is exactly (2.5). This proves the lemma. �

Lemma 2.3. Let f be an additively slowly varying function with respect to a

+-invariant �lter S, i.e., let for fx(u) = f(x+ u)� f(x) and for every u 2 Rn

lim
x!
S
1
fx(u) = 0:

Then for every " > 0 there is an element Bk of the �lter basis and an open neigh-

bourhood W of zero such that

(2.7) x 2 Bk =) sup
u2W

jfx(u)j < " �

Proof. Let us �x " > 0. By the preceding lemma, there is a Bk and an open
set U on which (2.5) holds. Let u0 2 U and put W = U � u0. Thus every u 2 U is
written as u = w + u0, for some w 2 W . Now by (2.2)

sup
w2W

jfx+u0(w)j � sup
u2U

jfx(u)j+ jfx(u0)j

By (2.5) if x 2 Bk, then the right-hand side is < 2". Thus

x 2 Bk =) sup
w2W

jfx+u0(w)j < 2":

But x+u0 2 u0+Bk; let Bk0 be the element of the �lter basis contained in u0+Bk
(Bk0 exists by the +-invariance of the �lter). Now by putting this k0 into (2.7) we
obtain the lemma. �

Theorem 2.4. (The Uniform Convergence Theorem) Let f :Rn ! R be

an additively slowly varying function with respect to a +-invariant �lter S. Then
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the limit (2:1) is uniform on compact sets in Rn. That is, for every compact set

K � Rn we have

lim
x!
S
1
sup
u2K

jf(x+ u)� f(x)j = lim
x!
S
1
sup
u2K

jfx(u)j = 0: �

Proof. Let K � Rn be a compact set and, given an " > 0, let W be the
neighbourhood of zero from Lemma 2.3, i.e. such that (2.7) holds. By compactness,
there are points ti 2 K, i = 1; . . . ;m, such that K �

Sm
i=1(ti +W ). Denote by Wi

the translations ti +W ; then

(2.8) sup
u2K

jf(u)j � max
1�i�m

sup
u2Wi

jfx(u)j

and as before, by (2.2)

(2:80) sup
u2Wi

jfx(u)j = sup
w2W

jfx(ti + w)j � jfx(ti)j+ sup
w2W

jfx+ti(w)j

Now if Bk is as in Lemma 2.3 and x 2 �ti +Bk, then by (2.7) the last supremum
is < ". Thus if Bk0 is the element of the �lter basis contained in

Tm
i=1(�ti + Bk),

then

x 2 Bk0 =) sup
w2W

jfx+ti(w)j < " for i = 1; . . . ;m

On the other hand, since fx(ti) tends to 0, for each ti, we can �nd a Bk00 such that

x 2 Bk00 =) jfx(ti)j < " for i = 1; . . . ;m:

Finally, let Bk0 � Bk0 \Bk00 ; then for x 2 Bk0 we have that (2.8
0) is < 2" and then

also (2.8) is less than 2". This proves the theorem. �

Corollary 2.5. Let f be an additively regularly varying function with index

function �, and K a compact set in Rn. Then

lim
x!1

sup
u2K

jfx(u)� �(u)j = 0: �

2.3. The Representation Theorem. The Uniform Convergence Theorem
will be used to obtain the following \representation".

Theorem 2.6. Let f :Rn ! R be an additively slowly varying function,

with respect to a +-invariant �lter S. Then there are two smooth functions h and

Æ:Rn ! R such that f(x) = h(x) + Æ(x) with

(2.9) lim
x!1

@h

@xi
= 0; i = 1; . . . ; n

and

(2.10) lim
x!1

Æ(x) = 0:
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Proof. Let In = [0; 1]� � � � � [0; 1] be the unit interval in Rn. Put

h(x) =

Z
In

f(x+ t) dt and Æ(x) = f(x)� h(x) =

Z
In

(f(x) � f(x+ t)) dt

(where dt = dt1 � � � dtn). We shall prove that these two functions satisfy the condi-
tions of the theorem. First jÆ(x)j � supt2In jf(x)� f(x+ t)j and (2.10) follows by
the Uniform Convergence Theorem applied to the interval In.

