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Abstract. We show how to associate a Calderon reproducing formula with a number of
summability methods, including Abel-Poisson, Gaussian, Riesz typical and Bochner-Riesz means.
Such formula contains local/global information concerning the trigonometric series being summed
whether it be a Fourier series or not. Consequently a number of classical results of Littlewood{
Paley type are uni�ed as well as related results concerning the function class Fourier character
of trigonometric series. The paper also provides classical insight and heuristics concerning much
contemporary work falling under the name of wavelet analysis.

1. Introduction

Given a summability kernel f�aga>0 � L1(T ); T = R=2�Z (section 2 gives
explicit de�nition), then under a variety of function space hypothesis and/or modes
of convergence one has �a � f ! f as a ! 0. A basic question underlying much
of classical and modern Fourier analysis is: how are the local/global properties of
functions f re
ected in the family of approximations f�a � fg ? A second related
question may be posed as follows. Suppose the Fourier coeÆcients of �a have the

form b�a(n) = �(an) for some function � de�ned on R (necessarily �(0) = 1,
other properties are prescribed in section 2); we have a summability method for
trigonometric series X

n

c(n)eint (TS)

by considering the behavior as a! 0 of the functionsX
n

�(an)c(n)eint: (1.1)
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The second question is: how is the function class Fourier character of the trigono-
metric series characterized in terms of the behavior of (1.1)? Chapter 4 of [13]
provides numerous results in this vein.

The interconnection between these questions is readily apparent within the
framework of Littlewood{Paley theory [7], [13]. Another example relevant to this
paper is the following result (which is essentially a paraphrase of Theorem 5.1 in
[7, page 262]).

Theorem A. Let fc(n)g � C be a null sequence. Let u(t; a) denote the

series (1.1) where �(�) = e�j�j. Then (TS) is the Fourier series of some function

f 2 Lip�(T ) for some 0 < � � 1 if and only if ut(a; t) = O(a��1) as a ! 0
uniformly for t 2 T .

Underlying contemporary approaches to Littlewood-Paley theory on Eu-
clidean space is the notion of a Calderon reproducing formula (see [2], [9]). The
essential purpose of this paper is develop on T analogs of Calderon's formula us-
ing suitable summability kernels and indicate the utility of these in regard to the
above questions. Section 2 gives the class of summability kernels under considera-
tion and develops two versions of the associated Calderon formula. Section 3 gives
variations and generalizations of Theorem A and local versions which are analogs
of results in [4], [5], [3]. Section 4 gives further results and commentary. This
paper has three outcomes. First, a number of classical results in regard to the
above questions are uni�ed. Secondly, two of our main results (Theorems 2.4 and
2.6) provide interpretation of the Calderon reproducing formulas (2.6) and (2.11)
via summability processes; this is a classical heuristic for the \nice" behavior of
wavelet expansions in regards to convergence [6]. Third, this paper provides the
reader classical perspectives of recent ideas and methodologies falling under the
name of wavelet analysis (see [2], [3], [4], [5], [9] and the references within).

Notation. Let p � 1; Lp(T ) is the usual Banach space of functions on T with
norm

kfkp =

�
1

2�

Z
T

jf(t)jpdt

�
dt is unnormalized Haar measure on T . Convolution is de�ned for appropriate
functions f and g via:

(f � g)(t) =
1

2�

Z
T

f(s)g(t� s)ds:

Fourier coeÆcients of an f 2 L1(T ) are given bybf(n) = 1

2�

Z
T

f(t)e�intdt; n 2 Z:

With these de�nitions the convolution formula reads (f � g)b(n) = bf(n)bg(n) and
the Parseval formula is: kfk22 =

P
n j
bf(n)j2. We denote the Fourier transform of a

function on R also by bf , the meaning should be clear by context. For integrable
functions on R the transform is given bybf(�) = Z

R

f(x)e�i�xdx:
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Absolute constants will be denoted by A, possibly di�erent in each occurrence.
Finally if the trigonometric series TS is the Fourier series of a function f we write
TS = S(f).

