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Abstract. We give several characterizations of the Besov space B; of M-harmonic func-
tions in the open unit ball in C™.

1. Introduction and results

In [4] Hahn and Yousffi considered the boundary behavior in the Besov spaces
B, of M-harmonic functions in the open unit ball B in C". In this paper we deal
with several characterizations of the spaces B,. As a consequence we have:

1) If s > n, then By = Aj, where Aj; is the weighted Bergman space.

2) If s = n, the spaces B} are closely related to the Hardy spaces H? of
M-harmonic functions in B.

3) For 0 < s < n, B; are Besov spaces (Bg is the diagonal Besov space).

4) For —p < s < 0 the functions in the space Bj have Lipschitz continuity of

order —s/p and thus extend continuously to the closed unit ball (see also Theorem
1.4 of [4]).

5) If s < —p then B, ={constants}.
Let B = B, be the open unit ball in C* and S = 9B the unit sphere in

C™. We denote by v the normalized Lebesgue measure on B and by o the rotation
invariant probability measure on S.

Let A be the invariant Laplacian on B. That is, Af(z) = A(f o ¢.)(0),
f € C%(B), where A is the ordinary Laplacian and ¢, the standard automorphism
of B, ¢, € Aut(B), taking 0 to z (see [9]).

The C?-functions f that are anihilated by A are called M-harmonic (f € M).
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Definition 1.1. For 0 < p < oo, and s € R, the weighted Bergman space A}
is defined as the space of M-harmonic functions f on B for which

1/p

1flla; = { [a-iprirerae)| <o,

where d\(z) = (1 — |z|?) ™"~ 1dv(z) is the measure on B that is invariant under the
group Aut(B).

For f € CY(B), Df = (g—!l,...,%), denotes the complex gradient of f,
Vf= (;—fl, ce %), 2k = Tok—1 + i%ak, kK =1,2,...,n, denotes the real gradient

of f.

For f € C'(B) let Df(2) = D(f 0.)(0), z € B, and Vf(z) = V(f 0 ¢.)(0),
z € B, be the invariant complex gradient of f and the invariant real gradient of f
respectively.

Definition 1.2. For 0 < p < oo, and s € R, the M-harmonic Dirishlet space
D, is defined as the space of M-harmonic functions f on B for which

[ IFr@P Q- i) < .
B
The (differential) Bergman metric b: B x C* — R is defined by

(PR + (20 PN
ent) = (FERE )

For f € C1(B), define the functional quantity

_|_
= L A B.
QIE)= s Sy — b(z,E) 7€

This quantity is invariant under Aut(B), that is Q(f o ¢) = Q(f) o ¢, for all
C'-functions f in B and ¢ € Aut(B) (see [5, 6]).

Definition 1.3. For 0 < p < oo, s € R, let B be the space of M-harmonic
functions f on B such that

£l = ( [ @area- |z|2>8dx<z>)1/p <o

THEOREM 1.4. Let 0 < p < 00, s >n —p/2 and f € M. Then the following
statements are equivalent:

(i) feD, () feB, (i) /BIVf(Z)I”’(1 = [21)**PdA(2) < o0,

(iv) /B(l = 2" P(RF ()] + RS (2))PdA(2) < o0.
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As usual, Rf(z) = > Zi g, 08 the radial derivative of f and Rf(z) = > Z; —.
Jj=1 J j ]

2. Proof of Theorem

If0<r <1, weset E.(2) ={w € B :|p,(w)| <r} =@, (rB). It is easy to
r2n(1 _ |Z|2)n+1

see that F,.(z) is an ellipsoid and its volume is given by v(E,(z)) = (1 —r[z])n+?

(see [9, p. 30]). We set |E,.(2)| = v(E,(2)).
For the proof of Theorem 1.4 the following lemmas will be needed.