Next for h we have

@h

@x1
(x) =

Z
In�1

(f(x1+1; x2+t2; . . . ; xn+tn)�f(x1; x2+t2; . . . ; xn+tn)) dt2 . . . dtn

and by adding and subtracting f(x) we obtain two terms to which we can apply the
Uniform Convergence Theorem: for the �rst term with respect to t 2 f1g � In�1
and for the second with respect to In�1. (Here In�1 is the (n � 1)-dimensional
interval in the variables t2; . . . ; tn.) This proves that the �rst partial derivative of
h tends to zero. The same reasoning applied to the other partial derivatives proves
(2.9). This proves the theorem. �

Corollary 2.7. A function f :Rn ! R is additively slowly varying if and

only if there are two smooth functions h and Æ:Rn ! R such that f(x) = h(x)+Æ(x)
with

(2.11) lim
x!
S
1
kh0(x)k = 0

and limx!
S
1 Æ(x) = 0. (Here h0(x) is the derivative of h at x:) �

Proof. The necessity follows from the theorem. To prove the suÆciency, we
only need to prove that h (satisfying (2.11)) is additively slowly varying. For every
x; t 2 Rn we have h(x+t)�h(x) = h0(x+�t)(t) with 0 < � < 1. (This is Lagrange's
theorem applied to the function hÆ�, where �:R! Rn, �(�) = (1� �)x+ �(x+ t),
maps the interval [0; 1] to the line segment with endpoints x and x+ t.) Thus, by
(2.11), h is additively slowly varying. �

3. Invariant �lters

Next we would like to transfer the properties of the function f of the previous
section to the function F related as in (1.12). In doing this we encounter two
problems: we need to know that the �lter S is +-invariant, and we need a substitute
for exp(X + Y ) = expX expY . This will be solved in section 3.5 and section 3.2,
respectively.

3.1. The Lie algebra g. We start with some facts about the Lie algebra of
the group of the cone, which were established in [15]. The Lie algebra g decomposes
into

g = a+ n
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where a is the maximal abelian (diagonal) subalgebra, and n is the nilpotent sub-
algebra. We have

(3.1) n = [g; g] and [a; n] � n:

Thus n is the derived subalgebra (ideal) of g, and a normalizes n.

Let A = exp a and N = exp n be the connected Lie subgroups of G with Lie
algebras a and n. The Lie group G is decomposed accordingly: G = AN , which
means that every element g 2 G is written in a unique way as

(3.2) g = an

with a 2 A and n 2 N . If g1 and g2 are as in (3.2), then their product is equal to

(3.3) g1g2 = an

with a = a1a2 and n = a2n1a
�1
2 n2 2 N (by (3.1)).

Let E1; . . . ; Em be a basis for the abelian subalgebra a. Then an element
H 2 a is written as

(3.4) H = H(t) = t1E1 + � � �+ tmEm

with ti 2 R. The dimension m of a is called the rank of g (and also the rank of the
cone).

The nilpotent subalgebra n is decomposed into a direct sum of subspaces

(3.5) n =
X
i<j

nij i; j = 1; . . . ;m

where nij are the root spaces of the adjoint representation, i.e., for Zij 2 nij

(3.6) [H(t); Zij ] = (ti � tj)Zij

with the corresponding roots �ij(H) = (ti � tj). The dimensions dij of the spaces
nij can be arbitrary|they may be di�erent from one another and possibly zero.

(Remark. When all dij are equal to the same number d, we obtain the classical
symmetric (self-adjoint) cones, and the only possible choices for d (whenm � 3) are
1, 2 and 4 (and 8 only in the case m = 3). These are the cones of positive de�nite
matrices with real, complex or quaternionic coeÆcients, respectively. There is one
more type of symmetric cone: when the rank is 2, there is only one root space n12
and its dimension may be arbitrary. This is the circular cone in Rn.)