2. Calderon Formulas

The summability methods used in this paper are constructed as follows. Let
k 2 L1(R) be even and satisfy the conditions:Z

R

k(x)dx = 1 (2.1)

jk(x)j � A(1 + jxj)�(1+Æ); jbk(�)j � A(1 + j�j)�(1+Æ); for some Æ > 0: (2.2)

Without loss of generality we may suppose k and bk are continuous. Let ka(x) =

a�1k(x=a) for a > 0. Then ka also satis�es the above conditions. Set �(�) = bk(�)
so that �(a�) = bka(�). The Poisson summation formula [1] givesX

n

�(an)eint = 2�
X
n

ka(t+ 2n�): (2.3)

Moreover, the growth conditions (2.2) imply both series are absolutely and uni-
formly convergent on T , hence in L1(T )-norm. Let 'a(t) denote the sum function;
it follows that 'a 2 L

1(T )\C(T ) and '̂a(n) = �(an). The following result is well
known (e.g. [11]).

Lemma 2.1. Let 'a be as above. Let f 2 Lp(T ) for some 1 � p � 1 and set

uf (t; a) = ('a � f)(t) =
X
n

�(an) bf(n)e�int: (2.4)

Then

i) if 1 � p <1, then u(t; a) converges to f(t) in Lp(T )-norm as a! 0.

ii) if f 2 C(T ), then u(t; a) converges to f(t) uniformly as a! 0.

iii) if f 2 L1(T ), then u(t; a) converges to f(t) as a ! 0 at every Lebesgue

point; in particular almost everywhere.

We say that f'aga>0 is an admissible summability kernel generated by k if
it is constructed in the above manner and the function k is di�erentiable such
that k0 2 L1(R) and satis�es estimates like (2.2). This implies that jbk(�)j �
A(1 + j�j)�(2+Æ) and consequently uf (t; a) is di�erentiable and the series in (2.4)
can be di�erentiated term by term. For a general trigonometric series TS the
series in (2.4) is denoted u(t; a); it may also be di�erentiated term by term if say
the coeÆcients fc(n)gjnj<1 form a null sequence. We also note that k0 and its
Fourier transform may be assumed to be continuous and by Poisson summation:

'0a(t) = 2�a�2
X

k0
�
t+ 2n�

a

�
:
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The following result is the key to the Calderon type formula; the 0-notation
will always denote di�erentiation in the T variable.

Lemma 2.2. Let 'a be admissible. If f 2 L2(T ), thenZ 1

0

ku0f (�; a)k
2
2ada = c'

�
kfk22 � j bf(0)j2� where c' =

Z 1

0

j�(a)j2ada: (2.5)

Proof. Note that the integral de�ning c' is convergent. From (2.4) and the
above discussion u0(�; a) 2 L2(T ) and

ku0f (�; a)k
2
2 =

X
n6=0

j�(an)j2n2j bf(n)j2:
Hence applying monotone convergence,Z 1

0

ku0f (�; a)k
2
2ada =

X
n6=0

�Z 1

0

j�(an)j2ada

�
n2j bf(n)j2 =

= c'
X
n6=0

j bf(n)j2 = c'

h
kfk22 � j bf(0)j2i.

This concludes the proof. }

Polarizing (2.5) one obtains: if f1; f2 2 L2(T ), with bf1(0) = 0, denote by
u1(t; a); u2(t; a) the respective functions (2.4), thenZ 1

0

hu01(�; a); u
0
2(�; a)i ada = c' hf1; f2i :

Here h ; i denotes the usual complex inner product on L2(T ). Formally setting
f2 to be a delta function at t and computing the inner product one obtains the

following formula (again assuming bf(0) = 0):

f(t) = c�1'

Z 1

0

Z
T

u0f (s; a)'
0
a(s� t)ds a da. (2.6)

This is the desired analog of Calderon's formula and is made precise as follows.