LEMMA 2.1. [7] Let 0 < r < 1. There is a constanat C > 0 such that if
f € M then

() T Rf(w)] < C(1 — wf?) /2 / IRF)A(=), we B,
Ev‘(w)
(i) TR f (w)] < O(1 — [w]?) /2 / Rf()ANG:), we B,
E,.(w)
(i) T35 (w)] < C(1 — )~/ / FRIAAGE), we B.
E,(w)
H lT.._—,i_—.i T.. = .i_ L t tial deriva-
.67"6, as usua 5 ij = Zg 8,2] Zj 6zi7 ij = Zi 82] Z] 632 B are angen 1a eriva
tives.

Here and elsewhere constants are denoted by C which may indicate a different
constant from one occurrence to the next.

LEMMA 2.2. If s > 1, then

1
dt C
S B.
/0 [T —t(z,w)|* = |1 = (z,w)[*~1~ Z,w e

LEMMA 2.3.[9, P. 17] If a > 0, then

/5 1 —C(lg(f;mm = O<(1 _1|Z|)a>, z€B.

It is easy to see that |V f(2)| = Qf(z). Hence, D, = B;, for all 0 < p < 00
and s € R.

From the inequality Q f(z) > (1—|z|?)|Vf(2)| (see [4, p. 221]) it follows that
(i) = (iii).
(iii) = (iv) It is easy to see that if (iii) holds then

[a-Eprrslefne <s <isn,
B 62’

J

[a-Eprllefae < 1<i<n
B 6ZJ
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which in turn implies that

/ (1= |22 | RF () PAA(2) < oo
B

/B(l — |212)* P |Rf (2)|PdA(2) < 0.
Thus, (i) = (iv).

(iv) = (i) Assume now that
/B(l = [2P)P(IRF ()] + [Rf (2)])PdA(2) < o0.

It is easy to check that |2[*|Df(2)|* = |Rf(2)|” + X2, |Tij f(2)|*. Using this
and the equality

IVf(2)]> = 2(1Df(2)]” + |DF(2)]")
=2(1 = [2)(IDf(2)]* = IRf(2)I* + IDf(2)* = |IRf(2)]*)
(see [8]) we find that
2PV f(2)]” =

21 - [2P) [(1 CPYRFP + BFP) + Y T+ Y |Tij7<z>|2].

i<j i<j

Hence, to show that f € Dj it is sufficient to show that
/ (1= 2P P2 (1T f ()P + T3 F(2)P)dA(z) < 00, 1< i < j <.
B

Integration by parts shows that

1

f(2) :/ [Rf(tz) + Rf(tz) + f(tz)]dt.
0

From this we conclude that it is sufficient to prove that

1 »

/ (1 — |z[?)*+P/? (/ |Tiju(tz)|dt> d\(z) < o00,1<i<j<n,
B 0

where u is Rf or Rf or Rf or Rf or f.
We will show that, for fixed 1 <i < j <n,

I= /B(l — |z|?)s /2 (/01 |Tinf(tz)|dt> pdA(z) < 00.

The remaining cases may be treated analogously.
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Using Lemma 2.1, Fubini’s theorem and Lemma 2.2 we find that for any a > 0

/ T Rf(tz) |dt<C/ (/ - ||1Rf Z'Sﬁn'f;'g/zd (w)>dt
co ([ Bt et
= [ nsn o ([ e o)
C/ |IRf — |w]*) dv(w).

1— Z ’LU |n+a+1/2

Assume now 1 < p < oo. Applying the continuous form of Minkowski’s
inequality we obtain

I<C/ _ s+p/2 n—1

(UL FEms) o) ") o

By Hoélder’s inequality

[ Asteeliotg
STL={rC, p€) [T

. U ; 1/
(2.2) < </5 1 li{é?i?) |sz+(31/2> (/s 1-— (TCflpf(fT"”H/z)

S Gl
= W= rp) P\ J U= G, pf) o172

(Here 1/p+1/p' =1).