3.2. Some exponential formulas. In this section we look for formulas for
exp of the sum.

Lemma 3.1. Let g = expX = exp(H + Z), with H 2 a and Z 2 n, be

decomposed according to (3:2) as g = an = expH 0 expZ 0 with some H 0 2 a and

Z 0 2 n. Then H 0 = H. �
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Proof. Indeed, we have

(3.7) exp(H + Z) = expH 0 expZ 0:

Now, by the Campbell{Hausdor� formula (which holds globally in an exponential
group), exp(�H 0) exp(H + Z) equals the exponential of

(3.8) (�H 0 +H + Z) +
1

2!
[�H 0; H + Z] +

1

3!
[�H 0; [�H 0; H + Z]] + � � �

and in order to have (3.7) we must have that (3.8) is an element of n. By (3.1), all the
terms in (3.8) starting from the second belong to n. Thus to have �H 0+H+Z 2 n

we must have H 0 = H , which proves the lemma. �

Lemma 3.2. Let g = expX = exp(H1+Z1), h = expY = exp(H2+Z2), with
Hi 2 a, Zi 2 n. Then

(3.9) gh = exp(H + Z)

with H = H1 +H2 and some Z 2 n. �

Remark. We can also write (3.9) as

(3.90) gh = expX expY = exp(X + Y 0) = exp(X 0 + Y )

where X 0 is an element of g with the same a part as X , i.e. such that X 0 �X 2 n

(and Y 0 is an element of g with the same a part as Y ), or also

(3.900) exp(X + Y ) = expX expY 00 = expX 00 expY

for some X 00 2 g such that X 00 �X 2 n and some Y 00 2 g such that Y 00 � Y 2 n.

Proof. By Lemma 3.1 we can write

g = exp(H1 + Z1) = expH1 expZ
0
1

h = exp(H2 + Z2) = expH2 expZ
0
2

for some Z 01 and Z 02 2 n. Then, by (3.3), we have gh = exp(H1 + H2) expZ3 for
some Z3 2 n, and now, again by Lemma 3.1, we have gh = exp(H1 +H2 + Z4) for
some Z4 2 n. This proves the lemma. �

3.3. The projection of the �lter to a. Let U be a G-invariant �lter in G
and let S be the inverse image of U under exp, as in (1.14). We shall write X 2 g

as X = H + Z, with some H 2 a and Z 2 n.

Consider the projections to the subgroup A of the elements of U : prAU =
fa = expH : g = exp(H + Z) 2 Ug. Let UA be the family of all the projections

(3.10) UA = fD : D = prAU; U 2 Ug:

Consider also the projections to a of the elements of S: praS = fH : X = H +Z 2
Sg and let Sa be the familly of all such projections

(3.11) Sa = fC : C = praS; S 2 Sg:
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Lemma 3.3. The family UA de�ned in (3:10) is an A-invariant �lter in A.
For Sa as in (3:11) we have expSa = UA and Sa is a +-invariant �lter in a. �

Proof. Let D 2 UA and b 2 A; we have to prove that bD 2 UA. Now by
(3.10) D 2 UA i� D = prAU , with U 2 U . By the G-invariance of U we have
bU = U1 2 U . We shall prove that

(3.12) bD = prAU1

thus proving that bD 2 UA.

Now g 2 U1 i� g = bu, with u 2 U1, thus g = expHb exp(Hu + Zu) =
exp(Hb + Hu + Z 0), by Lemma 3.2. Thus a 2 prAU1 i� a = exp(Hb + Hu) =
expHb expHu = bd, where d 2 prAU = D. This proves (3.12).

Next if C = praS, with some S 2 S, then there is a U 2 U such that
expS = U , and then expC = prAU 2 UA.