Let 'a be an admissible summability kernel corresponding to the function
k as above. De�ne 
(�) = c�1'

R1
j�j j�(�)j

2�d�. Then j
(�)j � A(1 + j�j)�(2+2Æ)

and 
 is the Fourier transform of an even function k1 2 L
2(R). It is easily shown

that 
 is di�erentiable and d
=d� is in L2(R). It follows that k1 2 L1(R) by the
following inequality:Z

R

jk1(x)jdx � A

�Z
R

�
(1 + x2)jk1(x)j

�2
dx

�1=2
� A

�
kk1k2 + kd
=d�k2

�
<1:

We now have that k1 satis�es all of the conditions to generate a summability kernel
except the �rst inequality in (2.2). To see the latter, note that j�(�)j2 is the Fourier

transform of the autocorrelation function of k de�ned by Fk(x) =
R
R
k(x+y)k(y)dy.

Then Fk 2 L
1(R) is di�erentiable with F 0

k 2 L
1(R). It follows by Fourier inversion
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that k1(x) = (c'x)
�1F 0

k(x) and the desired inequality follows from the following
elementary lemma whose proof is left to the reader.

Lemma 2.3. Let g1; g2 2 C(R) satisfy the inequalities jgj(x)j � A(1 +

jxj)�(1+Æ), for some Æ > 0. Then the function G(x) =
R
R
g1(x � y)g2(y)dy sat-

is�es jG(x)j � A(1 + jxj)�Æ .

We now see that k1 generates a summability kernel on T which is denoted
!a; a > 0. The connection between this summability process and the Calderon
formula (2.6) is made by truncating the outer integral in (2.6). Let f 2 Lp(T ), for
some 1 � p � 1 and formally de�ne for " > 0:

f"(t) = c�1'

Z 1

"

Z
T

u0f (s; a)'a(s� t)ds a da: (2.7)

The inner integral is given byZ
T

u0f (s; a)'a(s� t)ds =
X
n6=0

j�(an)j2n2 bf(n)eint: (2.8)

and is majorized by
P

n6=0 j�(an)j
2n2j bf(n)j. Applying dominated convergence and

a change of variable we have that

c�1'

Z 1

"

X
n 6=0

j�(an)j2n2j bf(n)jada =X
n6=0


("n)j bf(n)j <1:

Consequently the series in (2.8) can be integrated term by term with respect to ada,
the outer integral in (2.7) is absolutely convergent, and f" 2 C(T ). Furthermore

we have the following formula valid if bf(0) = 0:

f"(t) =
X
k6=k0


("n) bf(n)eint = (!" � f)(t):

The discussion is summarized in the following Theorem making precise formula
(2.6).

Theorem 2.4. Let 'a be an admissible summability kernel on T . Let f 2

Lp(T ), for some 1 � p � 1, with bf(0) = 0 and de�ne f" 2 C(T ) by (2.7). Then

i) if 1 � p <1, then f" ! f in Lp(T )-norm as "! 0

ii) if f 2 C(T ), then f" ! f uniformly as "! 0;

iii) if f 2 L1(T ) then f"(t) ! f(t) as " ! 0 at every Lebesgue point; in

particular almost everywhere.

Examples. All of the following examples generate admissible summability
kernels.

E1) Let k(x) = 1=(2�(1 + x2)), then �(�) = e�j�j. This corresponds to
Abel-Poisson summability.
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E2) Let k(x) = 1=2�1=2e�x
2=4, then �(�) = e��

2

. We then have Gaussian
summability.