Now we substitute (2.2) into (2.1) and use Fubini’s theorem and Lemma 2.3
to get

r=¢ / - ( /01 (1- E"lp)_(ag-)laﬁ)/p’
(i) mo) ")
_ 0/01(1 e (/01 = Sp)—(ai)lam/p,
(Lmstooraos | s esems) )
<c[la-mrmen ([ Gl

([ |Rf(ps>|‘°da(£))l/pdp)pdr.

1/p
> , by Lemma 2.3.

(2.3)
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A simple observation shows that it is possible to select positive parameters
a,ti,ts,t3,t4 such that

() a =11 + 1ty =tz + 1y,

B 1 s 3 n+1 s n+1

(i) - <tzg—t <-+5— , (iii) to >14+—— .
D p 2 D P D

Note that here again we used the assumption that s > n —p/2.
Applying Holder’s inequality on (2.3) and Lemma 2.3 we obtain

z<c/ _pypirne 1K/01 %y
([ 82 ([ rsoran© )ap) o
<c / Py 8P/ n 2 (0 t3>p< /01 (1_(11“;)—(,2):;2)1)
([ rstorase)ap)ar
<o a-oro{ o) ([ A2

< c/ PP RF(2) P (z) < oo.
If p=1, then

o o B
<o [fa=neme( [a-oe( [ 1R7e1a00)
(=g pesees ) o)
<o [ ([ gl ([ i) i)a
—c [ —p)a( [ 1rsoi©) ([ S ) ay

<€ [ (1= Py Rpw)ldv() < oc.

(We may assume that a > max{s —n,0}.)

For the case 0 < p < 1 the following lemma will be needed.

LEMMA 2.4. Let 0 <r <1 and 0 < p < co. There is a constant C' such that
if f € M then

) P REP o
(i) |1_(Z’w>|p§C/E(w) |1—(z,§)|1>d/\(£)’ weB
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o (R Y RGN
() <|1—(z,w>|> =C E,(w)<|1—(2,£>|> d\(§), z,w € B

Note that the constant C' is independent of z and w.
We will prove (i). The proof of (ii) is similar. By the formula (1.3) in [1]

R d
S 1- <p£) U)>
Multiplying this equality by 2np**~1(1—p?)~""1h(p)dp, where h is a radial function
which belongs to C*°(B) with compact support in B such that [, h(z)d\(z) =
then integrating from 0 to 1 and using the invariance of the measure A, we get

Riw) = [ Heue) TR sin@) = [ hon T R )

Pu(2), w)

by Theorem 2.2.5 [9, p. 28]. By a suitable choice of a function h we obtain

,wEB,0<p< 1.

|Rf(w)| < C |Rf(&)|dA(E), w € B, for some 0 < r < 1.
Ep(w

)
Since |1 — (z,w) | ~ |1 — (z,&) |, if £ € E,.(w), we have
)

Rfw)] mﬂn
M=) 0/ o = 8y A

and consequently,
(n2em) <c . (i) v swes
(see [8]).

To finish the proof of Theorem 1.4 assume that 0 < p < 1. Applying Theorem
3.2 (iii) [3] to the function

|Rf(w)]
F(w) = <|1 — (z,w) [otnH1/2

and replacing p, r, k, ¢ by 2, 2/p, 2/p, p(a + n + 1) — n respectively and using
Lemma 2.4 we find that

|Rf(w)|(1 — [w]*)*dv(w IRf(w)[P(1 — |w|?)PlatrtD)=n=1qy(w)
( B ) < C/ |1 — '

|1 — (2, w) |otnt1/2 (z,w) |platn+1/2)

Thus, assuming that a > s/p — n,

ISC/ — |2|?)s /2 (/ |Rf(w)[P(1 — [w]?)Pletn—b- nld’/(w)>d)\(2)
B

1= (zw) Pl 172)

_ 2 s+p/2—n—1dy
= C/B |Rf(w)|P(1 - |w|2)p(a+n+1)_n_1 (/B u il _|Z<|Z’)w> |P(a+n+1/2()2)>dy(w)

SCLuwMW“mmmwmm<w

p/2
> , wWEB (z € B - fixed)
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This finishes the proof of Theorem 1.4.
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