Finally, to prove that Sa is +-invariant in a, let C 2 Sa and H 2 a. We have
to prove that H + C 2 Sa which is equivalent with

(3.13) exp(H + C) 2 UA:

Since everything commutes, we have exp(H+C) = expH expC. But C 2 Sa,
thus expC = D 2 UA and by the A-invariance of UA we have that expH expC 2
UA. This proves (3.13) and the lemma. �

Examples. (1) We shall give two examples of +-invariant �lters in a by de�n-
ing the elements of their �lter basis. Let a typical element of a be written as in
(3.4). Let

B1
N = fH(t) 2 a : t1 > N1; . . . ; tm > Nmg

with N = (N1; . . . ; Nm) 2 N
m, and

B2
N = fH(t) 2 a : t1 � � � tm > Ng

with N 2 N, be the elements of the �lter basis for the �lters S1
a
and S2

a
.

There are many possible choices for �lters in a each yielding a di�erent class
of regularly varying functions. In section 3.5 we shall see that the �lter in g is
determined by its a part (it does not depend on n).

In these two examples we have moreover that all the elements of the �lter
basis are translations of a single set: BN = B +N .

(2) Let B be as in (1) { a \generator" of a �lter Sa in a. If B is a cone, or
contains an open convex cone, then it is easily seen that the �lter Sa is +-invariant.
If, on the other hand, B is a paraboloid (doesn't contain a cone), then Sa is not
+-invariant.

Motivated by these examples we shall impose the following conditions on our
�lter S in g:

(3.14) every element BN of the �lter basis contains a set CN which is (a translation
of) an open convex cone.
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(3.15) There is an open covex cone C0 such that every element S of the �lter contains
a cone C which is obtained by a translation and/or rotation of C0.

(This means that the �lter elements are not \smaller" than a given cone
C0). If, under the assumption (1), condition (2) is not satis�ed, then we shall
have a sequence of �lter elements whose inscribed cones become smaller than any
given cone { they tend to a half-line, and the convergence with respect to this
�lter degenerates to the convergence along a half-line. We want to exclude such
degenerate �lters, and this is why we assume (3.14) and (3.15) for the rest of the
paper.

3.4. The Ad(g)-invariance of S. The �lter S has the following property.

Lemma 3.4. Let U be a G-invariant �lter in G and let S be the inverse image

of U under exp, as in (1:14). Then for every S 2 S and every g 2 G we have

Ad(g)S 2 S. �

Remark. We shall say that S is Ad(g)-invariant. Thus the inverse image
under exp of a G-invariant �lter is Ad(g)-invariant.

Proof. By the de�nition of S, we have expS = U for some U 2 U . By the G-
invariance of U , we have gUg�1 2 U . But, if gUg�1 = g(expS)g�1 = exp(Ad(g)S)
is an element of U , then Ad(g)S is an element of S; which proves the lemma. �

Lemma 3.5. Let Zij be an element of n (belonging to the subspace nij) and let

n(s) = exp sZij (s 2 R). Let X = H(t)+�Zij , with H(t) = t1E1+ � � �+ tmEm 2 a.

Then

(3.16) Ad(n(s))X = H(t) + (� + s(tj � ti))Zij : �

Proof. By (3.6) we have ad(sZij)H(t) = (tj�ti)sZij . Then ad
2(sZij)H(t)=0

and

Ad(n(s))H(t) = ead(sZij)H(t) + ad(sZij)H(t) = H(t) + (tj � ti)sZij

and this proves the lemma, since Ad(n(s))�Zij = �Zij . �

In particular, if we consider a two-dimensional plane � spanned by anH(t) 2 a

and a Zij 2 nij , the lemma says that � is invariant under Ad(n(s)). For later use
we rewrite the lemma in the following form.

Corollary 3.6. Let H(t) 2 a and Zij 2 n and let n(s) = exp sZij (s 2 R).
Let � be the two-dimensional subspace spanned by H(t) and Zij . Then � is invariant

under Ad(n(s)) and if we write the elements of � as X = �H(t) + �Zij = (�; �),
then the restriction of Ad(n(s)) to this subspace has the matrix

Ad(n(s)) =

�
1 0

s(tj � ti) 1

�
=

�
1 0
s� 1

�

where we have put for short � = (tj � ti); this is a constant in �. �
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Proof. Indeed, since �H(t) = H(�t), from (3.16) it follows that

Ad(n(s))(�H(t) + �Zij) = �H(t) + (� + (tj � ti)s)Zij : �

3.5. The form of the �lter. In this section we prove that S is +-invariant.
The following proposition provides the main step in the proof.