E3) Let � > 0 and

k�(x) =
�(� + 1)

2��(� + 2)
[H(1; � + 2; ix) +H(1; � + 2;�ix)];

where H is the con
uent hypergeometric function [8]. Then �(�) = (1 � j�j)��
�[�1;1](�) which yield the typical means [1] of order �. Admissibility follows from
asymptotic estimates of the con
uent hypergeometric function [8]. In this case we
note that u(t; a) = ��n(t), for (n+ 1)�1 � a < n�1 and u(t; a) = 0 for a > 1 where

��n(t) =
X
jkj�n

�
1�

jkj

n+ 1

��
c(k)eikt:

When � = 1, this is the classical (C; 1) means of the trigonometric series TS.
Denote the (C; 1) means of the Fourier series of f by �n(f; t). Then the Calderon
formula takes the following curious form:

f(t) =

1X
k=1

2k + 1

k2(k + 1)2

Z
T

�0k(f; t)F
0
k(s� t)ds;

where Fk is the Fejer kernel.

E4) Let � > 0 and k�(x) = (2�)�12�(�+1)�(� +1)x�(�+1=2)J�+1=2(x) where

J� is Bessel function of order �. Then �(�) = (1��2)��[�1;1](�) corresponding to
the Bochner-Riesz means [1] of order �.

Let � > 0. An admissible summability kernel 'a generated by k is said to
be �-admissible if

R
R jk

0(x)jjxj�dx < 1 and is �0-admissible if it is �-admissible

and k is twice continuously di�erentiable with jk00(x)j � A(1 + jxj)�(1+Æ), for some
Æ > 0. Examples E1 and E2 are �0-admissible for all � > 0. Examples E3 and E4
are �0-admissible for � < � (one uses the asymptotics of the special functions [8]
involved to prove this).

In some applications a more local version of the Calderon formula is needed.
Let g; r 2 L1(R) satisfy (2.2). Let 	 = bg and � = br and suppose thatZ 1

0

	(�)�(�)
d�

�
= 1 =

Z 1

0

	(��)�(��)
d�

�
: (2.9)

As before we de�ne the families of continuous functions on T , f ga and f�ga for
a > 0 corresponding to g and r respectively. Given a function g as above, note
that there are many choices for the function r, in particular one may choose r to
be smooth and compactly supported. In a similar fashion to Lemma 2.2 we have:

Lemma 2.5. Let  a and �a be as above. Then for f 2 L2(T ),Z 1

0

Z
T

( a � f)(s)(�a � f)(s)ds
da

a
= kfk22 � j bf(0)j2: (2.10)
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Our primary interest in this formula is in the case when g = k0 where k generates
an admissible summability kernel 'a. In which case  a = a'0a and we call f'a; �ag
an admissible summability pair. Formula (2.10) is nowZ 1

0

Z
T

u0f (s; a)(�a � f)(s)ds da = kfk22 � j bf(0)j2: (2.11)

where u(s; t) is given by (2.4), and the corresponding Calderon formula becomes:

f(t) =

Z 1

0

Z
T

u0f (s; a)�a(s� t)ds da (2.12)

Formula (2.12) is made precise in a fashion similar to (2.6) by considering the family
of truncations given by

f�" =

Z 1

"

Z
T

u0f (s; a)�a(s� t)ds da (2.13)

It is left to the reader to verify the series representation

f�" =
X
n6=0


(an) bf(n)eint; where 
(�) =

Z 1

j�j

i��(�)�(�)
d�

�
:

Furthermore the outer integral in (2.13) is absolutely convergent, and 
(�) is the
Fourier transform of an L1(R) function k which generates a summability kernel sat-
isfying the hypothesis of Lemma 2.1. Summarizing these facts yields the following
generalization of Theorem 2.4.

Theorem 2.6. Let f'a; �ag be an admissible summability pair. Let f 2

Lp(T ), for some 1 � p � 1, with bf(0) and de�ne f�" 2 C(T ) by (2.13). Then

i) if 1 � p <1, then f�" ! f in Lp(T )-norm as "! 0;

ii) if f 2 C(T ), then f�" ! f uniformly as "! 0;

iii) if f 2 L1(T ) then f�" (t) ! f(t) as " ! 0 at every Lebesgue point; in

particular almost everywhere.

Remark. In the recent paper [6] norm and a.e. convergence properties of
wavelet expansions were established under very mild assumptions on the wavelet.
Although our assumptions are stronger than those in [6] ('0a plays the role of the
wavelet), Theorem 2.4 and Theorem 2.6 provide a classical heuristic for the results
in [6], namely wavelet expansions on the Fourier transform side behave somewhat
like summability processes.

3. Local and Global Properties of Functions

Let 0 < � � 1; �� = ��(T ) denotes the class of Lipschitz functions of order
� i.e. the subclass of continuous functions f such that

sup
h6=0;t2T

jf(t+ h)� f(t)j

jhj�
<1:
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It is well known that a necessary condition for f 2 �� is that bf(n) = O(n��). The
following is a characterization of this class.

Theorem 3.1. Let 0 < � < 1.

(i) Let 'a be an �-admissible summability kernel. If f 2 �� then uf (t; a) =
O(a��1) uniformly in t.

(ii) Let 'a be an �0-admissible summability kernel and let fc(n)g � C be a

null sequence. If u(t; a) = O(a��1) uniformly in t, then ff"g converges uniformly

to f 2 �� and TS = S(f).

Proof. (i) This is an application of the Poisson summation formula as follows:

u0f (t; a) =

Z
T

f(s)'0a(t� s)ds =

Z
T

[f(t� s)� f(t)]'0a(s)ds =

= 2�a�2
Z
T

[f(t� s)� f(t)]
X
n

k0
�
s+ 2n�

a

�
ds =

= 2�a�2
X
n

Z 2�

0

[f(t� s)� f(t)]k0
�
s+ 2n�

a

�
ds =

= 2�a�2
X
n

Z 2�(n+1)

2�n

[f(t� s)� f(t)]k0
� s
a

�
ds =

= 2�a�2
Z
R

[f(t� s)� f(t)]k0
� s
a

�
ds.

In the �rst line above we used the fact that
R
T '

0
a(s)da = 0. Applying the hypothesis

we get juf (t; a)j � Aa�2
R
jsj�jk0

�
s
a

�
jda � Aa��1 as desired.

(ii) Let 0 < � < ". Then from (2.6), the hypothesis, and applying the Poisson
summation formula as above we get:

jf"(t)�f�(t)j � A

Z "

�

a�
Z
T

j'0a(s)jds da = A

Z "

�

a��1
Z
R

jk0(s)jds da � A("����):

It follows that ff"g is uniformly Cauchy on T and hence converges uniformly to
f" 2 C(T ) (note that f" 2 C(T ) for each " > 0). It is immediate that TS = S(f)
using the series form of f". The conclusion that f 2 �� will be arrived at by
showing that ff"g is uniformly Lipschitz i.e. jf"(t+ h)� f"(t)j � Ajhj� where A is
independent of t and ". Let 0 < " < 1 and suppose without loss of generality that
0 < h < 1. Then

f"(t) =

Z 1

"

Z
T

u0(s; a)'0a(s� t)ds a da

(recall the outer integral is absolutely convergent). Split the outer integral into
two integrals over ["; 1] and [1;1). Using the series form it is easily shown that
the second piece de�nes a C1(T ) function, hence in ��. Denote the �rst piece by
g"(t); by the hypothesis and Poisson summation formula, this double integral is
absolutely convergent with " replaced by 0. Hence,
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jg"(t+ h)� g"(t)j �

Z 1

0

Z
T

ju0(s; a)jj'0a(s� (t+ h))� '0(s� t)jds a da �

�

Z h

0

Z
T

ju0(s; a)jj'0a(s� (t+ h))jds a da+

+

Z h

0

Z
T

ju0(s; a)jj'0a(s� t)jds a da+ (3.1)

+

Z 1

h

Z
T

ju0(s; a)jj'a(s� (t+ h))� '0a(t� s)jds a da.