Proposition 3.7. Let U be a G-invariant �lter in G and let S be the inverse

image of U under exp, as in (1:14). Then every S 2 S is equal to

(3.17) S = Sa � n

(where Sa is the projection of S to a, see (3:11)). �

Proof. Let S 2 S. Take an H 2 a such that the line f�H : � 2 Rg has a
nonempty intersection with Sa. (Note that since, by assumption (3.14), Sa contains
a cone, the intersection of �H and Sa is necessarily a half-line, when it is nonempty.)

Now let � be the two-dimensional subspace spanned by such an H 2 a and
a Zij 2 n. For this � all the intersections S� = S \ �, where S 2 S, constitute a
�lter in �, which will be denoted by S�.

We know by Lemma 3.4 that S is Ad(g) invariant, for every g 2 G, and in
particular for n(s) = exp sZij . But the plane � is invariant under Ad(n(s)), by
Corollary 3.6, and thus

(3.18) S� is Ad(n(s))-invariant.

Now consider the form of the sets S�. They are certainly convex and if the assertion
of the proposition is true, then S� is equal to a \vertical" half-plane � > c.

We write the coordinates in � as (�; �) and consider the following cone con-
taining S�: C = C(S�) = ft(�; �) : (�; �) 2 S�; t > 0g (we may assume that
0 =2 S�, since the �lter \tends to in�nity"). Obviously, S� is equal to a vertical
half-plane if and only if C(S�) = C0 = f(�; �) : � > 0g.

Suppose that the proposition is not true. Then we would have a set S 2 S
and a plane � such that S� would not be equal to a vertical half-plane. Thus
C = C(S�) is not equal to C0. The cone C is an angle between two half-lines
� = a� and � = b� which are not both vertical. We have the following two types
of C.

(3.19) C = f(�; �) : b� < � < a�; � > 0g

for some �1 < b < a < +1 and

(3.20) C = f(�; �) : � > max(a�; b�)g

with �1 � b < a < +1. (All other possibilities are analogous to these two.)

We see that C belongs to the �lter S� as a superset of a �lter element and
by (3.18) we must have that

(3.21) Ad(n(s))C 2 S�
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By Corollary 3.6: Ad(n(s)) transforms the line � = a� into � = (a + �s)�. (If
a =1, the line � = 0 is invariant.) Now if C is of the form (3.19) we can chose s1
and s2 so that b+ �s1 > 0 and a+ �s2 < 0. Then, on one hand, by (3.21) both sets

Ad(n(s1))C = f(�; �) : 0 < (b+ �s1)� < � < (a+ �s1)�; � > 0g

Ad(n(s2))C = f(�; �) : (b+ �s2)� < � < (a+ �s2)� < 0; � > 0g

should belong to S� , but on the other hand, they are obviously disjoint. This yields
the desired contradiction and proves the proposition in this case.

In the case C is of the form (3.20),

Ad(n(s))C = f(�; �) : � > max((a+ �s)�; (b+ �s)�)g:

For every M > 0 chose an s1 so that b + �s1 < �M (when b = �1, this holds
for every s1) and chose an s2 so that a+ �s2 > M and put C1 = Ad(n(s1))C and
C2 = Ad(n(s2))C. Then C1 \C2 should contain a �lter element, for every M . But

C1 \ C2 � f(�; �) : � > max(M�;�M�)g

and when M is large enough, this set doesn't contain a �lter element by (3.15). In
other words the �lter with C as in (3.20) is degenerate; this proves the proposition
in the second case. �

Proposition 3.8. S is a +-invariant �lter in g. �

Proof. Let S 2 S and X 2 g. Then expS = U 2 U , and we want to
prove exp(X + S) 2 U . Let Y 2 S; then by (3.900) exp(X + Y ) = expX expY 00,
with Y 00 = Y (mod n). Now, by Proposition 3.7, if Y 2 S, then Y 00 2 S. Thus
exp(X + S) = expX expS and it belongs to U , by the G-invariance of U . This
proves the proposition. �

De�nition 3.9. Let S be a �lter of open convex subsets in g with a countable
basis. Then S is said to be g-invariant if S is +-invariant and its elements are of
the form (3.17). �

Corollary 3.10. Let S be a g-invariant �lter in g. Let U be a �lter of

subsets in G de�ned by U 2 U if and only if U = expS, for some S 2 S. Then U
is G-invariant. �

4. Multiplicative and additive regular variation

4.1. The equivalence of the two classes. In this section we examine the
relationship between a regularly varying function F on G (the group of a homoge-
neous cone) and the function f , de�ned on the Lie algebra g of G by the formula
(1.12) f(X) = logF (expX). Let, as in section 3.1, A and N be the subgroups of
G and g, a and n the corresponding Lie algebras.

We have seen in section 3 that if U is a G-invariant �lter on G, then S (its
inverse image under exp) is g-invariant (that is: +-invariant and its elements are of
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the form (3.17); in other words, the convergence X ! 1 is uniform with respect
to the n-part of X).

De�nition 4.1. Let G be the group of a homogeneous cone and U a G-
invariant �lter on G. A smooth function F :G ! R+ is said to be n-uniformly

regularly varying with respect to U if the limit

(4.1) lim
g!
U
1

F (gh)

F (g)
= �(h)

exists for every h 2 G and

(4.2) lim
g!
U
1
sup
n2N

���F (gn)
F (g)

� 1
��� = 0: �

De�nition 4.2. Let g be the Lie algebra of a homogeneous cone and S a
g-invariant �lter on g. A smooth function f : g ! R is said to be n-uniformly

additively regularly varying with respect to S if the limit

(4.3) lim
X!
S
1
(f(X + Y )� f(X)) = �(Y )

exists for every Y 2 g and

(4.4) lim
X!
S
1
sup
Z2n

jf(X + Y )� f(X)j = 0:

Theorem 4.3. Let G be the group of a homogeneous cone V and let g be its

Lie algebra. Let U be a G-invariant �lter in G and let S be the inverse image of

U under exp, as in (1:14). Let F :G ! R+ be a smooth function and let f : g! R

be de�ned by f(X) = logF (expX). Then F is n-uniformly regularly varying with

respect to U if and only if f is n-uniformly additively regularly varying with respect

to S, and

(4.5) �(X) = logF (expX): �

The proof of the theorem will be given in Section 4.3.

4.2. The index function. We have seen in Lemma 1.3 that the index
function F of a regularly varying function is a Lie group homomorphism of G into
R+. Then its derivative d� (at the group idenity) is a Lie algebra homomorphism
of g into R, and it satis�es the formula �(expX) = exp d�(X). By compairing
this with (4.5), we see that the limit function � in (4.3) equals d�.

In the next lemma we are going to �nd the general form of � and � (compare
this with Lemma 2.1). Here � is not only linear, but it doesn't depend on the n

coordinates, but only on the a coordinates; (a typical element of a is written as in
(3.4)).

Lemma 4.4. Let � : g! R be a Lie algebra homomorphism. Then:

(a) �(Z) = 0, for Z 2 n, (b) for H 2 a, H = t1E1 + � � �+ tmEm we have

(4.6) �(H) = �1t1 + � � �+ �mtm

for some �i 2 R. �
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Proof. (a) By (3.1) we have Z = [X1; X2] for some X1; X2 2 g. Then
�(Z) = [�(X1); �(X2)] = 0, since the brackets are in R.