The �rst two integrals are handled in the same fashion using Poisson summation
e.g.Z h

0

Z
T

ju0(s; a)jj'0a(s� t)jds a da � A

Z h

0

a��1
Z
R

jk0(s)jds da = Akk0k1jhj
�:

For the third integral we have:Z 1

h

Z
T

ju0(s; a)jj'0a(s� (t+ h))� '0a(s� t)jds a da �

� A

Z 1

h

a�
Z
T

j'0a(s� h)� '0a(s)jds da:

Again applying Poisson summation and the mean value theorem the inner integral
equals

a�2
Z
R

����k0�s� h

a

�
� k0

� s
a

����� ds =
= ha�3

Z
R

����k00�s� �

a

����� ds = ha�2
Z
R

���k00 �s� �

a

���� ds.
Here we have that � satis�es 0 < � < h and of course depends on s. From
the estimate jk00(x)j � A(1 + jxj)�(1+Æ) and the fact that �=a < 1 the integralZ
R

���k00 �s� �

a

���� ds is uniformly bounded for 0 < a < 1. Consequently,

Z 1

h

Z
T

ju0(s; a)jj'0a(s� (t+ h))� '0a(s� t)jds a da � Ah

Z 1

h

a��2da � Ah�:

Putting the estimates together we have jg"(t+ h)� g"(t)j � Ajhj� uniformly on T
where A is independent of " as desired. }

Using similar methods we have the following result concerning the class �p
� =

�p
�(T ) of L

p(T ) functions which satisfy

sup
h6=0

kf(�+ h)� f(�)kp
jhj�

<1:
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Theorem 3.2. Let 0 < � < 1.

(i) Let 'a be an �-admissible summability kernel. If f 2 �p
� then ku0f (�; a)kp =

O(a��1).

(ii) Let 'a be an �0-admissible summability kernel and let fc(n)g � C be a

null sequence. If ku(�; a)kp = O(a��1), then ff"g converges in Lp norm to f 2 �p
�

and TS = S(f).

Notice that part (i) of both Theorems 3.1 and 3.2 are valid for � = 1. These
theorems have as corollaries known results concerning the Abel means and the
(C; 1) means of trigonometric series ([13], Chapter 7). We now turn our attention
to local results.

By an open or closed subinterval of T we mean a subset of T given by the
map t ! eit applied to an open or closed subinterval of any subinterval of R
of length 2�. Let J be a subinterval of T , we denote by �loc

� (J) the class of
Lipschitz functions of order � on J i.e. the class of L1(T ) functions f such that
jf(t+ h)� f(t)j = O(jhj�) uniformly for t 2 J . The following result can be viewed
as a local version of Theorem 3.1.

Theorem 3.3. Let f'ag be an �-admissible summability kernel for some

0 < � < 1.

(i) Let f be a bounded measurable function on T with f 2 �loc
� (J) for some

subinterval J of T . Then u0f (t; a) = O(a��1) uniformly for t 2 J .

(ii) Let f be a bounded measurable function on T with bf(0) = 0 such that

u0f (t; a) = O(a��1) uniformly on an open subinterval J of T . Let f'a; �ag be an

admissible summability pair with � generated by a C2 compactly supported function

r. Then f�" (t)! f(t) uniformly on any closed subinterval J 0 of J and f 2 �loc
� (J 0).

Proof. Part (i) is clear by previous techniques. For part (ii), let J 0 be a
closed subinterval of J , without loss of generality suppose J 0 is centered at ei0

and write J 0 = [�c; c] and J = [�p; q]. Let d = minfp � c; q � cg. We may
suppose supp(r) � [�1=2; 1=2]; it follows that �a(s) = 0 for a=2 � jsj � �. Let
0 < � < " < d, then for t 2 J 0

jf�" (t)� f�� (t) =

����Z "

�

Z
T

u0(s; a)�a(s� t)ds da

���� �
�

Z "

�

Z
T

ju0(s� t; a)jj�a(s)jds da �

� A

Z 1

0

a��1
Z
T

j�a(s)jds da � AkrkL(R)("
� � ��).

Hence ff�" g is uniformly Cauchy for t 2 J 0 and converges uniformly to f as "! 0.
To show that ff�" g � �loc

� (J 0) we use the same ideas as in Theorem 3.1 (ii). In
particular the outer integral in (2.13) is split into two pieces over intervals ["; d]
and [d;1). The �rst piece de�nes a C1(T ) function, the second is handled as in
the proof of Theorem 3.1. Details are left to the reader. }

Further localization in Theorem 3.3 is achievable under stronger hypothesis.
The following result is analogous to that of Ja�ard [4], [5] for wavelet expansions and
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to that of Holschneider and Tchamitchian [3] for the continuous wavelet transform
on R. Our proof is an adaptation to T of that in [3].

Theorem 3.4. Let f'ag be an �-admissible summability kernel for some

0 < � < 1.

(i) Let f be a bounded measurable function on T such that f(t0+h)�f(t0) =
O(jhj�) for some t0 2 T . Then u

0(t0 + b; a) = O(a��1 + a�1jbj�) (a; jbj ! 0).

(ii) Let 0 < 
 < � and suppose f 2 �
. If for some t0 2 T; u0(t0 + b; a) =

O

�
a��1 +

jbj�

aj log bj

�
(a; jbj ! 0), then f(t0 + h)� f(t0) = O(jhj�).

Proof. Part (i) is now easy and left to the reader. For part (ii), let f'a; �ag be
an admissible summability pair with �a generated by C1 function r with supp(r) �
[�1=2; 1=2]. Without loss of generality let t0 = 0. As in the proofs of Theorem 3.1
and 3.3 it suÆces to consider the function

g(t) =

Z 1=2

0

Z
T

u0(s; a)�a(s� t)ds da:

Let h > 0 and write

g(h)� g(0) =

Z h�=


0

Z �

��

u0(s; a)�a(s� h)ds da+

Z h

h�=


Z �

��

u0(s; a)�a(s� h)ds da

�

Z h

0

Z �

��

u0(s; a)�a(s)ds da+

Z 1=2

h

Z �

��

u0(s; a)[�a(s� h)� �a(s)]ds da:

We denote the four integrals by Ji; I = 1; 2; 3; 4. For J1 we have u
0(s; a) = O(a
�1)

uniformly in s by Theorem 3.1. Hence,

jJ1j � A

Z h�=


0

a
�1
Z
R

jr(x)jdxda = O(h��1):

The inner integral for J2 is over an interval contained in [�2h; 2h] by the support
condition on r. It follows that

jJ2j � A

Z h

h�=


�
a��1 + a�1

h�

j loghj

�Z
T

j�a(s)jds = O(h�):

For the third integral, the inner integral is over the interval [�a=2; a=2] and by
the hypothesis we have u0(s; a) = O(a��1) for jsj � a=2. Immediately we get
J3 = O(h��1). Finally, for the fourth integral we apply the mean value theorem

to get J4 =
R 1=2
h

R �
��

u0(s; a)h�0a(s� �)ds da where �h < � < 0 and of course �
depends on s. Again by the support condition on r, the inner integral is over an
interval contained in [�(h + a=2); a=2]. Moreover the growth condition imposed
on r, (2.2) and Poisson summation show that j�0a(s)j = O(a�1) uniformly in s.
Consequently,
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J4 = O

 
h

Z 1=2

h

Z a=2

�(h+a=2)

�
a��1 + a�1

jsj�

j log jsjj

�
a�1ds da

!