(b) Every linear function on the abelian Lie algebra a is a Lie algebra homo-
morphism from a into R. �

It follows that � is trivial on N , that is �(g) = �(a), if g = an (as in (3.2)).
Also for a = expH we have by (4.6)

�(g) = �(a) = e�1t1+���+�mtm :

This is the general form of the index function.

4.3. Proof of the Theorem. In this section we prove Theorem 4.3. Note
�rst that by Propositions 3.7 and 3.8 the G-invariance of U implies the g-invariance
of S.

Suppose F is n-uniformly regularly varying with respect to the �lter U . We
shall prove �rst that (4.2) implies (4.4). Put g = expX , n = expZ in (4.2). Then
by Lemma 3.2 we have

(4.7) gn = exp(X + Z 0)

with some Z 0 2 n. Now when n runs through N , Z 0 will run through all of n. If we
put (4.7) into (4.2), we obtain that the function f satis�es (4.4).

Now to prove (4.3) we put g = expX = exp(H(X) + Z(X)), h = expY =
exp(H(Y ) + Z(Y )) in (4.1). Then, as above, Lemma 3.2 yields gh = exp(X + Y 0)
with Y 0 = H(Y ) + Z 0 (with some Z 0 2 n). Then (4.1) will give for f

(4.8) lim
X!
S
1
(f(X + Y 0)� f(X)) = �(Y )

Now we shall write

(4.9) f(X + Y 0)� f(X) = (f(X + Y )� f(X)) + (f(X + Y 0)� f(X + Y ))

and consider the second summand on the right-hand side

f(X + Y 0)� f(X + Y ) = f(X +H(Y ) + Z 0)� f(X + Y )

= f(X + Y + Z 0 � Z(Y ))� f(X + Y ):

Now, since S is +-invariant, we have that when X ! 1 then also X + Y ! 1,
and thus by (4.4), proved above, it follows that

lim
X!
S
1
(f(X + Y + Z 0 � Z(Y ))� f(X + Y )) = lim

U!
S
1
(f(U + Z 00)� f(U)) = 0

Thus from (4.9) we see that lim(f(X + Y 0)� f(X)) = lim(f(X + Y )� f(X)) and
this with (4.8) gives (4.3). This proves the �rst half of the theorem.

To prove the converse suppose we have (4.4). We putX = log g and Y = logh,
and claim that there is a h0 2 G such that h0 = expY 0 with Y � Y 0 2 n so that

(4.10) X + Y = log(gh0):
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Indeed, by Lemma 3.2, exp(X + Y ) = expX expY 0 = gh0, which is exactly (4.10).
The proof now follows along the same lines as the proof of the direct part of the
theorem. �

5. Going back to the group

A simple combination of Theorem 4.3 with Section 2 will yield the corre-
sponding theorems for regularly varying functions on the group G.

Theorem 5.1 (The Uniform Convergence Theorem). Let G be the group of

a homogeneous cone and U a G-invariant �lter on G. If F :G ! R+ is regularly

varying with respect to U , then the limit

lim
g!
U
1

F (gh)

F (g)
= �(h)

is uniform in h 2 K, for any compact set K in G. �

Remark. Actually, by (4.2) we have a stronger statement: the convergence is
uniform for K of the form KA �N , where KA is a compact set in A.

Theorem 5.2 (The Representation Theorem). Let F be a n-uniformly regu-

larly varying function on G, with respect to a G-invariant �lter U . Then there exist

two smooth functions H;�:G! R+ such that F (g) = H(g)�(g) with

lim
g!
U
1
kH 0(g)k = 0 and lim

g!
U
1
�(g) = 1:

It is enough to put H(g) = eh(log g) and �(g) = eÆ(log g) in Corollary 2.7. HereH 0(g)
denotes the derivative of the function H in the normal coordinates g 7! log g.
(Recall that log:G ! g is a global coordinate system for G, since the group is
exponential.)

In the classical case when F :R+ ! R+, we have F (t) =
tdF (t)=dt

F (t)
(with d=dt

the usual derivative in R) and this gives a well-known form of the Representation
Theorem for di�erentiable functions.
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