= O(h�) +O

 
h

Z 1=2

h

(h+ a=2)�

j log(h+ a=2)j
a�2da

!

= O(h�) +O

 
h

j loghj

Z 1=2

h

a��2

!
= O(h�):

Combining the estimates concludes the proof. }

4. Further Results and Commentary

Two additional topics are mentioned in this section.

A) Littlewood-Paley Theory. We have the following result generalizing
the well known theorem of Littlewood and Paley [7], [13] for Poisson integrals.

Theorem 4.1. Let f'ag be an admissible summability kernel. If f 2 Lp(T )

for some 1 < p <1 with bf(0) = 0, then

Apkfkp �

"Z
T

�Z 1

0

ju0f (s; a)j
2ada

�p=2#1=p
� Bpkfkp: (4.1)

where Ap and Bp are constants dependant only on p. The right hand inequality

holds without the hypothesis bf(0) = 0.

The proof is omitted; it is based on standard techniques centered on the
Marcinkiewicz interpolation theorem [2], [10], [12]. However the following corollary
is of some interest relative to the perspective of this paper.

Corollary 4.2. Let f'ag be an admissible summability kernel and let

fc(n)g � C be a null sequence. If for some 1 < p <1"Z
T

�Z 1

0

ju0(s; a)j2ada

�p=2#1=p
<1; (4.2)

then (i) ff"g as de�ned by (2.7) is Cauchy in Lp(T ) norm, hence converges to say

f ; and (ii) TS = S(f).

Proof. Let 0 < � < ", then

f"(t)� f�(t) =

Z "

�

Z
T

u0(s; a)'a(s� t)ds a da;

where the double integral is absolutely convergent. Let g 2 Lq(T ) where q is the

conjugate index to p. Then hf" � f�; gi =
R "
�

R
T u

0(s; a)ug(s; a)ds a da. Applying

H�older's inequality and Theorem 4.1 we get:
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j hf" � f�; gi j �

�

"Z
T

�Z "

�

ju0(s; a)j2ada

�p=2
ds

#1=p "Z
T

�Z 1

0

ju0g(s; a)j
2ada

�q=2
ds

#1=q
�

� Bqkgkq

"Z
T

�Z "

�

ju0(s; a)j2ada

�p=2
ds

#1=p
:

Consequently hf" � f�; gi ! 0 for every g 2 Lq(T ). The conclusions are immediate
from this and the series representation of f". }

It is interesting to observe that (4.2) becomes the following for the case of
(C; 1) summability: Z

T

 
1X
1

j�0n(s)j
2=n3

!p=2

ds <1:

B) Generalization to the Torus TN . The results of this paper have
extension to the torus in N dimensions. Here we are content to state the natural
generalization of the Calderon formula (2.6). An admissible summability kernel is
de�ned in much the same way as in one dimension. Let k 2 L1(RN ) be radial and
satisfy the conditions: Z

RN

k(x)dx = 1

jk(x)j � A(1 + jxj)�(N+Æ); jbk(�)j � A(1 + j�j)�(N+Æ), for some Æ > 0. (4.3)

Let ka(x) = a�Nk(x=a) and let �(�) = bk(�), note that � is also radial. We de�ne
the family of continuous functions f'ag on TN using the N -dimensional version
of the Poisson summation formula [11] (just like (2.3) in one dimension). We say
the family f'ag is an admissible summability kernel on TN if it is generated in the
above manner from a function k which is di�erentiable on RN and whose partial
derivatives satisfy (4.3). The N -dimensional version of Calderon's identity on the
torus now takes the form:

f(t) = c�1'

Z 1

0

Z
TN

ru(s; a) � r'a(s� t)ds a da:

Here r denotes the gradient operator and c' =
R
RN

j�(�)j2j�jd�. Interpretation of
this formula is carried out like Theorem 2.2. Further development of results on the
torus will be done in later work.
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